SVEUČILIŠTE U SPLITU
KEMIJSKO TEHNOLOŠKI FAKULTET
I
MEDICINSKI FAKULTET

Renata Pauk

RAZVOJ I VREDNOVANJE KINETIČKE METODE ODREĐIVANJA CISTEINA SLIJEDNOM ANALIZOM INJEKTIRANJEM UZ SPEKTROFOTOMETRIJSKI DETEKTOR

Diplomski rad

Mentor: doc. dr. sc. Lea Kukoč Modun

Sažetak: Primjenom slijedne analize injektiranjem uz spektrofotometrijski detektor razvijena je i vrednovana kinetička metoda određivanja cisteina. Kinetička metoda se temelji na redoks reakciji gdje cistein kao reducens, reducira zeleni bakar(II) neokuproin kompleks do bakar(I) neokuproin kompleksa. Formiran žuto-narančasti bakar(I) neokuproin kompleks pokazuje apsorpcijski maksimum pri valnoj duljini od 458 nm. Optimalni parametri protočnog sustava određeni su univarijantnom metodom te je temeljem toga konstruirana krivulja umjeravanja. Linearnost je postignuta u području koncentracija cisteina od $6,0 \times 10^{-7}$ do $8,0 \times 10^{-5}$ mol L$^{-1}$ uz jednadžbu pravca: $y = 3690,4 x + 0,0019$ i korelacijski koeficijent $R^2 = 0,9997$, te su određene granica dokazivanja od $1,8 \times 10^{-7}$ mol L$^{-1}$ i granica određivanja od $6,0 \times 10^{-7}$ mol L$^{-1}$. Provjerjen je i utjecaj pratećih tvari koje se uobičajeno nalaze u sastavu farmaceutskih pripravaka te nije zabilježen njihov interferirajući učinak na određivanje analita. Vrednovanje metode provedeno je ispitivanjem ponovljivosti signala uz relativno standardno odstupanje od 3,35 % te zadovoljavajuće iskoristivosti, odnosno točnosti metode.

Ključne riječi: cistein, slijedna analiza injektiranjem, spektrofotometrija

Rad sadrži: 58 stranica, 32 slike, 5 tablica, 32 literaturne reference

Jezik izvornika: hrvatski

Sastav Povjerenstva za obranu:
1. izv. prof. dr. sc. Olivera Politeo
 predsjednik
2. doc. dr. sc. Franko Burčul
 član
3. doc. dr. sc. Lea Kukoč Modun
 član-mentor

Rad je u tiskanom i elektroničkom (pdf format) obliku pohranjen u Knjižnici Kemijsko-tehnološkog fakulteta Split, Rudera Boškovića 35 i Medicinskog fakulteta Split, Šoltanska 1.
DEVELOPMENT AND VALIDATION OF THE KINETIC METHOD FOR THE DETERMINATION OF CYSTEINE USING SEQUENTIAL INJECTION ANALYSIS WITH SPECTROPHOTOMETRIC DETECTOR

Renata Pauk, index number 77

Summary: Using the sequential injection analysis with the spectrophotometric detector, the kinetic method for the determination of cysteine was developed and validated. The kinetic method is based on redox reaction where cysteine as a reductant, reduces green copper(II) neocuproine complex to copper(I) neocuproine complex. The formatted yellow-orange copper(I) neocuproine complex shows an absorption maximum at wavelength of 458 nm. The optimum parameters of the flow system were determined by a univariate method and as a result the calibration curve was constructed. Linearity was achieved for the concentration range from 6.0 × 10^{-7} mol L^{-1} to 8.0 × 10^{-5} mol L^{-1} and it was described with the equation \(y = 3690.4x + 0.0019 \) and correlation coefficient \(R^2 = 0.9997 \). The calculated limit of detection is 1.8 × 10^{-7} mol L^{-1} and the limit of quantification is 6.0 × 10^{-7} mol L^{-1}. The influence of foreign substances commonly found in the composition of the pharmaceutical preparations was also examined, and no interfering effect on the analyte was noted. Validation of the method was performed by examining the repeatability of the signal with a relative standard deviation of 3.35%, and satisfactory recovery of method, or accuracy of the method.

Key words: cysteine, sequential injection analysis, spectrophotometry

Thesis contains: 58 pages, 32 figures, 5 tables, 32 references

Original in: Croatian

Defence committee:
1. Olivera Politeo, PhD, associate prof. chair person
2. Franko Burčul, PhD, assistant prof. member
3. Lea Kukoč Modun, PhD assistant prof. supervisor

Defence date: October 26 2017.

Printed and electronic (pdf format) version of thesis is deposed in Library of Faculty of Chemistry and Technology Split, Teslina 10 and Library of School of Medicine, Šoltanska 1.
Sadržaj

1. Uvod .. 1
 1.1. Aminokiseline i proteini ... 1
 1.1.1. Građa aminokiselina ... 1
 1.1.2. Podjela aminokiselina .. 1
 1.1.3. Građa i struktura proteina ... 2
 1.2. Cistein .. 3
 1.2.1. Svojstva i struktura cisteina .. 3
 1.2.2. Sinteza cisteina ... 4
 1.2.3. Razgradnja cistina i cisteina .. 4
 1.2.4. Produksi cisteina .. 5
 1.2.5. Cistein u farmaceutskim pripravcima ... 5
 1.2.6. Analitičke metode određivanja cisteina ... 6
 1.3. Kinetičke metode .. 6
 1.3.1. Reakcije prvog reda .. 7
 1.3.2. Reakcije drugog reda .. 8
 1.3.3. Reakcije pseudo prvog reda .. 9
 1.3.4. Vrednovanje kinetičkih metoda ... 10
 2. Cilj istraživanja .. 11
 3. Materijali i metode ... 12
 3.1. Priprava otopina ... 12
 3.2. Slijedna analiza injektiranjem .. 14
 3.2.1. Formiranje zone .. 16
 3.2.2. Programiranje protoka ... 18
 3.3. Molekulska apsorpcijska spektrometrija ... 20
 3.3.1. Apsorpcija svjetlosti .. 20
 3.3.2. Transmitancija .. 21
 3.3.3. Apsorbancija .. 21
 3.3.4. Lambert-Beerov zakon ... 22
 3.3.5. Instrumenti u optičkoj spektroskopiji ... 23
 3.4. Ostali uređaji i oprema .. 25
4. Rezultati .. 26
 4.1. Predložena kemijska reakcija .. 26
 4.2. Optimizacija sustava .. 26
 4.3. Optimizacija redoslijeda injektiranja .. 27
 4.4. Optimizacija brzine protoka .. 28
 4.5. Optimizacija volumena injektiranja reagensa ... 30
 4.6. Optimizacija volumena injektiranja analita ... 32
 4.7. Optimizacija volumena petlje zadržavanja ... 34
 4.8. Optimizacija volumena (duljine) reakcijske petlje .. 35
 4.9. Optimizacija omjera reagensa ... 37
 4.10. Odabrani optimalni parametri .. 39
 4.11. Linearno dinamičko područje (LDP) .. 40
 4.12. Granica dokazivanja, granica određivanja i ponovljivost signala 42
 4.13. Ispitivanje utjecaja interferencija na osjetljivost metode .. 44
5. Rasprava ... 48
6. Zaključak ... 51
7. Popis citirane literature ... 52
8. Sažetak .. 56
9. Summary ... 57
10. Životopis ... 58
Zahvala

Iskreno se zahvaljujem, u prvom redu, mojoj mentorici doc. dr. sc. Lei Kukoč Modun i neposrednoj voditeljici Maji Biočić, mag. ing. chem. ing. na pomoći u izradi diplomskog rada, uloženom trudu i vremenu, ali i na prijateljskom pristupu.

Želim zahvaliti i članovima Ispitnog povjerenstva, izv. prof. dr. sc. Oliveri Politeo i doc. dr. sc. Franku Burčulu na stručnim i korisnim savjetima, te na lijepim riječima.

Od srca hvala i svim kolegama i kolegicama, sada prijateljima i prijateljicama, koji su nesebično dijelili svoje znanje kada je trebalo, i učinili studiranje nezaboravnim.

Najveće hvala mojoj obitelji, prijateljima i prijateljicama koji su mi pružali ljubav i podršku, te bili puni razumijevanja tijekom cjelokupnog školovanja.
1. Uvod
1. Uvod

1.1. Aminokiseline i proteini

Postoji 20 osnovnih L-α-aminokiselina određenih troslovnom genskom šifrom i „21. aminokiselina“ selenocistein. Selenocistein nastaje zamjenom atoma sumpora selenom u strukturnom analogu cisteinu u fazi translacije i nije određena troslovnim kodonom. Nalazi se u nekim peroksidazama i reduktazama gdje sudjeluje u enzimskim reakcijama katalize prijenosa elektrona [5].

1.1.1. Grada aminokiselina

Sve L-α-aminokiseline osim glicina imaju kiralan α-ugljk na koji su vezane karboksilna skupina, amino skupina, atom vodika i funkcionalna skupina karakteristična za pojedinu aminokiselinu. Funkcionalna skupina određuje svojstva cijele molekule pa ih prema bočnom ogranku možemo podijeliti na nepolarne i polarne aminokiseline sa ili bez naboja, odnosno netopljive i topljive u vodi. U krvnoj plazmi aminokiseline se najčešće nalaze u obliku izoelektrične čestice koja sadrži jednak broj pozitivnih i negativnih naboja - zwitter iona [6].

1.1.2. Podjela aminokiselina

Aminokiseline dijelimo na esencijalne i nesencijalne. Esencijalne ili nužne aminokiseline su one koje su potrebne organizmu, ali ih ne može sam sintetizirati. To su: histidin, izoleucin, leucin, lizin, metionin, fenilalanin, treonin, triptofan i valin. Ukoliko dođe do manjka makar jedne od navedenih devet aminokiselina, bez obzira na unos proteina,
ravnoteža dušika biti će poremećena zbog nedovoljne količine nužnih aminokiselina za sintezu proteina.

Neesencijalne aminokiseline organizam može sintetizirati i njihov nedostatak neće utjecati na ravnotežu dušika. U tu skupinu spadaju: arginin, asparagin, glicin, glutamin, prolin i serin te alanin, aspartat i glutamat koje se jedine mogu smatrati pravim neesencijalnim aminokiselinama, jer se sintetiziraju iz zajedničkih metaboličkih intermedijera (piruvata, oksaloacetata i α-ketoglutarata).

Cistein i tirozin spadaju u posebnu skupinu aminokiselin koje se sintetiziraju iz esencijalnih preteća, koje se u organizam unose hranom, metionina (cistein) i fenilalanina (tirozin) [5].

1.1.3. Građa i struktura proteina

Proteini nastaju povezivanjem aminokiselina peptidnom vezom koja se ostvaruje između karboksilnih i amino skupina susjednih aminokiselina (slika 1.1.). Aminokiselinski slijed genetski je uvjetovan i određuje konformaciju i funkciju proteina.

Slika 1.1. Prikaz peptidne veze

Postoje četiri razine strukture proteina (slika 1.2.): primarna, sekundarna, tercijarna i kvaterna. Primarna struktura predstavlja slijed aminokiselina i genetski je uvjetovana. Međusobni položaj bliskih ogranaka predstavlja sekundarnu, a udaljenih ogranaka tercijarnu strukturu. Kvaterna struktura odnosi se na oligomerne proteine i predstavlja međusobni odnos pojedinih podjedinica ovih proteina. Ukupan naboj proteina određen je udjelom pozitivno i negativno nabijenih bočnih ogranaka [7].
1.2. Cistein

1.2.1. Svojstva i struktura cisteina

Cistein je polarna neesencijalna aminokiselina, bez naboja koja se sintetizira iz metionina i serina. Dobro je topljiv u polarnim otapalima poput vode i etanola, a netopljiv je u nepolarnim otapalima. Struktura cisteina prikazana je u obliku zwitter iona:

![Slika 1.2. Prikaz primarne, sekundarne, tercijarne i kvaterne strukture proteina](image)

![Slika 1.3. Strukura L-α-cisteina (zwitter ion)](image)

Svojstva su određena tiolnom –SH skupinom acikličkog bočnog ogranka. Tiolna skupina zbog nukleofilnog svojstva može sudjelovati u enzimskoj katalizi i podliježe reakcijama oksidacije i esterifikacije. Oksidacijom dviju molekula cisteina i njihovim kovalentnim povezivanjem disulfidnom vezom preko atoma sumpora formira se cistin. Cistin sadrži hidrofobne ostatke i povećava stabilnost proteina uslijed nastanka disulfidnog mosta [5].
1.2.2. Sinteza cisteina

Cistein nije tipična neesencijalna aminokiselina jer se sintetizira iz esencijalne aminokiseline metionina koji je donor tiolne skupine i neesencijalne aminokiseline serina. Sinteza cisteina započinje konverzijom metionina u homocistein koji se reakcijom sa serinom pretvara u cistationin. U posljednjem koraku hidrolizom cistationina nastaju cistein i α-ketobutirat [5].

1.2.3. Razgradnja cistina i cisteina

Cistin se uz pomoć enzima cistin-reduktaze reducira u cistein koji se pretvara u piruvat putem cistein-sulfinata ili 3-merkaptopiruvata. Prvi metabolički put uključuje enzime cistein-deoksigenzu, transaminazu i desulfinazu, a drugi transaminazu i osim piruvata kao produkt nastaje i 3-merkaptolaktat.

Poremećaj razgradnje cisteina može dovesti do pojave cistinurije. Cistinurija je benigni genetski poremećaj reapsorpcije cisteina i strukturno sličnih aminokiselina (lizin, arginin, ornitin) čija je jedina komplikacija moguće stvaranje cistinskih kamenaca. Cistinuriju
liječimo alkalizacijom urina, npr. sodom bikarbonom i povećanim unosom tekućine ili D-penicilaminom kao drugom linijom [8].

1.2.4. Produkti cisteina

Cistein reagira s pantotenatom i nastaje 4-fosfopantotenoil-cistein iz kojeg se daljnjim reakcijama sintetizira koenzim A. Koenzim A sudjeluje u brojnim fiziološkim procesima uključujući sintezu aminokiselina koje se sintetiziraju transaminacijom (alanin, aspartat i glutamat). Cistein i koenzim A važni su faktori prvog koraka u reakcijama acetilacije kao reakcije druge faze metabolizma lijekova. Prvi korak biotransformacije acetilacijom uključuje prijenos acetilne skupine s acetil-CoA na aktivni centar enzima N-acetiltransferaze, tiolnu skupinu aminokiseline cisteina. Lijekovi koji se metaboliziraju acetilacijom su npr. antiaritmik prokainamid, antituberkulotici p-aminosalicilna kiselina i izoniazid, β-blokator propranolol, sulfonamidi i brojni drugi [9].

Iz cisteina u tri enzimski posredovane reakcije može nastati taurin. Zamjenom koenzima A taurinom u molekuli kolil-CoA nastaje taurokolna kiselina, jedna od žučnih kiselina [5].

1.2.5. Cistein u farmaceutskim pripravcima

Stvarajući disulfidne veze cistein daje čvrstoću strukturnom proteinu kose - keratinu [10]. Zbog navedenog svojstva često se nalazi u oralnim dodacima prehrani za rast i čvrstoću kose u obliku cisteina ili dimera cistina, ali ne kao osnovna djelatna tvar već u kombinaciji s različitim vitaminima i mineralima. Cistein se nalazi u KAL Hair force kapsulama®, MERZ Spezial dražeje Koža/kosa/nokti®, a cistin možemo pronaći u Krka Fitoval kapsulama® i DUCRAY anacaps kapsulama® i MERZ Spezial Hair dražejama®.

Slika 1.5. Farmaceutski pripravci koji sadrže cistein
1.2.6. Analitičke metode određivanja cisteina

1.3. Kinetičke metode

Analitičke metode kojima određujemo željenu tvar možemo podijeliti u dvije skupine: termodinamičke i kinetičke. Osnovna razlika je što se u termodinamičkim uvjetima mjerenja izvode kada je reakcija dosegla stanje termodinamičke ravnoteže, dok se mjerenja kod kinetičkih metoda mogu obavljati u dinamičkim uvjetima dok reakcija nije postigla stanje termodinamičke ravnoteže [21].

Slika 1.6. Grafički prikaz ovisnosti signala o vremenu mjereno a) termodinamičkim metodama i b) kinetičkim metodama
Na slici 1.6. vidljivo je kako je kod termodinamičkog mjerenja signal konstantan, dok se kod kinetičkog mjerenja, pod utjecajem neprekidne promjene koncentracije reaktanata i produkata, signal mijenja s vremenom.

Na selektivnost metoda utječemo odabirom prikladnih uvjeta i reagensa. U termodinamičkim uvjetima cilj je povećati razliku u ravnotežnim konstantama reakcija analita, odnosno interferencija, dok se u kinetičkim metodama selektivnost postiže povećanjem razlike u brzinama regiranja analita i interferencija sa reagensom.

Prednost kinetičkih metoda je povećan broj kemijskih reakcija koje se mogu upotrijebiti u analitičke svrhe jer se mogu primjenjivati kod nedovoljno brzih ili nepotpunih reacijama kod kojih se sporo postiže stanje ravnoteže. Reakcije koje se koriste u kinetičkim metodama određivanja ne smiju biti ni previše brze ni previše spore, moraju završiti u razumnom vremenu, ali ne toliko brzo da završe dok se reagensi miješaju. Također mora biti poznat red reakcije kako bi se mogli odrediti brzina reakcije i koncentracija kao kinetički parametri. Treći, posljednji uvjet, je mogućnost praćenja reakcije kroz promjene koncentracije kao funkcije vremena [21].

1.3.1. Reakcije prvog reda

Reakcije prvog reda su reakcije kojima brzina ovisi o koncentraciji

\[A \rightarrow P, \]

i tada je brzina reakcija jednaka brzini nestajanja tvari A i proporcionalna njezinoj koncentraciji. Diferencijalni izraz zakona brzine za reakcije prvog reda glasi:

\[-\frac{d[A]}{dt} = k \cdot [A] \]

gdje je \([A]\) koncentracija reaktanta A, a \(k\) specifična brzina reakcije ili konstanta brzine reakcije. Minus ispred zagrade u jednadžbi ukazuje na smanjenje koncentracije tvari A s vremenom. Kod diferencijalnih metoda koncentracije se računaju iz brzina koje se određuju mjerenjem nagiba krivulje grafa koji opisuje koncentraciju reaktanta ili produkta kao funkciju vremena. Nagib krivulje se najčešće određuje u prvim trenutcima mjerenja kada je eksponencijalna krivulja približno linearna i nagib je najveći.
Brzinu reakcije možemo odrediti i integralnim metodama. Izraz za određivanje početne koncentracije reaktanta A iz koncentracije u određenom vremenu \(t \) glasi:

\[
\log [A]_t = \log [A]_0 - \frac{k \cdot t}{2,303}
\]

(2)

gdje je \([A]_t\) koncentracija reaktanta u vremenu \(t \), \([A]_0\) koncentracija reaktanta na početku, \(k \) konstanta brzine reakcije i \(t \) vrijeme reakcije. Ukoliko grafički prikažemo logaritam eksperimentalno mjerene koncentracije reaktanta A kao funkcije vremena, dobijemo pravac nagiba \(-\frac{k}{2,303} \), i odsječak na osi \(y \) koji je jednak \(\log [A]_0 \) [22].

1.3.2. Reakcije drugog reda

Reakcije drugog reda su reakcije kojima brzina ovisi o koncentraciji svakog od reaktanata. Analitičke reakcije najčešće su reakcije drugog reda u kojima analit predstavlja jedan reaktant, a reagens drugi. Uz pretpostavku da je reakcija nastajanja produkta nepovratna, možemo je predložiti kao:

\[A + B \rightarrow P. \]

Brzina reakcija drugog reda ovisi o brzini nestajanja reaktanta A i reaktanta B, odnosno njihovoj koncentraciji. Zakon o brzini drugog reda prikazujemo izrazom:

\[
-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = k \cdot [A] \cdot [B]
\]

(3)

gdje \([A]\) predstavlja koncentraciju reaktanta A, \([B]\) koncentraciju reaktanta B, a \(k \) konstantu brzine reakcije.

Integralni izraz za brzinu reakcije drugog reda u kojoj su početne koncentracije reaktanata jednake (\([A]_0 = [B]_0\)) glasi:

\[
k \cdot t = \frac{[A]_0 - [A]_t}{[A]_0 - [A]_t}
\]

(4)

Kada početne koncentracije reaktanata A i B nisu jednake jednadžba poprima izgled:

\[
k \cdot t = \frac{2,303}{[B]_0 - [A]_0} \cdot \log \frac{[A]_0}{[B]_0} \cdot \frac{[B]_0}{[A]_0}
\]

(5)
gdje je \([A]\), koncentracija reaktanta u vremenu \(t\), \([A]_0\) koncentracija reaktanta na početku reakcije, \([B]\), koncentracija reaktanta B u vremenu \(t\), \([B]_0\) koncentracija reaktanta B na početku reakcije, \(k\) konstanta brzine reakcije i \(t\) vrijeme reakcije [22].

1.3.3. Reakcije pseudo prvog reda

U reakcijama pseudo prvog reda jedan od reaktanata u značajnom je suvišku. Ukoliko je u izrazu za reakciju drugog reda

\[
A + B \rightarrow C,
\]

Koncentracija reaktanta B znatno veća od koncentracije reaktanta A, tj. \([B] \gg [A]\) koncentracija reaktanta B vrlo se malo mijenja tijekom reakcije i izraz za brzinu ove reakcije svodi se na izraz za zakon brzine reakcije prvog reda (1) i glasi:

\[
- \frac{d[A]}{dt} = k' [A]
\]

gdje \([A]\) predstavlja koncentraciju reaktanta A, a \(k'\) konstantu koja je jednaka umnošku konstante brzine reakcije \(k\) i koncentracije reaktanta B (\(k' = k \cdot [B]\)).

Brzinu reakcije možemo izraziti i integralnom metodom:

\[
k \cdot t = \frac{2,303}{[B]_0} \cdot \log \left(\frac{[A]_0}{[A]} \right).
\]

gdje je \([A]\), izraz za koncentraciju reaktanta u vremenu \(t\), \([A]_0\) koncentracija reaktanta na početku reakcije, \([B]_0\) koncentracija reaktanta B na početku reakcije, \(k\) konstanta brzine reakcije i \(t\) vrijeme reakcije. Kod reakcija pseudo prvog reda vidljivo je iz diferencijalnog i integralnog izraza kako brzina reakcije ovisi o nestajanju tvari manje koncentracije (reaktant A).

Brzine nekih reakcija možemo povećati katalitičkim učinkom enzima specifičnih za tu reakciju [22].
1.3.4. Vrednovanje kinetičkih metoda

Uspješnost razvoja, proizvodnje i kontrole kvalitete farmaceutskih pripravaka zasniva se na brzim, selektivnim, osjetljivim i ekonomskim isplativim metodama kvantitativne analize koje odgovaraju suvremenim strožim zahtjevima farmakopejskih monografija.

Kinetičke metode udovoljavaju zahtjevima farmaceutske industrije za automatizacijom i minijaturizacijom metoda za istraživačka i rutinska kvantitativna mjerenja. Kao najpovoljnija metoda pokazala se slijedna analiza injektiranjem zbog ekonomičnosti utroška uzorka i reagensa i velike brzine analiziranja uzoraka. Prednost kinetičkih metoda je i mogućnost povećanja selektivnosti metode optimizacijom uvjeta reakcije na način da se brzine reakcije interferencija i analita dovoljno razlikuju. Osjetljivost metode možemo povećati provođenjem mjerenja u uvjetima kada je koncentracija analita relativno velika. Ukoliko je analit jedan od reaktanata mjerenja bi se trebala provoditi na početku reakcije dok se za produkte mjerenja izvode na kraju.

Nedostatak kinetičkih metoda u odnosu na termodinamičke je smanjena točnost zbog utjecaja kontroliranih i nekontroliranih parametara poput temperature i pH otopine [23].

Osim parametrima selektivnosti, osjetljivosti, točnosti i preciznosti, metoda se vrednuje određivanjem linearnog dinamičkog područja, te granice određivanja i dokazivanja. Linearno dinamičko područje (LDP) je područje koncentracije analita u kojem signal linearno raste s porastom koncentracije. LDP prikazujemo pravcem na grafu ovisnosti apsorbancije o koncentraciji analita i određujemo ga na temelju najmanje pet različitih koncentracija. Izražava se jednadžbom y = k x + l, gdje y predstavlja vrijednost apsorbancije, a x koncentraciju analita izraženu u mol L⁻¹. Omeđeno je granicom određivanja i gornjom granicom LDP-a. Granica određivanja je najmanja koncentracija analita koja se može kvantitativno odrediti primjenom odgovarajuće metode ili tehnike. Granica dokazivanja izraz je za najnižu koncentraciju analita koja se može kvalitativno odrediti i koja daje signal tri puta veći od šuma primjenom određene tehnike ili metode [24].

Cilj istraživanja ovog rada je razvoj kinetičke metode za određivanje cisteina koja će se vrednovati ispitivanjem linearnog dinamičkog područja, granice određivanja, granice dokazivanja i ponovljivosti reakcije. Metoda se temelji na redoks reakciji u kojoj zeleno obojani [Cu(Nc)₂]²⁺ kompleks, reduciran t-cisteinom, prelazi u žuto obojani [Cu(Nc)₂]⁺ kompleks koji apsorbira pri valnoj duljini 458 nm.
2. Cilj istraživanja
2. Cilj istraživanja

Cilj diplomskog rada je razvoj i vrednovanje metode određivanja L-cisteina primjenom slijedne analize injektiranjem uz spektrofotometrijski detektor.

Razvoju metode prethodi optimizacija slijedećih parametara protočnog sustava:

1. Redoslijed injektiranja analita i reagensa
2. Brzina protoka osnovne otopine
3. Volumen injektiranja reagensa i analita
4. Volumen petlje zadržavanja i reakcijske petlje
5. Koncentracija reagensa

Korištenjem optimiziranih parametara određene su analitičke karakteristike razvijene metode:

a) Područje djelovanja Beerovog zakona (linearno dinamičko područje - LDP)
b) Jednadžbu regresijskog pravca (nagib i odsječak)
c) Koeficijent linearne regresije R^2
d) Granicu dokazivanja
e) Granicu određivanja

Metoda je vrednovana ispitivanjem točnosti i preciznosti na temelju ponovljivosti metode i iskoristivosti metode (engl. recovery), te ispitivanjem utjecaja interferencija na zabilježeni signal.
3. Materijali i metode
3. Materijali i metode

3.1. Priprava otopina

a) Otopina standarda \(\text{L}-\text{cisteina} \)

Standardna otopina \(\text{L}-\text{cisteina}, \{c(\text{L-cistein}) = 1,0 \times 10^{-3} \text{ mol L}^{-1}\} \) pripravlja se otapanjem 0,0606 g \(\text{L}-\text{cisteina} \) (Merck, Damstadt, Njemačka) u acetatno-boratno-fosfatnom puferu, \(\text{pH} = 3 \), nadopunom do oznake odmjerno tikvice od 50 mL. Otopina se čuva u tamnom prostoru pri temperaturi od 4 \(^\circ \text{C} \), i tako čuvana otopina stabilna je najmanje 30 dana. Radne otopine dnevno su pripravljane razrjeđivanjem standardne otopine.

b) Otopina bakar(II) neokuproin kompleksa

Standardna otopina bakrovog(II) neokuproin kompleksa \(\{c[\text{Cu(Nc)_2}]^{2+} = 1 \times 10^{-3} \text{ mol L}^{-1}\} \) pripravlja se iz bakrovog(II)sulfat-pentahidrata i neokuproin hidrata (omjer \(\text{Cu} : \text{Nc} = 1 : 2,4 \)), u acetatno-boratno-fosfatnom puferu \(\text{pH} = 3 \). Prvo slijedi otapanje 0,0250 g bakrovog(II) sulfat-pentahidrata (\(\text{CuSO}_4 \times 5\text{H}_2\text{O}; \text{Kemika, Zagreb, Hrvatska}; M = 249,68 \text{ g mol}^{-1} \)) u malom volumenu acetatno-boratno-fosfatnog pufera \(\text{pH} = 3 \). U tako pripravljenoj otopini bakra(II) se zatim otopi 0,0500 g neokuproina (\(\text{C}_{14}\text{H}_{12}\text{N}_2 \times \text{H}_2\text{O}; \text{Sigma Aldrich, Steinheim, Austrija}; M = 208,26 \text{ g mol}^{-1} \)) i nadopuni acetatno-boratno-fosfatnim puferom \(\text{pH} = 3 \) do oznake 100 mL odmjerne tikvice. Neokuproin se pripravlja u otopini bakra(II), kako bi mu, stvaranjem kompleksa \([\text{Cu(Nc)_2}]^{2+} \), povećali topljivost. Pripravljena otopina čuva se na 4 \(^\circ \text{C} \) i stabilna je najmanje 30 dana.

c) Otopina acetatno-boratno-fosfatnog pufera 0,04 mol L\(^{-1}\)

Pufer se pripravlja otapanjem 4,9464 g borne kiselina (\(\text{H}_3\text{BO}_3 \), Alkaloid, Skopje, Makedonija; \(M = 61,83 \text{ g mol}^{-1} \)) u malo destilirane vode. Nakon otapanja borne kiseline doda se 4,60 mL octene kiseline (\(\text{CH}_3\text{COOH}, \text{glacialna, VWR Chemicals, Francuska}; M = 60,05 \text{ g mol}^{-1} \)) i 3,20 mL fosforne kiseline (\(\text{H}_3\text{PO}_4 \), Kemika, Zagreb; \(M = 98,00 \text{ g mol}^{-1} \)) te nadopuni destiliranom vodom do oznake na odmjernoj tikvici od 2,0 L. Pripravljena otopina približno ima vrijednost \(\text{pH} = 2 \). Željena vrijednost \(\text{pH} (\text{pH} = 3) \) podešava se dodatkom otopine NaOH \(\{c(\text{NaOH}) = 2,0 \text{ mol L}^{-1}\} \) uz kontrolu pH-metrom.
d) Otopina natrijeva hidroksida

Otopina NaOH \(c(\text{NaOH}) = 2,0 \text{ mol L}^{-1}\) pripravlja se otapanjem 8,0000 g natrijeva
hidroksida (NaOH, Sv. Nedjelja, Hrvatska; \(M = 40,0 \text{ g mol}^{-1}\)) u 100 mL deionizirane vode.
3.2. Slijedna analiza injektiranjem

Suvremeni stroži zahtjevi za kvantitativnom analizom rezultirali su potrebom za razvojem ekonomičnije i funkcionalnije metode. Uštedom utroška reagensa i potpunom automatizacijom sustava slijedna analiza injektiranjem pokazala se kao izrazito pogodna. Apsolutna automatizacija sustava omogućava reproduibilan vremenski interval između injektiranja i detekcije što osigurava obradu svih uzoraka na isti način i mogućnost usporedbe nepoznatih uzoraka sa standardom. Ekonomski prihvatljiva metoda široku je primjenu pronašla i u farmaceutskoj industriji zbog mogućnosti analize uzoraka različite formulacije: masti, past, kreme, emulzija, otopina i suspenzija [25].

Iako je SIA robunija metoda kojom možemo analizirati uzorke manjih koncentracija, prednost FIA metode je mogućnost obrade većeg broja uzoraka.
Slika 3.1. Sustav korišten prilikom razvoja i validacije SIA metode za određivanje cisteina

Sustav se sastoji od dvosmjerne crpke (Valco Instruments, Švicarska), višepozicijskog selekcijskog ventila (Valco Instruments, Švicarska), petlje zadržavanja i detektora, u ovom slučaju dvosnopnog spektrofotometra Shimadzu UV-1601 (Shimadzu, Kyoto, Japan).

Slika 3.2. Shematski prikaz SIA sustava korištenog u razvoju i vrednovanju metode

Osnovne karakteristike SIA sustava su dvosmieran tok kroz petlju zadržavanja i programsko upravljanje injektiranjem. Nakon što se dvosmjernom crpkom u sustav injektira
programski zadana količina analita, a potom reagensa, dolazi do promjene smjera kretanja u petli zadržavanja. Daljnim protokom zona analita i reagensa međusobno se raspršuju i na granicama zona se stvara produkt. Detektor bilježi signal produkta kao pik na grafu čija visina ovisi o koncentraciji analita. Grafički prikaz odziva detektora kao funkcije vremena u slijednoj analizi injektiranjем naziva se siagram. Najčešće se koriste spektrofotometrijski i potenciometrijski detektor [26].

Sustavi prve generacije protočnih analiza (FIA) zahtjevaju veći broj cjevčica kako bi se injektirali svi potrebni reagensi (svaki zasebno) dok više-pozicijski selekcijski ventil SIA sustavu omogućuje slijedno injektiranje nekoliko različitih uzoraka, standarda ili reagensa [27].

Napredak u razvoju protočnih sustava vidljiv je i u pojednostavljenju predobrade uzoraka. Dvosmjerna crpka promjenom smjera protoka, ili njegovim zaustavljanjem, omogućava provođenje razrjeđivanja, ekstrakcije tekuće - tekuće - plin, ekstrakcije iz čvrstih uzoraka, dijalize i enzimatskih reakcija kao postupaka predobrade uzoraka u reakcijskoj petli [28].

3.2.1. Formiranje zone

Analize injektiranjem temelje se na raspršenju analita u struci osnovne otopine i reagensa te nastanku koncentracijskog gradijenta, odnosno pika. Kod SIA metode odvijaju se dvije, po prirodi, kinetičke metode raspršenja, kemijska i fizikalna. Fizikalno dolazi do raspršenja zone analita u zoni reagensa, a kemijski na granicama faza dolazi do formiranja produkta koji je posljedica kemijske reakcije.

Raspršenje zone uzorka u otopini nositelja i zoni reagensa posljedica je aksijalne i radijalne difuzije, te koncentracijskog gradijenta između otopine nositelja i uzorka. Aksijalna (paralelna) difuzija uzrokuje laminarno gibanje i međusobno miješanje zona. Povećanjem laminarnog gibanja poveća se linearna brzina protoka što rezultira većim brojem analiza u određenom vremenu. Radijalna (okomita) difuzija je dominantan parametar u analizama injektiranjem koja uzrokuje gibanje uzorka prema stijenci petlje zadržavanja i na taj način smanjuje linearu brzinu u sredini presjeka cjevčice, a povećava na stjenkama. Združenom aksijalnom i radijalnom difuzijom omogućeno je zadržavanje cjelovitosti zone uzorka.
Slika 3.3. Prikaz formiranja zone koja se prenosi do detektora. Crvenom bojom označena je zona uzorka, a plavom zona reagensa. Na granicama zona formira se produkt označen plavom bojom.

Ukoliko se prvo injektira uzorak, a potom reagens, reagens laminarnim strujanjem, koje je posljedica aksijalne difuzije, prodire u zonu uzorka i nastavljaju se uzvodno gibati (na slici 3.3. označeno slovima A, B i C). Nakon promjene smjera dolazi do turbulentnog gibanja koje je rezultat akceleracije i zbrojne aksijalne i radijalne difuzije (D). Radijalno gibanje završava nakon što reakcijska smjesa dođe do detektora (E) [29].

Slika 3.4. Prikaz aksijalne difuzije, koja uzrokuje laminarno gibanje, i radijalne difuzije, koja uzrokuje turbulentno gibanje

Kao rezultat opisanih gibanja, dolaskom zone na detektor, bilježi se signal u obliku pikova na siagramu. Smanjenjem raspršenja pikovi postaju viši i uži, i na taj se način povećava osjetljivost i dinamika mjerenja, a snižava granicu određivanja.
3.2.2. Programiranje protoka

Punjenje sustava otopinama reagensa i analita prethodi samom procesu analize, kako bi se uklonio zrak koji može interferirati sa zabilježenim signalom. Na početku analize odabiru se otvori više-pozicijskog ventila na koje se spajaju otopine (na slici 3.2. označeni brojevima 1-10; na slici 3.6. odabrani otvori označeni slovom „C“), i smjer protoka. Dva su moguća smjera: engl. aspirate - usis, gdje je protok usmjeren od otvora ventila prema crpki (na slici 3.6. označen slovom „A“), i engl. dispense - isis, gdje je protok usmjeren od crpke prema ventilu.

Prilikom usisa cjevčice se pune otopinama reagensa i analita (na slici 3.5. označeno slovom „a“), gdje se zadržavaju dok ne dođe do promjene smjera protoka isisavanjem. Kad se promijeni smjer, otopine reagensa i analita se osnovnom otopinom koz novi otvor tjeraju prema detektoru (na slici 3.5. označeno slovom „b“).

![Diagram](image)

Jedna od osnovnih prednosti slijedne analize injektiranjem u odnosu na protočnu analizu je mogućnost zaustavljanja protoka, čime se može izbjeći znatan utrošak reagensa i velika količina otpada. Programski se upravlja i volumenima injektiranja analita i reagensa (na slici 3.6. označeni slovom „D“).

Osim volumena otopina programski se određuje vrijeme usisa i isisa, te brzina protoka, te na taj način podešava učestalost analiza (na slici 3.6. označeno slovom „E“). Programsko upravljanje svim koracima analize rezultira je jednostavnošću uporabe metode bez potrebe za dodatnom ručnom izmjenom.
Slika 3.6. Programski slijed određivanja cisteina. U prvom koraku protokom usmjerenim od otvora 7 više-pozičijskog ventila uvlači se 150 μL otopine reagensa, a potom protokom usmjerenim od otvora 6 ventila uvlači se 200 μL otopine analita prema petlji zadržavanja. Promjenom smjera protoka u posljednjem koraku, 3000 μL osnovne otopine izbacuje se od crpke prema otvoru 8 više-pozičijskog ventila, i na taj se način formirana zona produkta šalje prema detektoru. Optimizirana brzina protoka je 3000 μL min⁻¹.
Molekulska apsorpcijska spektrometrija

Iako je spektroskopija u prošlosti opisivala granu znanosti koja se bavi isključivo svjetlošću, odnosno vidljivim zračenjem, danas ona obuhvaća i X-zračenje, ultraljubičasto (UV), infracrveno (IR), mikrovalno i radiofrekvencijsko zračenje. Spektrofotometrija je jedna od najčešće korištenih metoda u analitičkoj kemiji kojom se na temelju apsorpcije svjetlosti pri određenoj valnoj duljini određuje koncentracija analita. Metoda je široko primjenjiva za vidljivi dio spektra elektromagnetskog zračenja zbog mogućnosti selektivnog prevođenja velikog broja tvari u obojani produkt. Cijenom povoljnija mjerenja u ultraljubičastom i vidljivom spektru pogodnija su za kvantitativna, a u infracrvenom spektru za kvalitativna određivanja. Povezanost apsorpcije svjetlosti i koncentracije otopine objašnjena je Lambert-Beerovim zakonom [22].

Apsorpcijska svjetlost

Apsorpcija predstavlja proces u kojem tvar selektivno prigušuje intenzitet neke frekvencije elektromagnetskog zračenja, odnosno njezinu valnu duljinu.

Apsorpciju dijelimo na atomsku i molekulsku, a osnovna razlika je u spektrima koji ih karakteriziraju. Apsorpcijski spektar je grafički prikaz slabljenja osnovnog snopa zračenja u ovisnosti o promjeni valne duljine, frekvencije ili valnog broja. Vertikalna os takvog prikaza može biti transmitancija izražena u postotcima ili apsorbancija. Atomska apsorpcija karakterizirana je linijskim spektrom gdje atomi u slobodnom stanju emitiraju elektromagnetsko zračenje točno određene valne duljine. Molekule apsorbiraju elektromagnetsko zračenje bliskih valnih duljina, stoga se njihovo zračenje prikazuje vrpčastim spektrom u kojem svaka vrpca označava blisku valjnu duljinu [24].

Do apsorpcije može doći jedino ukoliko je energija fotona jednaka razlici između osnovnog, najnižeg energijskog stanja, i nekog od viših energijskih stanja čestice. Osim osnovnog i pobuđenih stanja na vrpčastim spektrom postoje i vibracijsko, translacijsko i rotacijsko stanje. Kada molekula primi energiju fotona prelazi u pobuđeno, više energijsko stanje gdje se zadrži kratak vremenski period \((10^{-6}\, \text{do} \, 10^{-9}\, \text{s})\). Prilikom relaksacije do prethodnog ili osnovnog stanja višak energije u obliku toplinske energije ili elektromagnetskog zračenja prenosi drugim molekulama u okolini. Otpuštena toplinska energija najčešće je toliko mala da se ne može ni detektirati [24].
Količina apsorbirane svjetlosti ovisi o koncentraciji analita u uzorku. Što je veća koncentracija, uzorak će apsorbirati više energije i biti intenzivnije obojan [22].

3.3.2. Transmitancija

Transmitancija T je dio upadnog zračenja koji prođe kroz otopinu, i najčešće se izražava postotcima:

$$T = \frac{P}{P_0}$$ \hspace{1cm} (8)

U izrazu (8) P predstavlja snagu zračenja nakon prolaska kroz medij, a P_0 snagu zračenja koja pada na apsorbirajući medij.

Slika 3.5. Apsorpcija elektromagnetskog zračenja. Na slici je snaga ulaznog zračenja označena s P_0 a izlazna, nakon prolaska apsorbirajućeg medija s P. Duljina puta, odnosno širina medija označena je slovom b.

Snaga zračenja (P) predstavlja energiju zračenja koja u jednoj sekundi pada na jedan cm2 površine detektora. Prolaskom kroz medij debljine b i koncentracije c snaga zračenja se smanjuje ($P < P_0$) kao posljedica međudjelovanja fotona i apsorpcije [30].

3.3.3. Apsorbancija

Apsorbancija predstavlja logaritam omjera ulazne i prolazne snage elektromagnetskog zračenja i bezdimenzijska je veličina:

$$A = \log \frac{P_0}{P} = -\log T$$ \hspace{1cm} (9)
Kao što je vidljivo iz jednadžbe (9) prigušenjem snopa elektromagnetskog zračenja apsorbancija se, suprotno transmirtanciji, povećava.

3.3.4. Lambert-Beerov zakon

Kombinacijom Lambertovog i Beerovog zakona dobivene su osnovne pretpostavke za razvoj analitičkih metoda spektrofotometrije i kolorimetrije.

Lambert-Beerov zakon može se iskazati sljedećom jednadžbom:

$$A = a \cdot b \cdot c$$

(10)

gdje je A apsorbancija, a konstanta proporcionalnosti (apsorpcijski koeficijent), b duljina puta izražena u cm, i c koncentracija izražena u g L\(^{-1}\) [22].

Kada je koncentracija u jednadžbi (10) izražena u mol L\(^{-1}\), a debljina sloja u cm i budući da je apsorbancija bezdimenzionska veličina dobijemo konstantu proporcionalnosti ε izraženu u L cm\(^{-1}\) mol\(^{-1}\) (molarni apsorpcijski koeficijent):

$$A = \varepsilon \cdot b \cdot c$$

(11)

Molarna apsorptivnost definira se kao broj litara u kojim treba otopiti jedan mol neke tvari da bi apsorbancija bila 1 kada je duljina optičkog puta 1 cm.

Lambert-Beerov zakon moguće je primjeniti i na otopinu koja sadržava više tvari koje apsorbiraju. U tom slučaju, uz pretpostavku da komponente međusobno ne reagiraju, poprima izraz:

$$A_{\text{ukupno}} = A_1 + A_2 + ... + A_n = \varepsilon_1 \cdot b_1 \cdot c_1 + \varepsilon_2 \cdot b_2 \cdot c_2 + ... + \varepsilon_n \cdot b_n \cdot c_n$$

(12)

gdje indeks n označuje broj komponenti koje apsorbiraju [22].
3.3.5. Instrumenti u optičkoj spektroskopiji

Spektrofotometar je uređaj opremljen s monokromatorom ili polikromatorom, fotodetektorom i elektroničkim očitanjem koji pokazuje vrijednost proporcionalnu intenzitetu izolirane vrpe ili valne duljine. Osnovni dijelovi većine spektrometara su: izvor kontinuiranog zračenja, monokromator, spremnik za uzorke, detektor ili uređaj koji pretvara energiju zračenja u mjerljivi signal i uređaj koji očitava signal detektora.

Slika 3.6. Shematski prikaz dijelova instrumenta za optičku spektroskopiju

Izvor zračenja treba biti stabilan, konstantan i dovoljno snažan kako bi se jednostavno detektirao i mjerio. Kako ni jedan izvor ne zrači dovoljno širok spektar da se pokrije i ultraljubičasto i infracrveno i vidljivo zračenje, izvori zračenja se razlikuju. Za emitiranje ultraljubičastog zračenja valne duljine od 160 nm do 380 nm koriste se vodikove i deuterije žarulje, a za vidljivo i infracrveno zračenje valne duljine od 240 nm do 2500 nm koriste se wolfram/halogene žarulje [22].

Monokromator je uređaj sastavljen od leća i ogledala koji izdvajaju elektromagnetsko zračenje određene valne duljine. Kao monokromator koriste se optička prizma, povoljnija za izdvajanje elektromagnetskog zračenja kraće valne duljine, te optička rešetka koja se može koristiti u svim dijelovima spektra i različiti optički filteri.

Spremnici za uzorke (ili kivete) moraju biti transparentni za prolazak zračenja i najčešće su široki 1 cm. Kivete za mjerenje u ultraljubičastom spektru načinjene su od kvarca dok se za mjerenje u vidljivom spektru mogu koristiti i plastične i kivete od silikatnog stakla. Prije mjerenja važno je ukloniti sve nečistoće, masti i otiske prstiju sa prozirnog dijela kivete.

23
Suvremeni spektrofotometri temelje se na radu s dva snopa zračenja koja nastaju pomoću zrcala koje se naziva djelitelj snopa. Jedan snop prolazi kroz referentnu otopinu, a drugi kroz otopinu uzorka prema detektoru. Omjer izlaznih signala \(\frac{P}{P_0} \), ili logaritam omjera, određuje se elektronički i prikazuje na uređaju za očitavanje (slika 3.7.) [22].

Slika 3.7. Shematski prikaz dvosnopnog spektrofotometra
3.4. Ostali uređaji i oprema

pH vrijednost otopina podešavana je korištenjem milivoltmetra Mettler Toledo SevenMulti (Mettler Toledo, Schwerzenbach, Švicarska) opremljenim staklenom elektrodom, Mettler Toledo InLab®.

Slika 3.8. Milivoltmetar Mettler Toledo SevenMulti (Mettler Toledo, Schwerzenbach, Švicarska) opremljenim staklenom elektrodom, Mettler Toledo InLab®

Eppendorf mikropipete s ručnim držačem, Nichiryo (Nichiryo, Tokyo, Japan) korištene su za dodavanje izrazito malih, mikrolitarskih volumena za pripravljanje otopina analita, reagensa i interferencija.

Slika 3.9. Mikropipete Eppendorf s ručnim držačem za dodavanje volumena od 10 do 100 μL (žuta) i 100 do 1000 μL (plava)
4. Резултати
4. Rezultati

4.1. Predložena kemijska reakcija

Predložena metoda slijedne analize injektiranjem sa spektrofotometrijskim detektorom zasniva se na redoks reakciji u kojoj l-cistein (reducens) reducira zeleno obojani [Cu(Nc)₂]^{2+} kompleks u žuto obojani [Cu(Nc)₂]⁺ kompleks:

\[
2 \text{RSH} + 2[\text{Cu(Nc)}_2]^{2+} \rightarrow \text{RSSR} + 2[\text{Cu(Nc)}_2]^{+} + 2\text{H}^+
\]

Nastali kompleks [Cu(Nc)₂]⁺ ima apsorpcijski maksimum pri valnoj duljini \(\lambda = 458 \) nm, dok oksidirani oblik kompleksa, [Cu(Nc)₂]^{2+}, ne apsorbira pri istoj valnoj duljini.

Prethodno optimizirani kemijski parametri predložene redoks-reakcije, provjereni su na SIA sustavu i korišteni za sva mjerenja.

Tablica 4.1. Prikaz optimalnih parametara

<table>
<thead>
<tr>
<th>(\lambda), nm</th>
<th>458</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3</td>
</tr>
<tr>
<td>(T), °C</td>
<td>25</td>
</tr>
<tr>
<td>(c([\text{Cu(Nc)}_2]^{2+})), mol L⁻¹</td>
<td>(1,0 \times 10^{-3})</td>
</tr>
</tbody>
</table>

4.2. Optimizacija sustava

Sustav za slijednu analizu injektiranjem optimiziran je univariantnom metodom. Univariantna metoda predstavlja optimizaciju nasumično odabranog parametra, čija se vrijednost mijenja dok drugi parametri ostaju konstantni. Nakon što je optimiziran odabrani parametar zadržava se njegova optimalna vrijednost konstantnom kroz sva mjerenja. Na isti način optimiziraju se svi ostali parametri metode [31]. U protočnim sustavima optimizira se volumen injektiranog uzorka, volumen reagensa, duljina petlje zadržavanja i reakcijske petlje, protok i redoslijed injektiranja, sve s ciljem postizanja što veće osjetljivosti metode i učestalosti analiza.
4.3. Optimizacija redoslijeda injektiranja

Različitim slijedom injektiranja reagensa i analita optimiziran je redoslijed injektiranja. Prvo je ispitao slijed reagens-analit, a zatim analit-reagens. Povoljniji način injektiranja određen je analizom pikova koji predstavljaju vrijednost apsorbancije.

![Diagram utjecaja redoslijeda injektiranja otopina \([\text{Cu(Nc)}_2]^{2+}\) (reagens) i cistena (analit) na signal u petlji zadržavanja. Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5}\) mol L\(^{-1}\); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3}\) mol L\(^{-1}\); pH = 3; protočna kiveta volumena 80 \(\mu\)L; brzina protoka = 5000 \(\mu\)L min\(^{-1}\); petlja zadržavanja od 1000 \(\mu\)L; reakcijska petlja duljine 70 cm; volumen injektiranja cistena = 200 \(\mu\)L i volumen injektiranja \([\text{Cu(Nc)}_2]^{2+}\) = 200 \(\mu\)L; volumen osnovne otopine = 3000 \(\mu\)L; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458\) nm.

Na slici 4.1. slovom „a“ označen je redoslijed injektiranja reagensa \([\text{Cu(Nc)}_2]^{2+}\), zatim cistena u petlju zadržavanja, a slovom „b“ označeni su pikovi koji su zabilježeni injektiranjem cistena, a potom reagensa \([\text{Cu(Nc)}_2]^{2+}\). Analizom visine pikova i njihove ponovljivosti vidljivo je kako je prvi slijed injektiranja optimalniji te je u sljedećim optimizacijama korišten redoslijed reagens-analit.
4.4. Optimizacija brzine protoka

Optimizacijom brzine protoka optimizira se učestalost analiza, odnosno broj analiza koje je moguće provesti u određenom vremenu. Podešavanjem brzine protoka može se poboljšati osjetljivost metode kontrolirajući raspršenje.

Brzina se optimizira mijenjanjem vrijednosti brzine protoka od 1000 μL min⁻¹ do 8000 μL min⁻¹ te analiziranjem dobivenih pikova.

![Diagram utjecaja brzine protoka na apsorbanciju. Eksperimentalni uvjeti: c(cys) = 4,0 × 10⁻⁵ mol L⁻¹; c([Cu(Nc)₂]²⁺) = 1,0 × 10⁻³ mol L⁻¹; pH = 3; protočna kiveta volumena 80 μL; petlja zadržavanja od 1000 μL; reakcijska petlja duljine 70 cm; volumen injektiranja cisteina = 200 μL i volumen injektiranja [Cu(Nc)₂]²⁺ = 200 μL; volumen osnovne otopine = 3000 μL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi λ = 458 nm; brzina protoka: a) = 1000 μL min⁻¹, b) = 2000 μL min⁻¹, c) = 3000 μL min⁻¹, d) = 4000 μL min⁻¹, e) = 5000 μL min⁻¹, f) = 6000 μL min⁻¹, g) = 7000 μL min⁻¹, h) = 8000 μL min⁻¹.]
Slika 4.3. Graf ovisnosti apsorbancije o brzini protoka

Eksperimentalni uvjeti: $c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1}$; $c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1}$; pH = 3; protočna kiveta volumena 80 µL; petlja zadržavanja od 1000 µL; reakcijska petlja duljine 70 cm; volumen injektiranja cisteina = 200 µL i volumen injektiranja $[\text{Cu(Nc)}_2]^{2+} = 200$ µL; volumen osnovne otopine = 3000 µL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi $\lambda = 458$ nm; brzina protoka: a) = 1000 µL min$^{-1}$, b) = 2000 µL min$^{-1}$, c) = 3000 µL min$^{-1}$, d) = 4000 µL min$^{-1}$, e) = 5000 µL min$^{-1}$, f) = 6000 µL min$^{-1}$, g) = 7000 µL min$^{-1}$, h) = 8000 µL min$^{-1}$.

Na slikama 4.2. i 4.3. vidljivo je kako je maksimalna apsorbancija i najbolja ponovljivost zabilježena pri brzini protoka 3000 µL min$^{-1}$ (pikovi označeni slovom „c“). Pri brzinama manjim od optimalne (manje od 3000 µL min$^{-1}$) zabilježeni pikovi su šire osnovice i manje visine, dok se pri brzinama većim od optimalne vrijednosti apsorbancije i širina osnovice pikova smanjuje, te povrat na baznu liniju nije potpun. Uzrok promjenama vrijednosti apsorbancije i oblika pika pri većim brzinama je smanjenje raspršenja zone analita i reagensa.
4.5. Optimizacija volumena injektiranja reagensa

Utjecaj volumena injektiranog reagensa na osjetljivost metode ispitana je za koncentraciju \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1} \). Injektiranjem različitih vrijednosti volumena reagensa (od 50 µL do 450 µL) pri konstatnom volumenu analita od 200 µL koncentracije \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1} \), te analizom dobivenih rezultata određen je optimalan volumen injektiranja.

Slika 4.4. Sliagram optimizacije volumena injektiranja reagensa. Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1} \); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1} \); pH = 3; protočna kiveta volumena 80 µL; petlja zadržavanja od 1000 µL; reakcijska petlja duljine 70 cm; volumen injektiranja cisteina = 200 µL ; volumen osnovne otopine = 3000 µL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \text{ nm} \), brzina protoka = 3000 µL min\(^{-1}\); volumen injektiranja [Cu(Nc)]\(^{2+}\) : a) = 50 µL , b) = 100 µL, c) = 150 µL, d) = 200 µL, e) = 250 µL, f) = 300 µL, g) = 350 µL, h) = 400 µL, i) = 450 µL.
Slika 4.5. Graf vrijednosti apsorbancije ovisno o injektiranom volumenu reagensa. Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1} \); \(c([\text{Cu(Ne)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1} \); pH = 3; protočna kiveta volumena 80 µL; petlja zadržavanja od 1000 µL; reakcijska petlja duljine 70 cm; volumen injektiranja cisteina = 200 µL; volumen osnovne otopine = 3000 µL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \text{ nm} \), brzina protoka = 3000 µL min\(^{-1}\); volumen injektiranja \([\text{Cu(Ne)}_2]^{2+}\): a) = 50 µL, b) = 100 µL, c) = 150 µL, d) = 200 µL, e) = 250 µL, f) = 300 µL, g) = 350 µL, h) = 400 µL, i) = 450 µL.

Iz slike 4.4. i slike 4.5. vidljivo je da vrijednost apsorbancije dostiže maksimalnu vrijednost za volumen reagensa od 150 µL (na siagramu i grafu označeni slovom „c”). Daljnjim povećanjem volumena te vrijednosti su jednake ili nešto niže kao posljedica nemogućnosti potpunog raspršenja zone uzorka i zone reagensa. Volumen od 150 µL odabran je kao konstantna vrijednost za sljedeće korake optimizacije zbog ekonomičnih razloga manjeg utroška reagensa i smanjenja otpada reakcije.
4.6. Optimizacija volumena injektiranja analita

Utjecaj volumena injektiranja analita na osjetljivost metode ispitan je za koncentraciju cisteina $c(\text{cys}) = 4,0 \times 10^{-5}$ mol L$^{-1}$. U sustav su injektirani različiti volumeni cisteina (od 50 µL do 450 µL) te prethodno optimiziran volumen reagensa 150 µL koncentracije $c([\text{Cu(Nc)}_2^{2+}]) = 1,0 \times 10^{-3}$ mol L$^{-1}$.

Slika 4.6. Siagram optimizacije volumena injektiranja analita. Eksperimentalni uvjeti: Eksperimentalni uvjeti: $c(\text{cys}) = 4,0 \times 10^{-5}$ mol L$^{-1}$; $c([\text{Cu(Nc)}_2^{2+}]) = 1,0 \times 10^{-3}$ mol L$^{-1}$; pH = 3; protočna kiveta volumena 80 µL; petlja zadržavanja od 1000 µL; reakcijska petlja duljine 70 cm; volumen injektiranja $[\text{Cu(Nc)}_2^{2+}] = 150$ µL; volumen osnovne otopine = 3000 µL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi $\lambda = 458$ nm, brzina protoka = 3000 µL min$^{-1}$; volumen injektiranja cisteina: a) = 50 µL, b) = 100 µL, c) = 150 µL, d) = 200 µL, e) = 250 µL, f) = 300 µL, g) = 350 µL, h) = 400 µL, i) = 450 µL.
Slika 4.7. Graf utjecaja volumena injektiranja cisteina na osjetljivost metode. Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1} \); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1} \); pH = 3; protočna kiveta volumena 80 \(\mu \text{L} \); petlja zadržavanja od 1000 \(\mu \text{L} \); reakcijska petlja duljine 70 cm; volumen injektiranja \([\text{Cu(Nc)}_2]^{2+} = 150 \mu \text{L}\); volumen osnovne otopine = 3000 \(\mu \text{L} \); valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \text{ nm} \), brzina protoka = 3000 \(\mu \text{L min}^{-1} \); volumen injektiranja cisteina: a) = 50 \(\mu \text{L} \), b) = 100 \(\mu \text{L} \), c) = 150 \(\mu \text{L} \), d) = 200 \(\mu \text{L} \), e) = 250 \(\mu \text{L} \), f) = 300 \(\mu \text{L} \), g) = 350 \(\mu \text{L} \), h) = 400 \(\mu \text{L} \), i) = 450 \(\mu \text{L} \).

Iz dobivenih rezultata (slika 4.6. i slika 4.7.) vidljivo je da se povećanjem volumena injektiranja analita povećava i zabilježeni signal jer reagensa ima u dovoljnoj količini da se odvije kemijska reakcija. Signal prestaje značajnije rasti nakon injektiranog volumena od 200 \(\mu \text{L} \) (označen slovom „d“) te je taj volumen određen kao optimalan i korišten u daljnjim optimizacijama. Volumeni analita veći od 200 \(\mu \text{L} \) izazivaju zasićenje u predloženoj metodi.
4.7. Optimizacija volumena petlje zadržavanja

Utjecaj volumena petlje zadržavanja na osjetljivost metode ispitan je korištenjem otopine cisteina koncentracije \(c(\text{cys}) = 4,0 \times 10^{-5} \ \text{mol L}^{-1} \) i otopine neokuproin bakrovog(II) kompleksa koncentracije \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \ \text{mol L}^{-1} \). Optimizacija je provedena s dvjema različitim petljama zadržavanja volumena 500 \(\mu \text{L} \) i 1000 \(\mu \text{L} \), te je analizom siagrama odabran optimalan parametar.

Slika 4.8. Siagram utjecaja volumena petlje zadržavanja na osjetljivost metode.

Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5} \ \text{mol L}^{-1} \); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \ \text{mol L}^{-1} \); pH = 3; protočna kiveta volumena 80 \(\mu \text{L} \); reakcijska petlja duljine 70 cm; volumen injektiranja \([\text{Cu(Nc)}_2]^{2+} = 150 \ \mu \text{L} \); volumen injektiranja cisteina = 200 \(\mu \text{L} \); volumen osnovne otopine = 3000 \(\mu \text{L} \); valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \ \text{nm} \), brzina protoka = 3000 \(\mu \text{L min}^{-1} \). Slovom „a“ označeni su pikovi dobiveni korištenjem petlje zadržavanja volumena 500 \(\mu \text{L} \), a slovom „b“ petlje zadržavanja volumena 1000 \(\mu \text{L} \).

Analizom rezultata utvrđeno je kako se vrijednosti absorpcije u oba slučaja neznatno razlikuju što ukazuje na to da je reakcija dovoljno brza i potpuna u oba slučaja. Petlja zadržavanja volumena 500 \(\mu \text{L} \) (200 \(\mu \text{L} \) analita i 150 \(\mu \text{L} \) reagensa) odabrana je kao optimalna jer je dovoljno dugačka da se reakcija odvije do kraja, a manji volumen omogućava da formiranoj zoni produkta brži dolazak do detektora.
4.8. Optimizacija volumena (duljine) reakcijske petlje

Utjecaj volumena reakcijske petlje na osjetljivost metode ispitivan je korištenjem otopine cisteina koncentracije \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1} \) i otopine neokuproin bakrovog(II) kompleksa koncentracije \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1} \). Korištene su reakcijske petlje različitih duljina u rasponu od 30 cm do 120 cm te je analizom dobivenih rezultata utvrđena optimalna dULjina.

![Diagram utjecaja duljine reakcijske petlje na osjetljivost reakcije. Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1} \); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1} \); pH = 3; protočna kiveta volumena 80 \(\mu \text{L} \); petlja zadržavanja od 500 \(\mu \text{L} \); volumen injektiranja \([\text{Cu(Nc)}_2]^{2+} = 150 \mu \text{L} \); volumen injektiranja cisteina = 200 \mu \text{L} \); volumen osnovne otopine = 3000 \(\mu \text{L} \); valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \text{ nm} \), brzina protoka = 3000 \(\mu \text{L min}^{-1} \). Slovima su označeni pikovi dobiveni korištenjem različitih duljina reakcijske petlje. Na slici pikovi označeni slovom „a“ predstavljaju rezultate dobivene korištenjem reakcijske petlje duljine 30 cm, „b“ - 50 cm, „c“ - 70 cm, „d“ - 100 cm i „e“ - 120 cm.
Slika 4.10. Graf utjecaja duljine reakcijske petlje na osjetljivost reakcije. Eksperimentalni uvjeti: \(c(cys) = 4,0 \times 10^{-5}\) mol L\(^{-1}\); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3}\) mol L\(^{-1}\); pH = 3; protočna kiveta volumena 80 \(\mu\)L; petlja zadržavanja od 500 \(\mu\)L; volumen injektiranja \([\text{Cu(Nc)}_2]^{2+}\) = 150 \(\mu\)L; volumen injektiranja cisteina = 200 \(\mu\)L; volumen osnovne otopine = 3000 \(\mu\)L; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458\) nm, brzina protoka = 3000 \(\mu\)L min\(^{-1}\). Slovima su označeni pikovi dobiveni korištenjem različitih duljina reakcijske petlje. Na slici pikovi označeni slovom „a“ predstavljaju rezultate dobivene korištenjem reakcijske petlje duljine 30 cm, „b“ - 50 cm, „c“ - 70 cm, „d“ - 100cm i „e“ -120 cm.

Na slikama 4.9. i 4.10. vidljivo je kako su u slučaju „a“ zabilježeni najviši pikovi, ali zbog osiguravanja dovoljno vremena za odvijanje reakcije odabrana je reakcijska petlja duljine 50 cm. Pikovi zabilježeni korištenjem reakcijske petlje duge 50 cm najboljeg su odnosa ponovljivosti i visine pika (na slici 4.9. označeni slovom „b“). Pri većim duljinama dolazi do opadanja visine signala zbog povećanog raspršenja zone uzorka.
4.9. Optimizacija omjera reagensa

U posljednjem koraku razvoja metode cilj je bio provjeriti i potvrditi najpovoljniji omjer bakar(II) sulfat-pentahidrata i neokuproin hidrata. Koncentracija Cu(II) bila je konstantna, dok se koncentracija neokuproin hidrata postupno povećavala.

Slika 4.1
Siagram utjecaja omjera reagensa na signal. Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1}\); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1}\), pH = 3; protočna kiveta volumena 80 µL; petlja zadržavanja od 500 µL; volumen injektiranja \([\text{Cu(Nc)}_2]^{2+} = 150 \mu \text{L}; volumen injektiranja cisteina = 200 µL; volumen osnovne otopine = 3000 µL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \text{ nm}\); brzina protoka = 3000 µL min\(^{-1}\), volumen reakcijske petlje = 50 cm. Slovima „a“ do „d“ označeni su pikovi dobiveni za različite omjere bakara(II) i neokuproina. „a“ – Cu\(^{2+}\) : Nc = 1 : 1; „b“ – Cu\(^{2+}\) : Nc = 1 : 1,5; „c“ – Cu\(^{2+}\) : Nc = 1 : 2; „d“ – Cu\(^{2+}\) : Nc = 1 : 2,4.
Slika 4.12 Grafički prikaz utjecaja omjera reagensa na apsorbanciju. Eksperimentalni uvjeti: \(c(\text{cys}) = 4,0 \times 10^{-5} \text{ mol L}^{-1}\); \(c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1}\), \(\text{pH} = 3\); protočna kiveta volumena 80 \(\mu\text{L}\); petlja zadržavanja od 500 \(\mu\text{L}\); volumen injektiranja \([\text{Cu(Nc)}_2]^{2+} = 150 \mu\text{L}\); volumen injektiranja cisteina = 200 \(\mu\text{L}\); volumen osnovne otopine = 3000 \(\mu\text{L}\); valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \text{ nm}\), brzina protoka = 3000 \(\mu\text{L min}^{-1}\), volumen reakcijske petlje = 50 cm. Slovima „a“ do „d“ označene su srednje vrijednosti apsorbancije dobivene za različite omjere bakra(II) i neokuproina. „a“ – \(\text{Cu}^{2+} : \text{Nc} = 1 : 1\); „b“ – \(\text{Cu}^{2+} : \text{Nc} = 1 : 1,5\); „c“ – \(\text{Cu}^{2+} : \text{Nc} = 1 : 2\); „d“ – \(\text{Cu}^{2+} : \text{Nc} = 1 : 2,4\).

Analizom dobivenih rezultata vidljivo je kako su za omjer bakar(II) : neokuproin = 1 : 2,4 (na slikama 4.11. i 4.12. označen slovima „d“) zabilježeni najviši signali dobre ponovljivosti, te je potvrđen kao optimalan.
4.10. Odabrani optimalni parametri

Tablica 4.2. Tablica prikaza prethodno optimiziranih parametara za određivanje cisteina slijedom analizom injektiranjem uz spektrofotometrijski detektor

<table>
<thead>
<tr>
<th>Parametar</th>
<th>Ispitivano područje</th>
<th>Optimalan uvjet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redoslijed injektiranja</td>
<td>a) [Cu(Nc)₂]^{2+}, cys</td>
<td>[Cu(Nc)₂]^{2+}, cys</td>
</tr>
<tr>
<td></td>
<td>b) Cys, [Cu(Nc)₂]^{2+}</td>
<td></td>
</tr>
<tr>
<td>Brzina protoka, μL min⁻¹</td>
<td>1000 – 8000</td>
<td>3000</td>
</tr>
<tr>
<td>Volumen injektiranja [Cu(Nc)₂]^{2+}, μL</td>
<td>50 – 450</td>
<td>150</td>
</tr>
<tr>
<td>Volumen injektiranja cisteina, μL</td>
<td>50 – 450</td>
<td>200</td>
</tr>
<tr>
<td>Volumen petlje zadržavanja, μL</td>
<td>500, 1000</td>
<td>500</td>
</tr>
<tr>
<td>Volumen (duljina) reakcijske petlje, cm</td>
<td>30 – 120</td>
<td>50</td>
</tr>
<tr>
<td>Omjer koncentracije reagensa</td>
<td>1 : 1 – 1 : 2,4</td>
<td>1 : 2,4</td>
</tr>
</tbody>
</table>
4.11. Linearno dinamičko područje (LDP)

Linearno dinamičko područje je područje koncentracija u kojem porastom koncentracije linearno raste i signal. LDP grafički se prikazuje pravcem umjeravanja ovisnosti apsorbancije o koncentraciji analita. Krivulja umjeravanja za određivanje cisteina mjerena je za koncentracije cisteina od $2,0 \times 10^{-4}$ mol L$^{-1}$ do $6,0 \times 10^{-7}$ mol L$^{-1}$.

Eksperimentalni uvjeti: $c([\text{Cu(Nc)}_2]^{2+}) = 1,0 \times 10^{-3}$ mol L$^{-1}$; pH = 3; protočna kiveta volumena 80 µL; petlja zadržavanja od 500 µL; volumen injektiranja $[\text{Cu(Nc)}_2]^{2+} = 150$ µL; volumen injektiranja cisteina = 200 µL; volumen osnovne otopine = 3000 µL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi $\lambda = 458$ nm, brzina protoka = 3000 µL min$^{-1}$; duljina reakcijske petlje = 50 cm. Na slici su slovima „a“ do „n“ označene izmjerene apsorbancije za različite koncentracije cisteina. Slovo „a“ predstavlja koncentraciju cisteina $c(\text{cys}) = 6,0 \times 10^{-7}$ mol L$^{-1}$, „b“ - $c(\text{cys}) = 8,0 \times 10^{-7}$ mol L$^{-1}$, „c“ - $c(\text{cys}) = 1,0 \times 10^{-6}$ mol L$^{-1}$, „d“ - $c(\text{cys}) = 2,0 \times 10^{-6}$ mol L$^{-1}$, „e“ - $c(\text{cys}) = 4,0 \times 10^{-6}$ mol L$^{-1}$, „f“ - $c(\text{cys}) = 6,0 \times 10^{-6}$ mol L$^{-1}$, „g“ - $c(\text{cys}) = 8,0 \times 10^{-6}$ mol L$^{-1}$, „h“ - $c(\text{cys}) = 1,0 \times 10^{-5}$ mol L$^{-1}$, „i“ - $c(\text{cys}) = 2,0 \times 10^{-5}$ mol L$^{-1}$, „j“ - $c(\text{cys}) = 4,0 \times 10^{-5}$ mol L$^{-1}$, „k“ - $c(\text{cys}) = 6,0 \times 10^{-5}$ mol L$^{-1}$, „l“ - $c(\text{cys}) = 8,0 \times 10^{-5}$ mol L$^{-1}$, „m“ - $c(\text{cys}) = 1,0 \times 10^{-4}$ mol L$^{-1}$, „n“ - $c(\text{cys}) = 2,0 \times 10^{-4}$ mol L$^{-1}$.
Slika 4.14. Pravac umjeravanja za određivanje cisteina slijednom analizom injektiranjem uz spektrofotometrijski detektor. Eksperimentalni uvjeti: $c([\text{Cu(Nc)}_2^{2+}]) = 1,0 \times 10^{-3}$ mol L$^{-1}$; pH = 3; protučna kiveta volumena 80 µL; petlja zadržavanja od 1000 µL; volumen injektiranja $[\text{Cu(Nc)}_2^{2+}] = 150$ µL; volumen injektiranja cisteina = 200 µL; volumen osnovne otopine = 3000 µL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi $\lambda = 458$ nm, brzina protoka = 3000 µL min$^{-1}$; duljina reakcijske petlje = 50 cm. Na slici su slovima „a“ do „n“ označene izmjerene apsorbancije za različite koncentracije cisteina. Koncentracije cisteina: $c(\text{cys}) = 6,0 \times 10^{-7}$ mol L$^{-1}$ do $8,0 \times 10^{-5}$ mol L$^{-1}$.

Na slici 4.12. prikazani su rezultati dobiveni linearnom regresijskom analizom odnosa apsorbancije i koncentracije cisteina. Za 12 vrijednosti koncentracije (od „a“ do „l“) utvrđena je linearna ovisnost apsorbancije o koncentraciji i dobivena je jednadžba $y = 3690,4x + 0,0019$ (13) koja opisuje LDP područje, s koeficijentom linearne regresije $R^2 = 0,9997$. U jednadžbi (13) y predstavlja vrijednost apsorbancije, a x koncentraciju cisteina izraženu u mol L$^{-1}$.
4.12. Granica dokazivanja, granica određivanja i ponovljivost signala

Granica dokazivanja je najniža koncentracija analita čije se prisustvo može dokazati određenom tehnikom ili metodom i pri toj koncentraciji signal je trostruko veći od šuma. Računa se prema formuli:

\[DL = \frac{3 \times s_b}{m} \]

(14)

gdje je \(s_b \) standardna devijacija slijepe probe, a \(m \) nagib krivulje umjeravanja.

Granica određivanja je najniža koncentracija analita koja se može kvantitativno odrediti primjenom određene tehnike ili metode. Predstavlja donju granicu linearnog dinamičkog područja, te je za tu koncentraciju signal desetorostruko veći od šuma. Računa se prema formuli:

\[Q_L = \frac{10 \times s_b}{m} \]

(15)

gdje je \(s_b \) standardna devijacija slijepe probe, a \(m \) nagib krivulje umjeravanja.

Standardna devijacija slijepe probe \(s_b \) iznosi 0,0002309, a nagib krivulje umjeravanja \(m \) iznosi 3690,4. Uvrštavanjem podataka u izraz (14) izračunana je granica dokazivanja 1,8 × 10^{-7} \text{ mol L}^{-1}. Granica određivanja izračunana je uvrštavanjem vrijednosti u izraz (15) i iznosi 6,0 × 10^{-7} \text{ mol L}^{-1}, što odgovara donjoj granici linearnog dinamičkog područja.

Ponovljivost signala, koja ukazuje na preciznost metode, ispitana je kroz deset uzastopnih injektiranja otopine analita koncentracije 4,0 × 10^{-5} \text{ mol L}^{-1} uz prethodno optimizirane parametre. Relativno standardno odstupanje izražava se u postotcima i računa se prema izrazu:

\[RSO(\%) = \frac{s}{\bar{x}} \times 100 \]

(16)

gdje \(s \) označava standardnu devijaciju, a \(\bar{x} \) srednju vrijednost jakosti apsorbancije.
Slika 4.15. Siagram ponovljivosti signala za deset uzastopnih injektiranja analita.
Eksperimentalni uvjeti: \(c(\text{cistein}) = 4,0 \times 10^{-5} \text{ mol L}^{-1}, c([\text{Cu(Nc)}]^{2+}) = 1,0 \times 10^{-3} \text{ mol L}^{-1};\)
pH = 3; protočna kiveta volumena 80 μL; petlja zadržavanja od 1000 μL; volumen injektiranja [Cu(Nc)]^{2+} = 150 μL; volumen injektiranja cisteina = 200 μL; volumen osnovne otopine = 3000 μL; valna duljina pri kojoj je spektrofotometrijski bilježen signal iznosi \(\lambda = 458 \text{ nm},\) brzina protoka = 3000 μL min^{-1}; duljina reakcijske petlje = 50 cm.

Srednja vrijednost izmjerenih signala iznosi je 0,1502, a standardna devijacija 0,005029. Uvrštavanjem u jednačbu (16) izračunano je relativno standardno odstupanje od 3,35 %.

43
4.13. Ispitivanje utjecaja interferencija na osjetljivost metode

Nakon što je metoda razvijena optimiziranjem parametara protočnog sustava, ispitivan je utjecaj najčešće prisutnih tvari i iona u farmaceutskim proizvodima na određivanje cisteina. Interferencije koje su ispitivane su: glukoza, fruktoza, kalijev nitrat (KNO₃), laktoza, natrijev sulfat, natrijev citrat (Na-citrat), boratna kiselina (H₃BO₃), limunska kiselina, vinska kiselina i acetilsalicilatna kiselina.

Pripravljene su otopine omjera cistein : reagens = 1 : 500. Prvo je određena apsorbancija samog analita kroz tri mjerenja, a prosječna vrijednost iznosila je 0,1497. Granična tolerancija predstavlja koncentraciju tvari ili iona koja vrijednost apsorbancije kod određivanja analita mijenja manje od ±5 %. Odstupanje od vrijednosti apsorbancije otopine analita pod utjecajem interferencije izražava se relativnom pogreškom. Računa se prema formuli:

\[
\text{Relativna pogreška} (\%) = \frac{A_{\text{interferencija}} - A_{\text{cistein}}}{A_{\text{cistein}}} \times 100 \tag{17}
\]

Za glukozu, fruktozu, kalijev nitrat, laktozu, natrijev sulfat, natrijev citrat, boratnu kiselinu, limunsku kiselinu i vinsku kiselinu pripravljene su otopine omjera 1 : 500, a za acetilsalicilatnu kiselinu 1 : 1. Nakon što su iz tri mjerenja određene srednje vrijednosti apsorbancije, prema formuli (17) izračunana je relativna pogreška (prikazano u tablici 4.3. i tablici 4.4.).
Analizom dobivenih podataka vidljivo je kako laktoza, Na-citrat dihidrat, limunska kiselina, vinska kiselina i acetilsalikilatna kiselina interferiraju pri ispitivanim omjerima cisteina i interferirajuće tvari (u tablici 4.3. i 4.4. označene zadebljanim slovima).

Pošto su interferirajuće tvari bile u značajno većoj koncentraciji, u sljedećim koracima ispitan je utjecaj postupnim smanjivanjem omjera analita i stranog iona.
Tablica 4.5. Prikaz interferirajućih tvari

<table>
<thead>
<tr>
<th>Interferirajuća tvar</th>
<th>Omjer</th>
<th>Srednja vrijednost apsorbancije (\bar{A})</th>
<th>Relativna pogreška, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laktoza</td>
<td>1 : 100</td>
<td>0,1554</td>
<td>3,81</td>
</tr>
<tr>
<td>Na–citrat dihidrat</td>
<td>1 : 250</td>
<td>0,1530</td>
<td>2,20</td>
</tr>
<tr>
<td>Limunska kiselina</td>
<td>1 : 5</td>
<td>0,1504</td>
<td>0,47</td>
</tr>
<tr>
<td>Vinska kiselina</td>
<td>1 : 10</td>
<td>0,1526</td>
<td>1,94</td>
</tr>
</tbody>
</table>

Iz tablice 4.5. vidljivo je kako pri nižim omjerima interferirajuće tvari i cisteina nisu zabilježena značajna odstupanja (veća od ±5 %) od apsorbancije izmjerene za otopinu analita.

Izkoristivost je svojstvo metode da odredi ukupnu količinu analita u uzorku te ukazuje na točnost metode [32].

Izkoristivost metode ispitana je na temelju tri različite koncentracije analita. Pripravljene su otopine analita koncentracije $2,0 \times 10^{-6}$ mol L$^{-1}$; $6,0 \times 10^{-6}$ mol L$^{-1}$ i $3,0 \times 10^{-5}$ mol L$^{-1}$ i za svaku je provedeno pet mjerenja u triplikatima. Nakon što je izračunana srednja vrijednost jakosti apsorbancije za svaki triplikat uvrštena je u jednadžbu pravca za linearno dinamičko područje (14) i dobivena je koncentracija analita određena korištenjem prethodno optimizirane metode slijedne analize injektiranjem uz spektrofotometrijski detektor. Izkoristivost je izračunana dijeljenjem dobivene koncentracije analita sa teorijskom koncentracijom analita za svako od pet mjerenja i izražena u postotcima. U posljednjem koraku određeno je relativno standardno odstupanje od medijana izračunanih vrijednosti za svaku od koncentracija. Rezultati su prikazani u tablici 4.6.

Tablica 4.6. Ispitivanje iskoristivosti metode slijedne analize injektiranjem uz spektrofotometrijski detektor za određivanje cisteina za tri različite koncentracije

<table>
<thead>
<tr>
<th>Molarna koncentracija analita, mol L$^{-1}$</th>
<th>Masena koncentracija analita, mg L$^{-1}$</th>
<th>Iskoristivost metode (% ± RSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,0 \times 10^{-6}$</td>
<td>0,24</td>
<td>107,0 ± 4,02</td>
</tr>
<tr>
<td>$6,0 \times 10^{-6}$</td>
<td>0,73</td>
<td>98,9 ± 0,98</td>
</tr>
<tr>
<td>$3,0 \times 10^{-5}$</td>
<td>3,6</td>
<td>102,5 ± 1,11</td>
</tr>
</tbody>
</table>

Analizom dobivenih podataka vidljivo je kako je iskoristivost metode zadovoljavajuća, osobito pri višim koncentracijama analita.
5. Rasprava
5. Rasprava

Cilj diplomskog rada bio je optimizacija parametara sustava za određivanje cisteina slijednom analizom injektiranjem uz spektrofotometrijski detektor, te korištenje optimiziranih parametara u određivanju analitičkih karakteristika razvijene metode.

Optimizirani parametri su: redoslijed injektiranja analita i reagensa, brzina protoka, volumen injektiranja reagensa, volumen injektiranja analita, volumen petlje zadržavanja i volumen reakcijske petlje te omjer reagensa. Parametri sa najpovoljnijim utjecajem na osjetljivost prikazani su u tablici 4.2.

Prvi korak optimizacije sustava bio je određivanje redoslijeda injektiranja otopina reagensa i analita s obzirom na redoks-reakciju. Zabilježeni signali bili su viši u slučaju kada je prvo injektirana otopina reagensa (kompleks \([\text{Cu(Nc)}_2]^{2+}\)), zatim analita (cistein), te je taj slijed odabran kao optimalan.

Optimizacijom brzine protoka moguće je utjecati na osjetljivost metode mijenjajući raspršenje. Veća brzina protoka omogućuje analizu većeg broja uzoraka u određenom vremenu, pa je svrha optimizacije pronaći najpovoljniji omjer brzine i osjetljivosti metode. Mjerenjima je utvrđeno kako je brzina protoka od 3000 \(\mu\)L min\(^{-1}\) optimalna jer vrijednost absorbancije opada i povećanjem i smanjenjem brzine.

Volumen injektiranja reagensa ispitan je za volumene od 50 \(\mu\)L do 450 \(\mu\)L. Analizom pikova na siagramu volumen od 150 \(\mu\)L do 450 \(\mu\)L određen je kao optimalan jer je za tu vrijednost izmjerena maksimalna absorbancija i daljnji povećanjem volumena vrijednost absorbancije ostaje konstantna.

Utjecaj volumena injektiranja analita na osjetljivost metode ispitivan je za volumene otopine cisteina od 50 \(\mu\)L do 450 \(\mu\)L. Na siagramu je vidljivo da je za volumen od 200 \(\mu\)L izmjerena visoka vrijednost absorbancije, te se značajno ne mijenja daljnijim povećanjem volumena.

Kod optimizacije volumena petlje zadržavanja nisu uočene znatne razlike u vrijednosti absorbancije što ukazuje na to da je reakcija dovoljno brza i potpuna u oba slučaja. Petlja zadržavanja volumena 500 \(\mu\)L odabrana je kao optimalna jer je dovoljno dugačka da se reakcija odvije do kraja, a manji volumen omogućava formiranju zoni produkta brže stizanje do detektora.
Kod optimizacije duljine reakcijske petlje korištene su petlje od 30 cm do 120 cm. Lako su najviši pikovi dobiveni za reakcijsku petlju duljine 30 cm, zbog osiguravanja dovoljno vremena za odvijanje reakcije odabrana je petlja duljine 50 cm.

Utjecaj različitih omjera bakra(II) i neokuprina na zabilježeni signal ispitan je za raspon omjera Cu^{2+}: Nc od 1:1 do 1:2,4. Analizom pikova potvrđeno je da je omjer 1:2,4, koji je korišten i u prethodnim optimizacijama, optimalan.

Nakon razvoja metode optimizacijom parametara protočnog sustava određene su analitičke karakteristike i ispitujutjecaj interferencija na signal analita.

Utjecaj interferencija ispitan je za koncentraciju 500 puta veću od koncentracije analita na glukozu, fruktoku, kalijev nitrat, laktozu, natrijev sulfat, natrijev citrat, boratnu kiselinu, limunsku kiselinu i vinski kiselinu, odnosno za jednak koncentraciju acetilsalicilatne kiseline. Pošto je ispitan utjecaj značajno veće koncentracije od one koja se nalazi u farmaceutskim pripravcima mjerena su ponovljena za niže koncentracije. Iz dobivenih rezultata vidljivo je kako pri nižim koncentracijama jedino acetilsalicilatna kiselina jednake koncentracije kao analit utječe na jakost zabilježenog signala. Glukoza, fruktoku, kalijev nitrat, natrijev sulfat i boratna kiselina neće utjecati na jakost zabilježenog signala ni u koncentraciji 500 puta većoj od analita. U farmaceutskim pripravcima tolerira se prisutnost 250 puta veće koncentracije natrijevog citrata od koncentracije analita, 100 puta veće koncentracije laktoze, 10 puta vinske kiseline te 5 puta veće koncentracije limunske kiseline od koncentracije analita (rezultati prikazani u tablicama 4.3., 4.4. i 4.5.).

Linearno dinamičko područje ispitano je korištenjem optimiziranih parametara protočnog sustava za niz standardnih otopina koncentracije analita od $2,0 \times 10^{-4}$ mol L$^{-1}$ do $6,0 \times 10^{-7}$ mol L$^{-1}$. Analizom podataka dobiveno je da signal linearno raste porastom koncentracije analita za područje koncentracija od $6,0 \times 10^{-7}$ mol L$^{-1}$ do $8,0 \times 10^{-5}$ mol L$^{-1}$ uz koeficijent linearne regresije 0,9997. LDP područje je definirano jednadžbom $y = 3690,4 x + 0.0019$.

Granica dokazivanja i granica određivanja izračunane su uvrštavanjem vrijednosti slijepe probe i nagiba krivulje u jednadžbe (14) i (15). Izračunane su vrijednosti koncentracije $1,8 \times 10^{-7}$ mol L$^{-1}$ za granicu određivanja i $6,0 \times 10^{-7}$ mol L$^{-1}$ za granicu određivanja, što odgovara donjoj granici linearnog dinamičkog područja. Ponovljivost signala ima relativno
standardno odstupanje od 3,35 % izračunano prema izrazu (16) za 10 uzastopno injektiranih otopina analita koncentracije $4,0 \times 10^{-5}$ mol L$^{-1}$.

Posljednji korak u validaciji metode bio je računanje iskoristivosti za procjenu točnosti na temelju tri različite koncentracije otopine cisteina. Za koncentraciju $2,0 \times 10^{-6}$ mol L$^{-1}$ dobivena je iskoristivost 107,0 % uz standardno odstupanje 4,02 %. Za više koncentracije analita relativno standardno odstupanje bilo je značajno niže i iskoristivost povoljnija. Za koncentraciju cisteina $6,0 \times 10^{-6}$ mol L$^{-1}$ iskoristivost je iznosila 98,9 % uz relativno standardno odstupanje 0,98 %, a za koncentraciju $3,0 \times 10^{-5}$ mol L$^{-1}$ iznosila je 102,5 % uz relativno standardno odstupanje 1,11 %, što ukazuje na zadovoljavajuću iskoristivost metode.
6. Zaključak
6. Zaključak

Cilj diplomskog rada je razvoj i vrednovanje jednostavne, osjetljive i brze metode slijedne analize injektiranjem uz spektrofotometrijski detektor za određivanja L-cisteina.

Metoda se temelji na redoks reakciji u kojoj L-cistein (reducens) reducira zeleno obojani [Cu(Nc)₂]²⁺ kompleks u žuto obojani [Cu(Nc)₂]⁺ kompleks koji postiže apsorpcijski maksimum elektromagnetskog zračenja pri valnoj duljini $\lambda = 458 \text{ nm}$.

Univariantnom metodom optimizirani su parametri protočnog sustava: redoslijed injektiranja (optimalni slijed je reagens zatim analit), brzina protoka (3000 μL min⁻¹), volumen injektiranja analita (200 μL), volumen injektiranja reagensa (150 μL), volumen petlje zadržavanja (500 μL), volumen (duljina) reakcijske petlje (50 cm) i omjer reagensa (Cu^{2+} : Nc = 1 : 2,4).

Linearno dinamičko područje definirano je jednadžbom $y = 3690,4 \times x + 0,0019$ sa koeficijentom lineare regresije $R^2 = 0,9997$ za koncentraciju analita od $6,0 \times 10^{-7}$ mol L⁻¹ do $8,0 \times 10^{-5}$ mol L⁻¹.

Najmanja koncentracija analita koju možemo kvalitativno odrediti je $1,8 \times 10^{-7}$ mol L⁻¹, a kvantitativno $6,0 \times 10^{-7}$ mol L⁻¹. Ponovljivost signala ima relativno standardno odstupanje od 3,35 %.

Analizom rezultata dobivenih za iskoristivost i ponovljivost zaključeno je kako je metoda zadovoljavajuće točna i precizna.

Prednosti slijedne analize injektiranjem uz spektrofotometrijski detektor u odnosu na prethodno razvijene metode su praćenje napredovanja reakcije i određivanje niskih koncentracija cisteina u dinamičkim uvjetima uz zadovoljavajuću točnost i preciznost. Razvijena metoda, u kojoj se programski upravlja većinom parametara, omogućuje analizu velikog broja uzoraka u određenom vremenu uz znatno manje utroške otopina nosioca i reagensa. Pogodnost metode je i mogućnost analize pripravaka različite formulacije.
7. Popis citirane literature
7. Popis citirane literature

8. Sažetak
8. Sažetak

Primjenom slijedne analize injektiranjem uz spektrofotometrijski detektor razvijena je i vrednovana kinetička metoda određivanja cisteina. Kinetička metoda se temelji na redoks reakciji gdje cistein kao reducens, reducira zeleni bakar(II) neokuproin kompleks do bakar(I) neokuproin kompleksa. Formirani žuto-narančasti bakar(I) neokuproin kompleks pokazuje apsorpcijski maksimum pri valnoj duljini od 458 nm. Optimalni parametri protočnog sustava određeni su univariantnom metodom te je temeljem toga konstruirana krivulja umjeravanja. Linearnost je postignuta u području koncentracija cisteina od $6,0 \times 10^{-7}$ do $8,0 \times 10^{-5}$ mol L$^{-1}$ uz jednadžbu pravca: $y = 3690,4 \ x + 0,0019$ i korelacijski koeficijent $R^2 = 0,9997$, te su određene granica dokazivanja od $1,8 \times 10^{-7}$ mol L$^{-1}$ i granica određivanja od $6,0 \times 10^{-7}$ mol L$^{-1}$. Provjeren je i utjecaj pratećih tvari koje se uobičajeno nalaze u sastavu farmaceutskih pripravaka te nije zabilježen njihov interferirajući učinak na određivanje analita. Vrednovanje metode provedeno je ispitivanjem ponovljivosti signala uz relativno standardno odstupanje od 3,35 % te zadovoljavajuće iskoristivosti, odnosno točnosti metode.
9. Summary
9. Summary

Using the sequential injection analysis with the spectrophotometric detector, the kinetic method for the determination of cysteine was developed and validated. The kinetic method is based on redox reaction where cysteine as a reductant, reduces green copper(II) neocuproine complex to copper(I) neocuproine complex. The formed yellow-orange copper(I) neocuproine complex shows an absorption maximum at wavelength of 458 nm. The optimum parameters of the flow system were determined by a univariate method and as a result the calibration curve was constructed. Linearity was achieved for the concentration range from 6.0×10^{-7} mol L$^{-1}$ to 8.0×10^{-5} mol L$^{-1}$ and it was described with the equation $y = 3690.4 x + 0.0019$ and correlation coefficient $R^2 = 0.9997$. The calculated limit of detection is 1.8×10^{-7} mol L$^{-1}$ and the limit of quantification is 6.0×10^{-7} mol L$^{-1}$. The influence of foreign substances commonly found in the composition of the pharmaceutical preparations was also examined, and no interfering effect on the analyte was noted. Validation of the method was performed by examining the repeatability of the signal with a relative standard deviation of 3.35%, and satisfactory recovery of method, or accuracy of the method.
10. Životopis

OSOBNI PODACI:

Ime i prezime: Renata Pauk

Državljanstvo: hrvatsko

Adresa: Alojza Stepinca 31

e-mail: renata.pauk@gmail.com

OBRAZOVANJE:

- **2000. - 2008.** Osnovna škola “Gripe”, Split, Republika Hrvatska
- **2008. - 2012.** Opća gimnazija “Marko Marulić”, Split, Republika Hrvatska
- **2012. - 2017.** Sveučilište u Splitu, Medicinski fakultet, Kemijsko-tehnološki fakultet, smjer: farmacija

RADNO ISKUSTVO:

III. 2017. – IX. 2017. – Stručno osposobljavanje u Ljekarnama Splitsko-dalmatinske županije, ljekarna Plokit

CPSA Split (Udruga studenata farmacije i medicinske biokemije Hrvatske)

POSEBNE VJEŠTINE:

Rad na računalu: MS Office, Eskulap 2000

Strani jezici: engleski jezik

Vozačka dozvola: B kategorija