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1.1. Embryonal development of the kidney 

1.1.1. Kidney systems 

 

During embryonal development of the kidney, we have three different systems that are 

formed: pronephros, mesonephros, and metanephros from cranial-to-caudal order. Pronephros 

is involving and is nonfunctional, mesonephros is active only during the early fetal period, and 

metanephros is the one responsible for the formation of the permanent kidney. Pronephros 

consists of 7 to 10 solid cell groups (nephrotomes) in the cervical region at the beginning of 

the fourth week. By the end of the fourth week pronephros disappears. In mesonephros the first 

excretory tubules appear, in the fourth week of development during pronephric system 

regression. The excretory tubules lengthen rapidly, forming an S-shaped loop, and glomerulus 

will be formed at their medial extremity from acquired tuft of capillaries. Bowman's capsule is 

formed from the tubules around the glomerulus, together making a renal corpuscle. Along the 

lateral side of mesonephros, tubule enters the longitudinal collecting duct known as the 

mesonephric or Wolffian duct. While cranial tubules and glomeruli mostly disappear by the 

end of the second month, caudal tubules are still differentiating. Metanephros, the last kidney 

system which is also known as the permanent kidney, appears in the fifth week. Its excretory 

units are formed from the metanephric mesoderm in the same manner as in the mesonephric 

system (1). 

1.1.2. Collecting system 

  

An outgrowth of the mesonephric duct known as ureteric bud, which is responsible for 

the development of the collecting ducts of the permanent kidney. Afterwards, the bud dilates, 

forming the primitive renal pelvis, which will later form the future major calyces by splitting 

into cranial and caudal portions. Two new buds are formed by each calyx, subdividing until 

twelve or more generations of tubules have formed. Minor calyces of the renal pelvis are 

formed when the tubules of the second order enlarge and then absorb those of the third and 

fourth generations. Later during further development, collecting tubules of the fifth and 

subsequent generations elongate and converge on the minor calyx, forming the renal pyramid. 

The ureteric bud gives rise to the renal pelvis, the ureter, 1 to 3 million collecting tubules and 

the major and minor calyces (1). 
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1.1.3. Excretory system 

 

Metanephric tissue cap is covering each newly formed collecting tubule at its distal end. 

Cells of the tissue cap form small vesicles, so called renal vesicles, under the inductive 

influence of the tubule. The renal vesicles give rise to small S-shaped tubules. At one end of 

the S capillaries grow into the pocket and differentiate into glomeruli. Tubules and glomeruli 

together form nephros. Each proximal end of nephron forms Bowman's capsule, which is 

deeply indented by a glomerulus, while distal end connects with one of the collecting tubules, 

establishing a pathway from Bowman's capsule to the collecting unit. Lengthening of the 

excretory tubule is responsible for the formation of the proximal convoluted tubule (PCT), 

distal convoluted tubule (DCT) and loop of Henle. Nephrons continue to form until birth, and 

at that time there are approximately 1 million present in each kidney (1). 

 

1.2. Histology and Anatomy 

 

Each kidney consists of convex lateral surface and concave medial border, the hilum, 

where nerves enter, the ureter exits, and lymph vessels and blood enter and exit. They are both 

covered by a thin fibrous capsule. The upper end of the ureter expands within the hilum as the 

renal pelvis, which then divides into two to three major calyces, from which smaller branches, 

the minor calyces arise. The renal pelvis and calyces are surrounded by the area containing 

adipose tissue (2). 

 

The kidney consists of an outer cortex and an inner medulla. Cortex is a darker region 

that has many corpuscles and cross sections of tubules, while medulla consists of renal 

pyramids, formed by 8-12 conical structures, separated by renal columns, which are extensions 

from the cortex. Each renal pyramid and cortical tissue at its base and along its sides together 

form a renal lobe. Medullary rays, striated extensions from the medulla into the cortex, together 

with attached cortical tissue are considered lobules. The tip of each pyramid, renal papilla, 

projects into a minor calyx, which collects urine formed by tubules (2). 

Nephrons are functional units of each kidney. There is around 1 million functional units, 

consisting of simple, single layered epithelium along its entire length. Each nephron contains: 

renal corpuscle, where large amounts of fluid are filtered from the blood, and of long tubules 

which consist of: proximal tubule, a thin descending and a thin ascending limb of loop of Henle, 
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distal tubule and collecting tubules and ducts, in which urine is formed from the filtered fluid 

on its way to the pelvis of the kidney. Cortical nephrons are those nephrons that have glomeruli 

located in the outer cortex; having short loops of Henle penetrating short distance into the 

medulla. Juxtamedullary nephrons are those that have glomeruli deep in the renal cortex near 

the medulla; long loops of Henle dip deeply into the medulla (3). 

1.2.1. Renal Corpuscles and Blood Filtration 

 

Renal corpuscle is at the beginning of each nephron, containing a tuft of glomerular 

capillaries called the glomerulus, which is surrounded by glomerular (Bowman) capsule, an 

epithelial double-walled capsule. Glomerular capillaries are closely enveloped with the internal 

(visceral) layer of Bowman's capsule. The surface of the capsule is formed by the outer parietal 

layer. Capsular (urinary) space is between the two capsular layers, which is responsible for 

receiving the fluid filtered through the capillary wall and visceral layer. Each renal corpuscle 

has a vascular pole and a tubular pole. Vascular pole is where the afferent arteriole enters and 

the efferent arteriole leaves. Tubular pole is where the proximal convoluted tubule begins (2). 

 

The outer parietal layer of a glomerular capsule has a simple squamous epithelium, 

which is supported externally by a basal lamina. At its tubular pole, epithelium changes to the 

simple cuboidal epithelium that continues and later forms the proximal tubule. The visceral 

layer of a renal corpuscle consists of stellate epithelial cells, podocytes, which compose the 

apparatus for renal filtration together with the capillary endothelial cells. Every podocyte has 

its own cell body, from which primary processes extend and curve around a length of 

glomerular capillary. Each primary process gives rise to secondary processes (pedicles). The 

pedicles cover most of the capillary surface and are in direct contact with the basal lamina (2). 

Elongated spaces are between the interlocked pedicles, also called filtration slit pores 

that are 30 nm wide. Slit diaphragms are spanning adjacent pedicles and bridging the slit pores. 

Slit diaphragms are specialized tight junctions composed of nephrins, glycoproteins, 

proteoglycans and other proteins important for renal function. These proteoglycans and 

glycoproteins together form many openings within the slit diaphragm, with a surface that is of 

negative charge (2). 

Thick glomerular basement membrane is located between the fenestrated endothelial 

cells of the capillaries and the covering podocytes. Basement membrane is of considerable 
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importance for filtration barrier that separates the blood from the capsular space. It was formed 

by fusion of the podocyte and capillary produced basal lamina. This fused basement membrane 

has laminin and fibronectin that bind integrins of both the podocyte and endothelial cell 

membrane. Large proteoglycans and the meshwork of cross-linked type IV collagen restrict 

passage of large proteins. Amio acids are reabsorbed in the proximal tubule, while smaller 

proteins filtered from plasma are degraded (2). 

Capillaries of each glomerulus are situated between the afferent and efferent arteriole, 

the muscle which causes increased hydrostatic pressure in these vessels, which favors filtration 

of plasma across the glomerular filter. Glomerular capillaries, when compared to other 

capillaries, have high hydrostatic pressure. Degree of constriction of each arteriole is regulated 

by hormonal and neuronal inputs (2). The total glomerular filtration area of an adult is 500 

cm2, and GFR at 125 mL/min or 180 L/d. The kidneys filter the entire blood volume 60 times 

every day, considering that the total amount of circulating plasma is 3 L. 20% of the blood 

plasma entering a glomerulus is filtered into the capsular space. Apart from containing very 

little protein, the initial glomerular filtrate has a chemical composition similar to that of plasma. 

Glomerular filtration is relatively nonselective, except the plasma proteins or substances bound 

to them essentially all solutes in the plasma are filtered (3). 

Renal corpuscles also contain mesangial cells. They resemble vascular pericytes in 

having contractile properties, they also produce components of an external lamina. They often 

stain more darkly than podocytes, by which are distinguished from podocytes. They and their 

surrounding consist of the mesangium, which fills interstices between capillaries that lack 

podocytes. They are responsible for many functions, such as: physical support of capillaries 

within the glomerulus, secretion of cytokines, prostaglandins and factors for immune defense 

and repair in the glomerulus, adjusted contractions in response to blood pressure changes, 

phagocytosis of protein aggregates that stick to glomerular filter (3). 

1.2.2. Proximal Convoluted Tubule 

 

At the tubular pole of the renal corpuscle, the simple squamous epithelium of the 

capsule's parietal layer is continuous with the simple cuboidal epithelium of the proximal 

convoluted tubule (PCT) (2). These long tubules fill most of the cortex. PCT is responsible for 

both secretion and reabsorption. Most of the water, sodium and chloride, as well as glucose, 

amino acids, and vitamins that are filtered from plasma are reabsorbed in PCT. It secretes 
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organic acids and bases by its transporters, this way clearing out creatinine and bile salts, urate 

and catecholamines as well as potentially harmful drugs or toxins, being of great importance 

in a drug clearance (3). 

 

The cells of the proximal tubules have acidophilic cytoplasm due to abundant 

mitochondria and central nuclei, this way supporting powerful active transport process (3). The 

cell apex consists of many long microvilli, together forming brush border in the lumen, 

facilitating reabsorption. Because of the large cells, transverse section of each PCT contains 

only 3-5 nuclei (2). 

The apical cytoplasm of PCT cells near the base of the microvilli, consists of many pits 

and vesicles that are indicating active endocytosis and pinocytosis. PCT cells also have many 

membrane invaginations and lateral interdigitations with neighboring cells. Along the basal 

invaginations where long mitochondria is concentrated is responsible for the supply of ATP 

for the membrane proteins involved in active transport (2). 

1.2.3. Loop of Henle 

 

Loop of Henle is a U-shaped structure that consists of thin and thick descending limb 

and thin ascending limb (3). Both thin descending and ascending limbs are composed of simple 

squamous epithelia. Both thin walls consist of squamous cells with only few mitochondria, 

with prominent lumen. The thin ascending limb becomes the thick ascending limb, which is 

composed of simple cuboidal epithelium and many mitochondria, extending as far as the 

macula densa near nephron's glomerulus in the outer medulla (2). 

The loop of Henle with surrounding interstitial connective tissue are responsible for 

adjusting the salt content of the filtrate. Cuboidal cells form thick ascending limb transport 

sodium and chloride ions from the tubules into the hyaluronate-rich interstitium by an active 

transport, making it hyperosmotic (2). This way the filtrate is concentrated by passive 

withdrawal of water from the thin descending part of the loop, highly permeable to water, and 

moderately permeable to urea and sodium. Both ascending limbs are impermeable to water, 

the thick segment of the loop of Henle only absorbing NaCl and potassium by an active 

transport due to high metabolic activity (3). The thick ascending limb of the loop of Henle is 

the site where ''loop'' diuretics take action. This flow of blood in opposite direction in the 

descending and ascending loops of the vasa recta helps to maintain the hyperosmotic 
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interstitium. The interstitial osmolarity is about four times that of the blood at the pyramid tips 

(2). 

1.2.4. Distal Convoluted Tubule and Juxtaglomerular Apparatus 

 

As the ascending limb of the nephron enters the cortex, it is straight and forms the 

macula densa, and as it bends becomes distal convoluted tubule (DCT). Much less tubular 

reabsorption occurs here, most of the ions are being reabsorbed here, sodium, potassium and 

chloride. It is impermeable to water and urea, being referred to as diluting segment (3). The 

simple cuboidal cells of the distal tubules are smaller than those in proximal tubules, they have 

no brush border and have more empty lumens. Since distal tubule cells are smaller and flatter, 

more nuclei are seen in sections. They also have fewer mitochondria, which makes them less 

acidophilic (2). It is the site where thiazide diuretics take action, used for treatment of 

hypertension and heart failure. The rate of Na+ absorption and K secretion in distal tubule is 

regulated by aldosterone, secreted by the zona glomerulosa cells of the adrenal cortex (3). 

1.2.5. Juxtaglomerular apparatus  

 

Juxtaglomerular apparatus is a part of specialized sensory structure, utilizing feedback 

mechanism to keep the rate of glomerular filtration relatively constant. Juxtaglomerular cells 

release renin, which then cleaves the plasma protein angiotensinogen into angiotensin I, an 

inactive decapeptide. Angiotensin converting enzyme (ACE) on lung capillaries converts this 

to angiotensin II, which then stimulates adrenals to secrete aldosterone. Aldosterone promotes 

sodium and water reabsorption, this way helping to increase the bloop pressure (2). 
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1.2.6. Collecting Ducts 

 

The connecting tubule, the last part of each nephron, extends from each nephron and 

several join together in the cortical medullary rays to form collecting ducts. Collecting ducts 

are formed of simple cuboidal epithelium, and these merge further as larger, straight collecting 

ducts in the outer medulla, running to the tips of the medullary pyramids becoming columnar 

cells. Several collecting ducts merge further as a papillary duct in the apex of the pyramid, 

which later delivers urine to the minor calyx.  

The medullary collecting ducts are the final site for water reabsorption. Collecting ducts 

are mainly composed of principal cells, which are particularly rich in aquaporins. Aquaporins 

function as specific channels for water molecules, so called integral membrane pore proteins 

(2).  

Antidiuretic hormone (ADH), also called vasopressin is released from the posterior 

pituitary gland, makes collecting ducts more permeable to water, as the body becomes 

dehydrated and osmolarity of fluids increases above normal (3). As ADH is binding its 

receptor, it stimulates insertion of aquaporins into the apical membrane, causing water 

movement through the cell. The high osmolarity of the interstitium is drawing blood passively 

from the collecting ducts, thus concentrating the filtrate (2). The water immediately enters the 

blood through vasa recta. Thus, ADH secretion determines whether the kidney excretes 

concentrate or dilute urine (3). 

 

1.3. Congenital anomalies of the kidney and urinary tract 

 

Congenital anomalies of the kidney and urinary tract (CAKUT) are a broad spectrum 

of different structural malformations that happen at birth, and are the leading cause of end stage 

renal disease in both pediatric and adult population. They are characterized by defects in 

embryonic kidney development. CAKUT causes 20% of all congenital malformations, being 

the most common form of malformations at birth (4,5). Exposure to environmental risk factors 

or the dysfunction of genes can cause disturbances to normal nephrogenesis and lead to 

CAKUT (4). It is mostly presented by recurrent urinary tract infections (UTI) and/or 

obstruction (6). We have many different phenotypes belonging to CAKUT, such as: kidney 

dysplasia/kidney hypoplasia, meaning that kidneys are either congenitally small, malformed, 
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or both (4,6). Renal agenesis is one of the most severe examples of CAKUT. It is the complete 

absence of renal tissue at birth, which can be either unilateral or bilateral (6). While unilateral 

renal agenesis (URA) leads to hypertension, proteinuria and early renal failure, it is compatible 

with life (7). Bilateral Renal Agenesis (BRA) is almost invariably fatal at birth (6,7). Polycystic 

kidney disease (PKD) is the most common inherited disease, mostly caused by PKD1 gene 

mutations. PKD is characterized by fluid-filled cysts on the kidneys, causing them to enlarge 

and further compromising the renal function. There is also multicystic renal dysplasia due to 

abnormal nephron development, and there is minimal or nonfunctional renal tissue. 

Vesicourethral reflux (VUR) causes retrograde flow of urine from bladder up to ureter (6). 

Megaureter, an abnormal dilation of ureter, ectopic ureter, duplex collecting system and 

horseshoe kidney also belong to CAKUT. Posterior urethral valves are the most common cause 

of bladder outlet obstruction in males, and ureteropelvic junction obstruction is the most 

common CAKUT malformation (4,6). CAKUT may also appear either as a part of a systemic 

condition or as an isolated feature. There can also be extrarenal manifestations (5). 

1.4. GREB1L 

 

Growth regulation by estrogen in breast cancer like-1 (GREB1L) is part of a chromatin 

complex with steroid hormone and retinoic acid receptors, and has a role as a coactivator in 

retinoic acid-mediated transcription (8). Initially GREB1L was discovered as a paralog of 

growth regulation by estrogen in breast cancer 1 (GREB1) which has high correlation with 

both androgen and estrogen receptor expression in prostate and breast cancer cell lines and 

primary tumors. Its expression was upregulated in treatment of a human breast carcinoma cell 

line upon estrogen treatment. Greb1 acting as a coactivator of the estrogen receptor with both 

GREB1L and Retinoic acid receptor (Rar) components resides in a chromatin complex. 

GREB1L is upregulated in a cell line model of retinoic acid signaling (7).  
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1.4.1. Retinoic acid signaling pathway 

 

Retinoic acid (RA) is derived from vitamin A (retinol), and is shown by various studies 

to have an important role in formation of most organs and tissues, including the kidney (7, 9). 

Retinoids are a group of compounds composed of three basic parts: a polar carbon-oxygen 

functional group, a trimethylated cyclohexene ring which is a bulky hydrophobic group and a 

conjugated tetraene side chain that functions as a linker unit (10). RA is synthesized from an 

inactive precursor, retinol, by enzymes belonging to the retinaldehyde dehydrogenase and 

retinol dehydrogenase families. The first step in RA synthesis is mediated by retinol 

dehydrogenase, which converts retinol to retinaldehyde. Enzymes that convert retinaldehyde 

to retinoic acid at many sites of active RA signaling, are selectively expressed in the embryo, 

where they are crucial for regulating the availability and synthesis of RA (9). These enzymes 

belong to the Raldh family. Raldh2 was shown to be responsible for most RA synthesis in the 

embryo. In stromal mesenchyme of the outer cortex of the embryonic kidney Raldh2 was 

localized, while Raldh3 was expressed in the ureteric bud. Once in cells, RA binds nuclear 

receptors called retinoic acid receptors (Rars) and retinoic x receptors (RXR), which are DNA-

binding transcriptional regulators via retinoid response elements (9, 10). The Rar receptor 

family has 8 members encoded by 3 genes - Rarb, Rarg, Rara that are expressed during 

development, inactivation of which result in embryonic abnormalities. Any mutations in genes 

encoding RAR can cause a renal agenesis phenotype (7, 9). Furthermore, aberrantly expressed 

RXR-related genes found in a mouse model of PKD, suggests that aberrant RXR signaling is 

connected with PKD cytogenesis. Interestingly, human promotor for PKD1 is activated by RA, 

the gene when mutated is responsible for 85% of clinical cases (10). 

 

1.4.2. The role of retinoic acid signaling in the kidney 

 

RA signaling is involved in the specification and development of the genitourinary 

system, including the early pronephric kidney morphogenesis and metanephros development. 

Moreover, in the developing metanephros, retinoic acid can promote ureteric bud outgrowth, 

by regulating Ret gene expression (7,9). Binding of Ret to its ligand, Gdnf, induces a program 

of epithelial cell remodeling that controls primary branch formation and branching 

morphogenesis within the kidney. RA signaling pathway has well understood defined role in 

renal development, for example signaling between the ureteric bud epithelium is forming 
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collecting duct system and ureter, while metanephric mesenchyme and stromal mesenchyme 

are differentiating into the nephron and into the renal interstitium, respectively (9). Gestational 

vitamin A deficiency shown by pregnant mice model led to reduction in nephron number and 

severe renal defects in the fetus. Retinoids were also shown to have an anti-fibrotic and 

cytoprotective effects in the kidneys. Thus, conversion of retinoids to RA is essential for 

regulation of a wide range of biological processes, such as development, proliferation and 

differentiation (10). As Greb1l is residing in a chromatin complex with RAR members, and 

being a coactivator of RAR, leads to conclusion that proper activation of Greb1l expression by 

retinoic acid signaling is crucial for proper kidney development, dysregulation of which leads 

to urinary tract malformations (7,11).  

1.4.3. GREB1L and kidney 

 

Analysis of human fetal tissue showed expression of GREB1L in kidney, while in 

adults the highest expression was in vagina, cervix, and epididymis (11). When referring to the 

kidney and its development however, previous studies have shown Greb1l expression during 

all stages of nephrogenesis, the strongest being in the nephrogenic zone in the cortical region 

of the kidney. GREB1L was also found expressed in the S-form of a nephron, developmental 

stage undergoing intense cellular growth and morphogenesis, corresponding to early 

nephrogenesis, thus playing a major role in mediating cell growth and early kidney 

development (12). For example, dissection of the urogenital system in Greb1l-/- embryos 

showed absence of the kidneys. Furthermore, its role in tubulomorphogenesis was shown by 

selecting a clone with a homozygous deletion, and a control in which no mutation was 

identified. Results have shown that a control was able to form tubule-like structures, while 

homozygous deletion showed no tubule formation, but only small spherical structures. When 

homozygous deletion phenotype was rescued by transfection of a Green fluorescent protein-

fused (GFP-fused) human GREB1L, GFP-positive cells formed elongated structures as in the 

first steps of tubulomorphogenesis, thus demonstrating that GREB1L is also involved in 

tubulogenesis (11). This is translated in humans as heterozygous loss-of-function (with 

maternal bias in transmission) of GREB1L function that is associated with CAKUT phenotypes, 

most of the time being renal dysplasia/hypoplasia, renal agenesis, and vesicoureteral reflux, 

proving that heterozygous loss-of-function of GREB1L function mutations in humans cause 

BRA, a phenotype also showed by Greb1l-/- mice (8,11). Haploinsufficiency of GREB1L 

revealed non- syndromic inner ear malformations as the primary cause of the disease (12). 
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GREB1L was also found to be connected to other non-renal defects, such as abnormal number 

of ribs, heart defects, hepatic fibrosis and enlarged thymus. Additionally, GREB1L mutation 

was also observed in genital tract defects with different severities in females, from unilateral 

fallopian tube or ovarian agenesis to uterus agenesis phenotype and Mayer-Rokitansky-Küster-

Hauser (MRKH) syndrome, showing that GREB1L also affects the early steps of female genital 

development apart from the kidney. The previous examples were also confirmed with the 

absence of kidneys and genital tracts in E13.5 knockout mice embryos (8). Additionally, 

GREB1L was also observed in PCT of 1.5-year-old human kidney, and significantly more 

expressed in the glomeruli during human fetal development, highlighting the importance of 

higher expression of GREB1L in the glomeruli of nephrons during final nephrogenesis. Since 

there was kidney expression of GREB1L in the postnatal period, this is implicating the 

importance for maintenance of kidney homeostasis, and not only for the onset of CAKUT in 

the case of mutation (12). In conclusion, all of the previous studies above emphasize the key 

role of GREB1L not only in early fetal kidney differentiation and genital tract development, 

but also in the maintenance of kidney homeostasis later in life (11,12). 
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1.5. Disabled-1 protein, yotari mice and reeler mice 

 

Disabled-1 (Dab1) is an adaptor protein that contains three main domains: N-terminal 

protein interaction/phosphotyrosine binding domain, C-terminal serine/threonine-rich region, 

and a tyrosine rich region. Dab1 is a cytoplasmic protein which has a role in regulating 

lamination and neuronal migration during brain development. Dab1 also plays an important 

role in Reelin signaling pathway, as Dab1 tyrosine phosphorylation is induced by binding of 

Reelin to its receptors. Phosphorylated Dab1 activates multiple signaling cascades, resulting in 

precise neuronal positioning (13). Reelin is secreted by Cajal-Retzius cells in the marginal zone 

in the brain, and has an important role in the development of the mammalian cerebral cortex.  

This process is severely disturbed in mouse mutant Reeler (14). Main feature of Reeler mice is 

that in laminated brain structures neurons are aberrantly positioned. Reeler mouse are 

characterized by tremor, ataxia and a reeling gait. This was further supported by the Reeler and 

Dab1-/- or yotari mice models (13).   

 

Yotari, an autosomal recessive mouse mutation, exhibits pathological and behavioral 

phenotype identical to Reeler, but the mutation is not identical. Yotari mouse presents with 

ataxia, tremor and early death around weaning (15,16). Reeler mice arise from mutations in the 

Reelin gene, where Reelin plays a critical role in regulation of final migratory phase of 

histogenesis (16,17). Reeler phenotype is connected with failure of brain lamination which is 

controlled by Reelin (17). Yotari arise from mutations in mDab1, a mouse gene related to a 

drosophila gene disabled, which is an adaptor molecule functioning in neural development. 

mDab1 is a phosphoprotein that functions as an intracellular adaptor in protein kinase 

pathways, and is tyrosine phosphorylated during mouse embryogenesis (18,19). It was thought 

at first that yotari expresses little or no mDab1 protein and a mutated form of mDab1 messenger 

RNA, but new studies have shown that the yotari mouse is in fact producing an aberrant mDab1 

protein, due to lack of phosphorylation of mDab1 (19). As mDab1 is expressed in neuronal 

populations exposed to Reelin, this all leads to conclusion that Reelin and mDab1 function as 

signaling molecules that regulate cell positioning during brain development (20).  
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1.5.1. DAB1 in the kidney 

 

During fetal kidney development, DAB1 has shown strong expression in both DTC and 

PCT. DAB1 has decreased expression in the postnatal period, which appears that DAB1 has a 

more important role in the fetal period than in the postnatal period. High DAB1 expression in 

DCT proves its role in tubular formation (21). Thus, DAB1 is proven to regulate the formation 

and function of kidney structures during human fetal kidney development (22). Yotari mouse 

model expresses smaller kidneys, with thinner cortex and reduced diameter of nephron 

segments. This all reveals that Dab1 functional inactivation leads to CAKUT phenotype and a 

loss of functional kidney tissue of yotari mouse (23). 

There were many previous studies that have proven the role of Greb1l for normal 

kidney development, but at the moment there are no studies conducted on the function of 

Greb1l in Dab1-/- mice.



  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. OBJECTIVES
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The aim of this study was to analyze the expression and localization of Greb1l in the 

nephrons of yotari (Dab1-/-) and wildtype (Dab1+/+) mice in order to further develop their 

suggested importance not only in mammal kidneys overall, but also the significance they may 

have particularly in the yotari mouse nephron. 

Hypotheses 

Greb1l marker will have significantly different expression pattern in the kidney 

structures of yotari and wildtype genotypes. 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. MATERIALS AND METHODS
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3.1. Ethics 

The experimental protocol was approved by the Ethics Committee of the University of 

Split School of Medicine and conducted according to the Croatian Animal Welfare Act. 

3.2. Experimental animals 

Two groups of pups were observed according to their Dab1 gene status: yotari (Dab1/-

) and wildtype (Dab1+/+) controls. The yotari mice were produced by PGK-neo cassette which 

resulted in target disruption of the first 47 codons of the gene coding for the protein-interlacing 

domain (PI-PTB). In standard polycarbonate cages at least one mouse from each group was 

group-housed and raised. Their environment was a temperature controlled (23±2°C) room with 

a 12-h light/dark cycle, and their access to water and food was ad libitum. 

3.3. Tissue collection and immunohistochemistry 

Pregnant and nonpregnant mice from both groups were anesthetized deeply with 

pentobarbital on the 13.5th gestational day and on 4th and 14th postnatal day, respectively. 

Afterwards they were transcardially perfused with phosphate buffer saline (PBS, pH 7.2) and 

4% paraformaldehyde (PFA) in 0.1 M PBS. The removed fetuses and kidneys were then 

embedded in paraffin and cut transversely into 7 micrometer thick sections. Within each yotari 

and wildtype group, 4 fetal slides and 5 postnatal slides consisting of 11 fetal sections and 7 

postnatal kidney sections, respectively, were then allocated for each group to be further 

processed and analyzed. After the deparaffinization of the samples with xylene, the sections 

were rehydrated with ethanol and water, and then quickly rinsed with distilled water. Next, 

after heating the samples in sodium citrate buffer (pH 6.0) for 30 min in the Epitope Retrieval 

Steamer, we allowed them to cool down at room temperature, and then washed them in PBS, 

lastly, we separated the samples with a PAP pen hydrophobic pencil. Then we incubated the 

sections with primary antibodies after cooling to room temperature. 

Rabbit polyclonal Anti-Greb1l (Invitrogen PA5-60651) was diluted 1:100 in Dako 

REAL antibody dilutent (Dako Denmark A/S, Glostrup, Denmark), and then applied to the 

sections. The primary antibodies were left overnight in a humidified chamber at room 

temperature, and then the sections were rinsed with PBS, and then incubated for 1h in a 

humidified chamber with secondary antibodies: Alexa Fluor 488 AffiniPure Donkey 

Polyclonal Anti-Rabbit IgG (Jackson IR, 711-545-152) for Greb1l primary antibody-stained 

samples. 
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In the next step we rinsed the sections a final time with PBS, and stained cell nuclei 

with 40,6-Diamidine-20-phenylindole dihydrochloride (DAPI) using multicolour fluorescent 

techniques. Further, stained kidney sections were viewed and photographed using a BX51 

microscope (Olympus, Tokyo, Japan) equipped with a DP71 digital camera (Olympus), The 

images were then processed with CellA Imaging Software for Life Sciences Microscopy 

(Olympus). Different structures of the each fetal and kidney section were analyzed: renal 

vesicle, ureteric bud, metanephric mesenchyme in the fetal sections, and glomeruli, proximal 

(PCT) and distal convoluted tubules (DCT) in both fetal and postnatal kidney samples (Figures 

1-3). For each of the fetal and postnatal kidney sections, 5 images with non-overlapping fields 

were photographed at x40 objective magnification, with each field constituting one 

microimage. 

Using ImageJ software (National Institutes of Health, Bethesda, MD, USA), we 

performed the analysis of glomeruli, DCTs and PCTs by counting the number of positive or 

immunoreactive Greb1l cells as well as negative cells. Greb1l immunoreactive cells were 

determined by the color staining intensity (red) in different kidney structures (Figure 1-3). In 

the last step we compared the percentage of Greb1l positive cells in the three kidney structures 

(glomeruli, PCT and DCT) both within and between the yotari and wildtype groups.  

3.4. Statistics 

The Kolmogorov-Smirnov-test was applied for testing the data distribution, after which 

statistical analysis was performed using a Kruskal-Wallis-test in GraphPad (GraphPad 

Software, La Jolla, CA, USA) to examine differences in the 3 structures (glomeruli, PCT and 

DCT) within each mouse group. Comparison of the kidney structures between the yotari and 

wildtype groups was performed using a t-test. The percentage of positive cells was expressed 

as the mean ± standard deviation (SD). Statistical significance was set at p<0.05. 
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By immunofluorescence staining, localization of positive expression of Greb1l in three 

different nephron structures (PCT, DCT, and glomeruli) of 13.5 day old embryonal kidney 

samples, 4 and 14 day old postnatal kidney samples of both, yotari and wildtype mice is shown. 

We compared the percentages of positive cells with Greb1l expression between each group. 

Figures 1-3 show examples of the localization and intensity of expression of Greb1l in the 

samples. 

 

 

Figure 1: Immunofluorescence staining with Greb1l antibodies (arrowheads) and DAPI (blue 

stained nucleus) of 13.5th embryonal day of wildtype (wt) (figure A) and yotari (yot) (figure B) 

mouse embryonal kidney samples. Nuclear DNA DAPI staining merged with Greb1l 

immunofluorescence in the third column is shown in parallel (merge). Legend: rv - renal 

vesicle, b - ureteric bud, mm - metanephric mesenchyme, g - glomerulus, p - proximal 

convoluted tubule, d - distal convoluted tubule. The scale bar is 20 μm and refers to all images. 
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Figure 2: Immunofluorescence staining with Greb1l antibodies (arrowheads) and DAPI (blue 

stained nucleus) of 4th postnatal day of wildtype (wt) (figure A) and yotari (yot) (figure B) 

mouse kidney samples. Nuclear DNA DAPI staining merged with Greb1l immunofluorescence 

in the third column is shown in parallel (merge). Legend: g - glomerulus, p - proximal 

convoluted tubule, d - distal convoluted tubule. The scale bar is 20 μm and refers to all images. 
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Figure 3: Immunofluorescence staining with Greb1l antibodies (arrowheads) and DAPI (blue 

stained nucleus) of 14th postnatal day of wildtype (wt) (figure A) and yotari (yot) (figure B) 

mouse kidney samples. Nuclear DNA DAPI staining merged with Greb1l immunofluorescence 

in the third column is shown in parallel (merge). Legend: g - glomerulus, p - proximal 

convoluted tubule, d - distal convoluted tubule. The scale bar is 20 μm and refers to all images. 

In embryonal day E13.5 glomeruli of both, yotari and wildtype group express 1% of 

Greb1l immunoreactive cells, and no positive cells in PCTs and DCTs, showing no statistical 

significance within the two groups (Figure 4). On postnatal day 4D, PCTs express equal 

percentage of 1% positively stained cells in both yotari and wildtype groups, also showing no 

statistically significant difference. On the contrary, DCT is shown to express 6% in yotari and 

16% in wildtype group, while glomeruli express 1% in yotari and 8% in wildtype group. This 

data indicates no statistical significance in the yotari group, while wildtype group has shown 

significantly higher percentage of Greb1l in DCT compared to PCT (p<0.01), and smaller but 

still significant difference between DCT and glomeruli (p<0.05) (Figure 4). Finally, in the 14D 

postnatal day in the Greb1l stained yotari and wildtype group, the structure with most 

immunoreactive cells was the DCT with 62%, and 43%, respectively. The PCT with 1% 

expression and glomeruli with no expression is observed in both yotari and wildtype groups. 
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The yotari group has shown the most statistically significant positive cells in the DCT 

compared to PCT (p<0.001), and less, but still high significance in wildtype group between 

DCT and PCT (p<0.01) (Figure 4). 

 

Figure 4: The distribution of percentages of Greb1l positive cells in the proximal convoluted 

tubules (p;blue), distal convoluted tubules (d;orange), and glomeruli (g;grey) in 13.5th 

embryonal day (E13.5), 4th postnatal day (4D) and 14th postnatal day (14D) kidneys of 

wildtype (wt) and yotari (yot-/-) mice genotypes. Data is presented as the mean ± standard 

deviation (SD) (vertical line). Significant differences between the p, d, and g within each 

mice group are indicated by *p<0.05, **p<0.01, ***p<0.001 (Kolmogorov-Smirnov-test for 

data distribution followed by Kruskal-Wallis-test).  
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Figure 5: The distribution of percentages of Greb1l positive cells in the proximal convoluted 

tubules (p), distal convoluted tubules (d), and glomeruli (g) in E13.5 embryonal day and 4D 

and 14D postnatal kidneys of wildtype (w) and yotari (y) genotypes. Significant differences 

between the p, d, and g in different genotypes are indicated by *p<0.05, **p<0.01 

(Kolmogorov-Smirnov-test for data distribution followed by a t-test). 

When comparing the percentages of positively expressed cells between groups of the 

Greb1l immunofluorescence-stained samples there was no statistically significant difference 

between the percentages of positively expressed cells in the glomeruli, PCT and DCT of yotari 

and wildtype samples in E13.5 (Figure 5). In the DCT in the 4D postnatal day, the wildtype 

group had a statistically significant higher percentage of positive Greb1l expressing cells when 

compared against the yotari group (p<0.05) (Figure 5). Moreover, with regard to glomeruli in 

the 4D postnatal day, there was also higher percentage of positive cells with statistical 

significance in the wildtype group when compared to yotari (p<0.01) (Figure5). Lastly, there 

were the most statistically significant higher percentage of immunoreactive cells in the DCT 

of yotari mice in comparison to wildtype groups in the 14D postnatal day (p<0.01) (Figure 5).  

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. DISCUSSION 
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The aim of this study was to determine the expression pattern of Greb1l in the kidneys 

of yotari and wildtype mice in E13.5, 4D and 14D nephrons, in order to further distinguish their 

role in kidney structure and function. After researching current literature, this study is one of 

the first which has looked into the expression of Greb1l in the nephrons of yotari mice. 

In both mouse groups in 14D old nephron, the DCT showed the highest percentage of 

positive Greb1l expression, where yotari group showed higher expression than the wildtype 

group. The expression of Greb1l in PCT and glomeruli in both groups was almost non-existent. 

This finding differs from the previous studies shown in other literature where GREB1L was 

found to be mostly expressed in PCT and weakest in DCT at different stages of embryonal 

development in human kidneys (12). Since Dab1 was found to have an important role in fetal 

kidney structure with high expression in DCT during kidney development, and no importance 

in postnatal stages, gives us the possible explanation why there are higher positive Greb1l cells 

present in the yotari group at 14D (21). As to why there is positive expression of Greb1l in 

DCT cells in both mouse groups in this study cannot be fully understood from this study alone, 

but Greb1l might be more important for the function of DCT during later embryonal or 

postnatal stages in mice and differs from that in humans. Thus, this discovery of higher Greb1l 

expression in the yotari mouse DCT could be a starting point for further studies to develop. 

Since both this study’s result and that of the previous mentioned study differ in results, further 

investigation using yotari mouse models of Greb1l are required to fully establish this 

hypothesis. 

Some levels of expression of Greb1l were also found in the DCT in 4D old nephron in 

both groups, with the higher percentage in that of the wildtype kidney samples. There was also 

expression found in the glomeruli of the wildtype group, while in yotari it was almost non-

existent. There was almost no Greb1l expression in the PCT of both genotypes. This finding 

highlights the role of Greb1l in signaling cascades of DCT cells in both mouse groups, and 

possible importance of Greb1l expression in the glomeruli of wildtype in the postnatal stage. 

Since Dab1 has an important role in early nephrogenesis and less at later stages, as previously 

mentioned we expected expression of Greb1l in DCT of yotari mouse (21). Although this has 

not been anticipated yet in other literature using mouse models, GREB1L has been found to be 

expressed in the DCT and glomeruli at different stages of human embryonic nephron 

development (12).  
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Finally, in E13.5 kidneys in both mouse groups, all the structures had the least 

percentage of Greb1l immunoreactive cells. Immunoreactive cells in the glomerulus were 

almost non-existent, while PCT and DCT had no expression at all in both wildtype and yotari 

genotypes. This was surprising, especially when considering the wildtype samples, as previous 

studies have found that the peak expression of Greb1l in mice is at E13-16, and that Greb1l is 

important for the first steps of tubulomorphogenesis (11,12). The study on human kidneys has 

shown low expression of GREB1L in the glomeruli in early weeks of human fetal development, 

while during later more mature stages of human fetal development, GREB1L had the highest 

expression in the glomeruli (12). As this study only stained E13.5 mouse kidney samples, it is 

plausible that the importance of Greb1l in mouse nephrons development is more established in 

these structures at later embryonal or more mature stages of glomerular and tubular function as 

shown in human kidneys, or its importance in mouse glomerular and tubular expression for its 

differentiation and function may be completely different and therefore requires further studies. 

Possible explanation for no expression of Greb1l in PCT and DCT in yotari mice model is that 

Dab1 has a proven role in tubular formation and is more expressed in the fetal period, and since 

there is nonfunctional Dab1 and no tubular formation, we expect no Greb1l expression in these 

structures (21). Since there is a significant difference in this study’s results and that of the 

previous mentioned studies, further investigation using yotari mouse models of Greb1l are 

required to fully establish this hypothesis.  

Although this study is a sufficient starting point for Greb1l expression in the mouse 

kidney overall, not to mention in the unexplored yotari kidney, limitations should be 

highlighted. Firstly, only four fetal and five postnatal prepared slides, each from a separate 

sacrificed mouse, with eleven fetal sections and seven kidney sections was used in total, which 

possibly limits the power of the results. Future investigations should include samples taken 

from more animals in order to avoid possible type II error. Secondly, after analysis of all 

embryonal samples, the old lamp for color intensity was changed with the new one, which had 

stronger intensity and subsequently changed the appearance of prenatal kidney samples. This 

could give the false positive results during image analysis on postnatal kidney samples. Lastly, 

only one investigator analyzed the images when counting positive cells, increasing the 

likelihood of human error. These limitations should be taken into the account for future studies 

by using at least two independent investigators to analyze the images. 

To conclude everything, an immunohistochemistry study of Greb1l expression in 

E13.5, 4D and 14D nephrons of yotari and wildtype mouse genotypes was carried out. The 
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results showed that the DCT of the 14D kidney had prominent expression of Greb1l in both 

genotypes, suggesting a possible important role of Greb1l in DCT at this stage. Since our result 

was completely opposite to the previous studies done on human kidneys, further studies are 

needed to be conducted in these mice to confirm this hypothesis. Since there was almost no 

expression of Greb1l in other structures of the 14D kidney, we can conclude that Greb1l is not 

important in these structures at this stage and this could also be a starting point for the future 

studies. Continuing on, both mouse groups have shown expression of Greb1l in DCT and 

glomeruli of 4D kidney, with higher expression in both structures in the wildtype group. There 

was almost no expression of Greb1l in PCT of 4D kidney in both genotypes. This could be an 

indication that Greb1l has a more important role in kidneys of the wildtype group at this stage, 

because GREB1L has been found to be expressed in the DCTs and glomeruli at different stages 

of human embryonic nephron development as found in the wildtype group. But to confirm these 

suggestions, it is necessary to perform further investigations because this has not been 

anticipated yet in other literature using mouse models. Interestingly, decreased Greb1l 

expression in PCT and DCT in both mouse groups of E13.5 kidneys, and only fair expression 

in glomeruli in both mice was unexpected since previous literature confirms peak expression 

of Greb1l in mice is at E13-16, and Greb1l importance for the first steps of 

tubulomorphogenesis. Possible explanation is with the study on human kidneys that has shown 

low expression of GREB1L in the glomeruli in early weeks of human fetal development, while 

during later, more mature stages of human fetal development, GREB1L had the highest 

expression in the glomeruli. Thus, the importance of Greb1l in development of mice nephrons 

might be more established in these structures at later embryonal or more mature stages of 

glomerular and tubular function, as was shown on human kidneys, or its importance in mouse 

glomerular and tubular expression for its differentiation and function may be completely 

different, and therefore requires further study. As previously mentioned, possible explanation 

for no expression of Greb1l in PCT and DCT in yotari mice model is that Dab1 has proven role 

in tubular formation and is more expressed in fetal period, and since there is nonfunctional 

Dab1 and no tubular formation, we expect no Greb1l expression in these structures. But again, 

further studies using yotari mice models are needed to confirm this hypothesis. With everything 

said, it seems how kidney development pattern in yotari mice group is delayed in comparison 

to wildtype group, which could be a possible explanation for the discrepancy. 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION
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1. The DCT had the highest expression of Greb1l in 14D kidneys across both genotypes.  

2. In the DCT of 14D kidney, Greb1l was significantly more expressed in the yotari group, 

implicating that Greb1l might play an important role in DCT during postnatal stages in this 

group. 

3. Greb1l expression was barely present in PCT and glomeruli in 14D in both mice genotypes, 

showing no significant importance at this stage.  

4. Faint Greb1l expression was found in DCT of 4D in both mouse genotypes, with 

significantly higher expression in the wildtype group, thus highlighting the possible importance 

of Greb1l expression in the DCT of wildtype in the postnatal stage, possibly supported by 

studies done in human kidneys. 

5. There was significantly higher expression of Greb1l in glomeruli of 4D kidneys in the 

wildtype group, implicating a possible importance of Greb1l expression in the glomeruli of 

wildtype in the postnatal stage, also partially supported by the study done on human kidneys. 

6. There was barely any expression of Greb1l in the PCT of both mice groups in 4D kidneys, 

with no significant difference, suggesting that Greb1l has no importance in PCTs at this stage. 

7. No Greb1l expression was present in the PCT and DCT on E13.5 in both mouse groups, with 

no significant difference, which leads to the possible conclusion that Greb1l expression is more 

important at later embryonal, or more mature stages of tubular function as shown in previous 

studies done on human kidneys. 

8. There was fair expression of Greb1l in the glomeruli of E13.5 kidneys in both mouse groups, 

with no significant difference, which might implicate that Greb1l expression is more important 

at later embryonal, or more mature stages of glomerular function as shown in previous 

literature. 

9. Yotari mice showed significant expression of Greb1l in the DCT of 14D kidney, while 

wildtype showed significantly highest expression of Greb1l in DCT and glomeruli of 4D 

kidney, and finally only fair expression of Greb1l was present in E13.5 kidney of both mice 

groups with no statistical significance. 

10. Overall, kidney development pattern in yotari mice seems to be delayed in comparison to 

wildtype group, which might be an explanation for the discrepancy.
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8. SUMMARY
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Objectives: The expression and localization of Greb1l in the nephrons of yotari (Dab1-/-) and 

wildtype (Dab1+/+) mice was analyzed to further develop its suggested importance in mammal 

kidneys overall, but also its significance particularly in yotari mice nephrons. 

Materials and methods: yotari and wildtype mice were sacrificed on the 13.5th embryonal 

day, and 4th and 14th postnatal day. Paraffin embedded kidney tissue sections were analyzed by 

immunofluorescence using Greb1l antibodies. Kidney structures were then examined by 

fluorescence microscope. The percentages of positive cells between each group were compared 

and analyzed by a Kruskal-Wallis-test, followed by a t-test. 

Results: In 14D kidneys of both genotypes, DCT was the structure with the highest percentage 

of Greb1l immunoreactive cells, particularly in the yotari group (p<0.01). The highest 

percentage of positive Greb1l cell expression of the 4D kidney was in the wildtype genotype 

for both DCT and glomeruli (p<0.01). Minimal positive Greb1l cell expression of E13.5 kidney 

was in the glomeruli of both genotypes, with no statistical significance. No Greb1l positive 

cells were observed in PCT and DCT at this stage in both genotypes. 

Conclusion: The expression pattern of Greb1l in the nephron structures of the two mouse 

genotypes implicates the potential importance of Greb1l in DCT in 14D kidney, especially in 

yotari mice. Overall, the wildtype 4D nephron showed significantly higher expression of 

Greb1l in DCT and glomeruli, suggesting its potential importance at this stage of kidney 

development. Lastly, there was almost non-existent Greb1l expression in all structures of both 

genotypes in E13.5 kidney, implicating that Greb1l expression pattern is more important in 

later stages of kidney development. Overall, it seems how kidney developmental pattern in 

yotari mice is delayed in comparison to wildtype group, which is a possible explanation for the 

discrepancy. 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. CROATIAN SUMMARY



  

39 

 

Naslov: PRIKAZ IZRAŽAJA GREB1L U EMBRIONALNOM I POSTNATALNOM 

BUBREGU DAB1-/- MIŠEVA 

Cilj: Analizirali smo izražaj i lokalizaciju Greb1l u nefronima yotari miševa (Dab1-/-) i divljeg 

tipa (Dab+/+) kako bi se dalje utvrdio njegov predloženi značaj u bubrezima sisavaca općenito, 

kao i njegov značaj posebno u bubrezima yotari miševa. 

Materijali i metode: yotari miševi i miševi divljeg tipa žrtvovani su 13.5-og embrionalnog 

dana, te četvrtog i četrnaestog postnatalnog dana. Parafinski rezovi bubrežnog tkiva analizirani 

su imunofluorescencijom pomoću Greb1l protutijela. Bubrežne strukture ispitivane su 

fluorescencijskim mikroskopom. Postotak pozitivnih stanica između svake skupine uspoređen 

je i analiziran pomoću Kruskal-Wallis testa, a zatim t-testa. 

Rezultati: U 14 dana starom bubregu u oba genotipa, DCT je bio struktura s najvećim 

postotkom Greb1l imunoreaktivnih stanica, posebno u yotari grupi (p<0,01). Najveći postotak 

pozitivnine Greb1l ekspresije u 4 dana starom bubregu bila je u genotipu divljeg tipa za DCT 

i glomerul (p<0,01). Minimalna pozitivna ekspresija Greb1l-a u 13.5 dana starom 

embrionalnom bubregu bila je u glomerulu u oba genotipa, bez statističke značajnosti. Greb1l 

ekspresija nije bila prisutna u PCT-u i DCT-u u ovoj fazi u oba genotipa. 

Zaključak: Izražaj Greb1l-a u nefronskim strukturama kod oba genotipa miševa implicira 

potencijalnu važnost Greb1l-a u DCT-u u 14 dana starom bubregu, posebno u yotari miševima. 

Sveukupno, divlji tip u 4 dana starom bubregu pokazao je signifikantno veću ekspresiju 

Greb1l-a u DCT-u i glomerulu, predlažući svoj potencijal u ovoj fazi razvoja bubrega. Na kraju, 

skoro nepostojeća Greb1l ekspresija bila je u svim strukturama u oba genotipa 13.5 dana starog 

embrionalnog bubrega, što implicira da je Greb1l ekspresija važnija u kasnijim fazama 

bubrežnog razvoja. Sveukupno, čini se da je bubrežni razvoj u yotari miševima kasniji od grupe 

divljeg tipa, što je moguće objašnjenje za nesložnost. 
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