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Abstract 

Substructuring and superelements technique is today one of the most important procedures in 

large scale stress analysis industry design processes. In this thesis the implementation of 

substructuring and superelements technique in finite element method is presented, with its 

application in various types of one, two and three – dimensional problems in stress analysis of 

thin-walled structures. As a ground basis needed to develop substructuring procedure with FEM, 

first the programming procedures of the classical FEM in Matlab programming language are 

presented in the Appendix, alongside with the application of classical FEM in two – dimensional 

plane stress analysis problems. For the plane stress analysis problems solved in Appendix the 

programming codes were developed using repository of professor dr. sc. Jack Chessa (University 

of Texas) called FEMLAB [1], as a basis. Analysis performed in Appendix is serving as an 

essential foreknowledge needed for the substructuring and superelements approach to be 

implemented and applied. 

As for the main part of the thesis, first an overview of FEM implementation in structural 

analysis is presented. Substructuring and superelements technique is introduced. Physical and 

mathematical concept of the technique is developed, with the practical aspects emphasized and 

singled out. Global – local analysis (two levels) is distinguished from multilevel substructuring. 

The procedure of substructuring is described in detail, with the given data flow diagram in 

generic multilevel substructuring made of any desired number of levels. Programming concept of 

the technique is thoroughly described, and the interface between an external mesh generator 

(Gmsh) and Matlab programming language is developed. The procedure of substructuring was 

performed with the “top – down” approach, whilst the programming procedure was implemented 

in both directions, “top – down” and “bottom – up”. The substructuring procedure and its 

programming are then connected together in application to a set of one, two and three – 

dimensional problems in stress analysis of thin – walled structures. One – dimensional bar 

element is solved using this technique by hand, to illustrate the need of programming the 

procedure for more complex problems. The two – dimensional problems were solved using an 

automated approach programmed in Matlab, and a thin plate with a non-symmetrical hole 

subjected to an in-plane bending load is analysed by diving it into a total of ten level two 



 

 

substructures. Programming the technique in 3D is then illustrated through an example of a 

simple hexahedron case made up of 6 thin plates. Eventually, built on the knowledge collected 

through working on this thesis, a stress analysis of a 3D ship cover with one bulkhead is 

performed, according to the drawing made in Catia. Practical aspects of the technique are 

directly pointed out and emphasized through the analysis of processing and its results, whose 

visualization, alongside with Matlab, is presented in Paraview Visualization Toolkit. The thesis 

finishes by describing a concept idea of how to manipulate with large data structures, such as the 

one obtained and collected through performed analysis of a 3D ship cover.  



 

 

Introduction 

Substructures are sets of elements which have a well defined structural function, most 

commonly obtained by dividing the complete structure into its functional components. Some of 

the examples may include: funnel, stern and bow of the ship; fuselage, wings and vertical and 

horizontal stabiliser of an airplane; deck, cables and towers of a suspension bridge, and on a 

smaller scale for example - steel plates with bulkheads that make up ship covers on tweendecks 

of large heavy lift vessels. Substructures are usually defined “top – down” as parts of a complete 

structure, and they are not to be mixed with the so-called “macroelements”, which basically 

resemble structural components, but are fabricated with simpler elements (called primitive 

elements or mesh units) in a “bottom – up” direction. The distinction between substructures and 

macroelements is not clear-cut, so the term superelement is often used in a collective sense to 

embrace element groupings that range from macroelements to substructures. Both 

macroelements and substructures are treated exactly the same way as regards matrix processing. 

The basic rule is that associated with the condensation of chosen degrees of freedom, which shall 

be described in more detail in Chapter 2. The reasons for introducing such technique are several. 

The disconnection-assembly concept occurs naturally when inspecting many artificial and 

natural systems. For example, it is easy to visualize a ship, an airplane, a building, an engine, 

bridge, or even human skeleton by being broken down into their simpler sub-components. Also, 

for example, multistage rockets naturally decompose into substructures, as depicted in Figure 1.  

 

Figure 1: Natural decomposition of multistage Apollo lunar rocket 



 

 

So, the motivating factors that drive the development of such technique are different and 

many. Among them, some are to simplify the pre-processing tasks, then to facilitate the division 

of labour and to take advantage of repetition, since often structures are built of several identical 

or nearly identical units, so mirroring and symmetry can be involved. Another great reason is to 

save computational time, since the whole process of condensation significantly reduces the 

number of degrees of freedom which are entering the system of equations needed to be solved 

for the global displacements, as shall be more thoroughly explained in the chapters to come. 

Today, as the technological development is in a constant rise, a new motivating factor for 

further development of this technique has arisen and it involves parallel processing. Applied 

mathematicians working on solution procedures for parallel computation have developed the 

concept of sub-domains, which is practically an extension and generalization of the 

substructuring technique entirely motivated by computational considerations, and this is an area 

with a great potential for development in the future.  

Maybe the most significant underlying theme of substructuring and superelements technique 

can be described as: “divide and conquer”.  

 



 

 

1. An overview of FEM implementation in structural 

analysis 

Finite element method has been originally developed on the grounds of engineering methods 

in 1950s in order to obtain numerical solutions of complex problems in structural mechanics and 

structural analysis in general. In its simplest form, structural analysis can be described as 

determination of the effects of loads on physical structures and their components. Structures 

which are subject to this type of analysis include all that must withstand loads and some type of 

constraints (supports), such as buildings, bridges, vehicles, machinery, furniture, prostheses, 

biological tissues, etc. Structural analysis incorporates the fields of applied mechanics, materials 

science and applied mathematics to compute structure‟s deformations, internal forces, stresses, 

support reactions, accelerations and stability. The results of the analysis are used to verify a 

structure's fitness for use, often saving real physical tests. Structural analysis is thus a key part of 

the engineering design of structures. There are a dozen of approaches and methods used for 

modelling problems in structural analysis, such as analytical methods, strength of materials 

(classical) methods, elasticity methods, and methods using numerical approximation. Each of 

these methods has their own noteworthy limitations. Strength of materials (or mechanics of 

materials) method is limited to very simple structural elements under relatively simple loading 

conditions. Then, the theory of elasticity allows the solution of structural elements of general 

geometry under general loading conditions in principle, but the analytical solution, however, is 

limited to relatively simple cases. Elasticity methods are available for an elastic solid of any 

shape, and individual members such as beams, columns, shafts, plates and shells may be 

modelled, but the solutions are derived from the equations of linear elasticity and these equations 

are a system of 15 partial differential equations. So, due to the nature of the mathematics 

involved which can be very demanding, analytical solutions may only be produced for relatively 

simple geometries. For complex geometries, a numerical solution method such as the finite 

element method is a pure necessity. 

As already stated, different approaches to FEM emerged over time so various types of finite 

element method developed, especially in those areas where classical FEM had problems in 

describing certain phenomena or even defining variational formulations (among many, for 



 

 

discontinuous functions for example). So, in addition to classical FEM, some of the most 

represented formulations of finite element method in structural analysis today include Applied 

element method (AEM), Generalized finite element method (GFEM), Extended finite element 

method (XFEM), hp-FEM, Mixed finite element method, etc. Some of these methods are based 

upon the combination of mesh refinements for the purposes of an exponentially fast convergence 

(hp-FEM), then on a different connection between the elements via nonlinear springs (AEM), 

furthermore by enriching the solution space with solutions to differential equations with 

discontinuous functions (XFEM), etc. Many of these formulations of finite element method are 

today incorporated in commercial finite element software such as Abaqus, Ansys, etc. As for the 

substructuring and superelements technique, it should not be described as a single type or sub-

type of FEM. The whole concept of such technique has its advantage in the fact that for the 

specific problem given, practically any of these FEM formulations can be incorporated inside 

substructuring technique. The whole idea of substructuring lies in the disassembly concept for 

parts of a complete complex structure, so the matter of choice upon the type of FEM procedure 

that shall be incorporated on the lowest level substructure stays on the analyst. It is important to 

emphasize here that because of the reasons discussed, substructuring technique is widely used in 

industry and especially in engineering design of large structures. Now the technique shall be 

thoroughly described and applied, in chapters to come. 

 

 

Figure 1.1: Adapted mesh of triangular finite elements created in Gmsh software



 

 

2. Substructuring and superelements technique 

Superelement is a collective of finite elements which, upon its assembly and mainly for 

computational purposes, can be considered as an individual element. The motivations for such 

formulation are most often powered by modelling or processing needs, which shall be discussed 

in more detail in Chapter 2.1.  

 It is important to note that any random grouping of elements does not necessarily build up a 

superelement. To be acknowledged as such, this collection of elements should most often meet 

certain conditions. Informally we can say that it should, on top levels, form a structural 

component on its own or at least have some boundary conditions imposed inside, to be able to 

justify the disassembly in a certain way that surpasses the exact structural components 

decomposition. Also, in the pre-processing phase geometrical constraints can show up which 

may not be directly correlated with structural intersections, but for reasons that will be discussed 

later they can also become a deciding factor in a disassembly type that will not always follow the 

break up into structural components in an exact way and on all levels of substructuring. 

As already stated in introduction, superelements may show up in two overlapping contexts: 

“top – down” or “bottom – up”. In a top – down context superelements are considered as being 

large pieces of a complete structure and then they are usually called substructures, whereas the 

complete structure is called a superstructure. This convention shall also be used in this thesis. In 

a bottom – up context superelements are built from simpler elements and then they are called 

macroelements, and the simplest elements from which they are built are called mesh units. As we 

can see, these contexts often overlap in both cases, but the general idea is that, depending on the 

direction (assembly or disassembly), macroelements and substructures are distinct features 

linked through the term superelement. 

Regarding matrix processing and mathematical and physical aspects of the technique, the 

most profound part would be to understand the concept of condensation of chosen (most often 

internal in practice) degrees of freedom for such collections of elements as described above. 

Here the emphasis shall be put on superstructures and their appropriate substructures, as we shall 

largely implement top – down approach to problem solutions dealt with in this thesis. 



 

 

2.1. Practical aspects of substructuring 

Substructuring was invented in the aerospace industry in the early 1960s to perform a first 

level breakdown of large and complex systems such as a complete airplane, as shown in Figure 

2.1. This procedure can continue hierarchically down through further levels, as shown in Figure 

2.2. Also, in practically every aspect of engineering design where large and often symmetrical 

constructions are involved, such as large ships, space vehicles etc., this concept imposes itself 

almost naturally. 

 

 

Figure 2.1: Complete airplane (superstructure) broken down into six level two substructures 

 

Following a top – down approach in Figure 2.1, if we consider a complete airplane as a 

superstructure on level one (if we are dealing with multilevel substructuring there can also be 

superstructures on lower levels), then the complete first level breakdown would be into 

substructures S1 to S6 respectively, which are now substructures on level two. The 

decomposition process can theoretically continue to an individual element level, as depicted in 

Figure 2.2, where from the first breakdown of a complete airplane we have a total of three levels 

(even without an individual element acknowledged as a separate level). 



 

 

 

Figure 2.2: Substructuring down to an individual element of wing structure 

Among the motivating factors and the practical aspects for the first substructuring technique 

development, most of them still hold today. The most notable can be singled out as: 

1) Simplification of pre-processing tasks – when creating a mesh of the superstructure on 

the highest level (i.e. the complete structure), this mesh can be rather coarse, compared to 

the classical FEM approach. The reason is that we only need to retain nodes on the 

interface of different substructures, and the ones where boundary conditions, fixed 

displacements or applied load are imposed. As shall be explained in the next chapter, 

because of the applied process of condensation these nodes on the superstructure (so 

called master nodes) “preserve” information from all the nodes from lower levels of 

substructuring, where we actually generate finer meshes. As we shall show later in solved 

examples, this whole process dramatically reduces the number of nodes and degrees of 

freedom (dofs) that are entering the system of equations which needs to be solved for the 

global displacements on the superstructure. From this point onwards, practically whole 

stress analysis can be performed as in the classical FEM approach, with the addition of 

appropriate data transfer from one level to another. 

2) Facilitation of labour division – separate design groups with specialized knowledge and 

experience can work on substructures with different functions. Example given, a 

shipbuilding company can set up a funnel group, propeller and rudder group, tweendeck 

group, crane group, etc. An aircraft company may set up a wing group, turbine engine 

group, a fuselage group, horizontal and vertical stabilizer group, cockpit group, etc. So, 

these groups are protected from “hurry up and wait” constraints, and more important – 

they can keep on working on refinements, improvements and verification of the 



 

 

experimental model independent of each other, as long as the interface information (e.g. 

the wing – fuselage interface in an aircraft example) stays practically unchanged. 

3) Taking advantage of repetition – includes involvement of mirroring and symmetry, since 

airplanes, ships, space vehicles and a large number of other structures are often built of 

several identical or almost identical components. For example, the wing substructures S2 

and S3 from Figure 2.1 are mirror images on reflection around the fuselage mid-plane, 

and the horizontal stabilizers S4 and S5 are too. So, recognizing patterns and repetitions 

reduces model preparation time significantly (even if the loading is not symmetric around 

the stated mid-plane for example).  

4) Overcoming computer limitations (past) and reducing computational time (present) – 

when the substructuring technique was first invented, the computers of the 1960s 

operated under serious memory limitations. Due to these limitations, it was quite 

demanding and difficult to fit a complex structure such as an airplane as one entity. So, 

this technique allowed for the complete analysis to be carried out in stages with the use of 

tapes and disks as auxiliary storage devices.  

This motivating factor from the past today moved to a different area and it involves a 

great amount of reduced computational time when using this technique compared to 

classical FEM, which shall be directly pointed out and verified in the problems solved in 

chapters to come. Also, with a constant development of this technique to the present day, 

another motivation rose up through the invention of subdomains, which is a concept 

developed in applied mathematics for parallel processing. Subdomains are sets of finite 

elements entirely motivated by computational considerations. These subdivisions of the 

finite element model are done more or less automatically through the program called 

domain decomposer. The concepts of subdomains and substructures overlap in many 

aspects, but the motivation is different so it's advisable to keep the two separate, although 

domain decomposers are largely used in dynamic substructuring. 

There is another great advantage of using substructuring and superelements technique and it 

is a direct consequence of its application. It comprises much more efficient visualization in the 

pre- and post-processing phases, which will be shown in Chapter 4.1.2. 



 

 

2.2. Physical and mathematical concept of substructuring and 

superelements technique 

Here we shall present the basic physical and mathematical background needed to develop 

and apply substructuring and superelements technique in real life engineering problems in stress 

analysis. It is important to note that to properly handle this technique alongside with its 

modelling and programming aspects, one needs to be familiar with and have a solid background 

in the theory of classical FEM procedures, its programming and application. For the reasons 

stated, these procedures are thoroughly explained and presented in the Appendices C and E, so 

the reader is referred to these sections for more detailed explanations regarding classical FEM. 

From the mathematical viewpoint, the superelement is said to be rank-sufficient if his only 

zero – energy modes are rigid body modes. What that basically means is that the superelement 

does not possess spurious kinematic mechanisms. Verification of the rank-sufficient condition 

guarantees that the static condensation procedure described below will work properly.  

 

2.2.1. Static condensation 

In general, degrees of freedom of a superelement most often can be classified into 2 

categories: internal and boundary. Internal dofs are the ones that are not connected to the dofs of 

another superelement, and the nodes whose freedoms are internal are called internal nodes. 

Boundary dofs are the ones that are connected to at least one other superelement. They are 

usually located at boundary nodes placed on the periphery of the superelement, as shown in 

Figure 2.3.  

Note that the finite element mesh from Figure 2.3 is shown as two – dimensional for 

illustrative purposes – for an actual aircraft it will be three – dimensional. Boundary freedoms 

are those associated to the boundary nodes, labelled b (shown in red), and they are connected to 

the fuselage substructure. 

 



 

 

 

Figure 2.3: Vertical stabilizer substructure S6 from Figure 2.1 – classification of superelement freedoms into 

boundary and internal 

So, on the first level breakdown, or better to say on the substructure‟s S6 own level (level 

two), where we generate finer mesh, the objective is to get rid of all displacement dofs associated 

with internal freedoms, i.e. the ones that are not on the interface of another substructure (they do 

not interact). This elimination process is called static condensation, or simply, condensation. Of 

course, if for some reason we want to keep some internal nodes from Figure 2.3 – e.g. we can 

have some force (natural) boundary conditions imposed on the edge of the stabilizer, this can 

also be done, the only important thing is to sort all these nodes that we want to keep in the 

stiffness matrix together. Detailed procedure of how can this be done is explained in Chapters 3 

and 4, respectively. Static condensation will now be presented in terms of explicit matrix 

operations, as shown in the next few paragraphs. 

To carry out the condensation process, the general form of the assembled stiffness 

equation: 

     K d f   ,              (2.1) 

needs to be partitioned as follows: 

bb bi b b

ib ii i i

     
      

     

K K d f

K K d f
,           (2.2) 



 

 

where sub-vectors bd  and id  collect boundary and internal degrees of freedom, respectively.  

Now, the second matrix equation of the expression (2.2) is: 

ib b ii i i   K d K d f                    (2.3) 

If iiK  is non-singular, we can solve this equation for internal dofs: 

 1

i ii i ib b

   d K f K d                    (2.4) 

Now, replacing id  from (2.4) into the first matrix equation of (2.2), we obtain the 

condensed stiffness equations: 

bb b b K d f ,             (2.5) 

where 

1

1

bb bb bi ii ib

b b bi ii i





   

   

K K K K K

f f K K f

.         (2.6) 

In the equation (2.6), 
bbK  and bf  are called the condensed stiffness matrix and the 

condensed force vector, respectively, of the given substructure. 

From this point onwards, the condensed superelement may be viewed, from the 

standpoint of further operations, as an individual element whose element stiffness matrix and 

nodal force vector are 
bbK  and bf , respectively. Often each superelement has its own “local” 

coordinate system. If that is the case, a transformation of (2.6) to an overall global coordinate 

system is necessary upon condensation. Also, in the case of multiple levels, the transformation is 

done with respect to the next level superelement coordinate system. This coordinate 

transformation procedure automates the processing of repeated portions.  

Note that the feasibility of the condensation process (2.4) - (2.6) rests on the non-

singularity of iiK . This matrix is non-singular if the superelement is rank-sufficient in the sense 

stated in Chapter 2.2., and if fixing the boundary freedoms precludes all rigid body motions. If 



 

 

the former condition is verified but not the latter, the superelement is called floating. Processing 

floating superelements demands usage of much more advanced computational techniques, which 

exceeds the range of topic covered in this thesis. 

After the boundary displacements are obtained by the solution process, the internal 

displacements can be recovered directly from (2.4). This process may be carried out either 

directly through a sequence of matrix operations, or equation by equation as a back substitution 

process.  

Direct application of the static condensation procedure described above shall be presented 

in Chapter 4.1.1., where a one-dimensional bar element will be solved using this technique by 

hand, to illustrate the need of programming the procedure for more complex problems.  

 

2.3. Global – local analysis and multilevel substructuring 

When the procedure of static condensation described in the previous chapter is restricted to 

two stages (levels) and applied in the context of finite element analysis, it is called global – local 

analysis in the FEM literature. What that basically means is that we have just two levels in our 

substructuring procedure. On the first level (superstructure), we recognize the master nodes 

(these are usually interface nodes and the boundary nodes on separate substructures, but we can 

also have additional ones for any reason), we choose our substructures, and generate a mesh on 

the superstructure consisting only of these master nodes. This is a global analysis part. Then, we 

analyse each of these substructures locally and generate finer meshes on them separately of each 

other. We perform conventional FEM approach to obtain stiffness matrices of these local 

substructures, and after the stiffness matrices are obtained we apply the static condensation 

process and get condensed stiffness matrices of the substructures on the local level. Now we 

need to return these condensed stiffness matrices to the global model, to be able to build the 

global stiffness matrix of the superstructure. After the global stiffness matrix is generated, we 

implement boundary conditions and solve the system  K d f  for global displacements of the 

master nodes. After the displacements of the master nodes are obtained, we return these 

displacements to the local analysis to obtain internal displacements from (2.4), (the ones that 



 

 

were condensed out from the global analysis) and bearing in mind that there are no internal 

forces that are acting on internal nodes (because of the rank-sufficiency). Eventually, from the 

obtained total displacements we calculate strains and stresses of the substructures and perform 

stress analysis and visualize results. The key part lies in the algorithm developed in this thesis, 

through which variables are transferred from the global to the local analysis, and vice versa. This 

algorithm can be applied in multilevel substructuring made of any desired number of levels. 

Detailed procedure of how this is done, with an interface developed between an external mesh 

generator and Matlab programming language, is explained in Chapter 4. 

When analysing complex engineering systems, it is often not sufficient to perform just a 

global – local analysis. Such systems are today more often modelled in a multilevel fashion 

following the divide and conquer approach. The multilevel substructuring and superelements 

technique is a practical realization of that approach.  

Multilevel FEM substructuring was invented in the Norwegian offshore industry in the 

mid/late 1960s, among other things, to take advantage of repetition and to be able to analyse 

complex structures in more detail. This benefited to the whole industry because of the symmetry 

and mirroring involvement which resulted in an increased efficiency of industrial design 

processes. An example of multilevel substructuring is presented in Figure 2.4, where we have 3 

levels of substructuring in a ship construction component. Note that the process can also go in 

the opposite direction, constructing the upper level substructure from the lower one using bottom 

– up (macroelements) approach. Either way, the emphasis is on the greater number of levels 

which allows for detailed analysis and efficient usage of symmetry. 

Multilevel substructuring differs from the global – local analysis in terms of the intermediate 

steps existence. Since we have larger number of levels, the transfer of data and variables is done 

with respect to the next level superelement, which at times can be quite demanding in terms of 

manipulation with large data structures that build up during the process. Also, we have local 

superstructures on lower levels, for example after the first level breakdown – level two 

substructures are also superstructures for their appropriate substructures on level three, and so 

on. So, this whole process of transferring and transforming (if necessary) variables and data first 

to the next level local model and down to the lowest level, and then returning this data and new 

obtained variables back through multiple layers up to the highest level superstructure, collects a 



 

 

fairly large amount of data on the way which needs to be sorted and manipulated for the post-

processing phase. 

 

 

Figure 2.4: Multilevel substructuring of a ship construction component 

 

Concept idea of how to manipulate with large data structures is described in Chapter 6. There 

we shall present procedures for sorting and managing such large data sets and give an overview 

in examples solved in this thesis.  



 

 

3. The procedure of substructuring 

This chapter shall give an overview of the procedure of substructuring performed in this 

thesis which can largely be implemented in a generic way also with the use of other softwares 

and programming languages. The only difference would then be in the choice of the mesh 

generator and in the programming syntax through which an interface between the two would be 

developed. 

The procedure of substructuring for global – local analysis type has been described in 

previous chapter. Here the emphasis shall be put on a more general approach and it shall 

incorporate multilevel substructuring procedure with the given data flow of a three – level 

substructuring example. Also, some programming and substructuring design implications of 

multilevel substructuring cannot be perceived when dealing with global – local analysis only, 

which shall be discussed here and in the subsequent chapter to come. 

Before going thoroughly into the steps of the multilevel procedure, some notes need to be 

acknowledged. For the lowest level substructures and first step stiffness analysis, an open source 

finite element package called FEMLAB [1] is used as a basis. Part of this publicly available 

code, written in Matlab, is adapted for the purposes of analysis performed in this thesis, and a 

large part of new codes are developed here as a certain extension to the package itself, regarding 

substructuring technique. So the package serves as a ground basis on which the whole procedure 

is built upon, and the extension developed is the center course of the thesis main task.  

As an external mesh generator Gmsh software [2] is used, which is an automatic three-

dimensional finite element mesh generator with built-in pre- and post-processing facilities. 

Detailed description of Gmsh and its operating possibilities are presented in Appendix B, with 

the given examples of geometry and meshes for plane stress problems solved in Appendix C.  

Now the steps in multilevel substructuring procedure shall be presented. Note that the 

programming aspects of these procedures shall not be pointed out here, as Chapter 4 deals with 

the programming concept thoroughly.  



 

 

3.1. Steps in multilevel substructuring 

The basic rules and steps that need to be followed from the very beginning of modelling 

engineering problems through multilevel substructuring are presented below. 

1) Recognize the level one superstructure, choose the disassembly way (i.e. 

substructures for the level two), and select the master nodes and mesh density on the 

first level accordingly. 

 

This step is probably the most important one, and the final success of the analysis it 

withdraws often depends on the experience of the analyst. Chosen master nodes need to 

have some physical or geometrical significance. Master nodes most often concur with 

boundary nodes (dofs that are connected to another substructure – see Chapter 2.2.1) and 

then they are called interface nodes, but we can also have other nodes of our choice as 

master nodes for whatever reason (we can have some singularities in the construction, 

boundary conditions outside the interface, some geometrical constraints, holes etc). Holes 

are good example because most often they are not on the interface with another 

substructure but master nodes are usually set up on them because of the potential stress 

concentration which can be important later in the analysis.  

 

2) Create geometry of the level one superstructure and mesh that geometry following 

chosen parameters from step one. Read in the nodal coordinate matrix of the master 

nodes. 

 

Mesh of the level one superstructure geometry should consist only of the chosen master 

nodes from step one. When dealing with thin-walled structures, this initial superstructure 

mesh is almost always created by generating two-node line elements on the defined 

geometry, as most often master nodes shall concur with the interface ones.  

 

3) For each substructure on its appropriate lower level, recognize its appropriate level 

superstructure and perform steps 1 and 2 for these superstructures. Go sequentially 

through the next lower level, repeating steps 1 and 2 until you reach the last level. 



 

 

 

This basically means that we are treating the level two superstructure (and every 

following lower level superstructure) the same as if it is a level one superstructure. We 

choose the disassembly way if there is any, and perform described steps. It is important to 

note here that the choice of the mesh density on lower levels is not arbitrary, and it must 

be the same as in the first level, as that secures that the coordinates of the master nodes 

from level one match in all levels. If that is not the case, we are dealing with the so called 

multifreedom constraints, which is a technique that is much more complex to deal with, 

especially regarding its numerical interpretation and coding. It involves the “penalty 

augmentation” and “Lagrange multiplier adjunction” [3] and demands using much more 

advanced computational techniques. This is a topic which largely exceeds the range 

covered in this thesis, so for further information refer to [3].  

 

4) On the last (lowest) level, create geometry of all the substructures and mesh these 

geometries using conventional but more advanced two-dimensional finite element 

types (e.g. CST, LST, quadrilateral finite elements, etc). Sort the dofs on master and 

internal. Obtain local stiffness matrices of all substructures by adapting and 

applying functions from the chosen open source finite element package.  

 

This is where the FEMLAB comes in. The importance of the scattering operator needs to 

be pointed out. See Appendix A.  

 

5) Obtain condensed stiffness matrices from Eq. 2.6 for all substructures on the lowest 

level and transfer master node ids of all the substructures from this last level to the 

upper level. 

 

To be able to obtain condensed stiffness matrices in a correct way, the local stiffness 

matrices need to be arranged in a way that the master node dofs are sorted together, 

separately from internal ones (the ones we want to condense). This can be done in an 

elegant way in Gmsh during geometry and mesh generation, and it shall be discussed in 

Chapter 4 in more detail. 



 

 

Transferring master node ids to the upper level is done with the help of the Matlab 

function developed specifically for the purposes of this thesis. The name of the function 

is id_local_global_transfer.m, and it serves for the transformation of the nodal data from 

the local, lower substructure level to the next upper level, and eventually to the global 

level (level one). It can, and will, also be applied for the transformation from the upper 

levels to lower ones, which will be needed for the transfer of the global solution to the 

lowest local level and the appropriate stress analysis. 

 

6) From the condensed stiffness matrices of all the substructures on the lowest level 

build the stiffness matrix of the superstructure on its appropriate upper level. 

Transfer master node ids of the superstructure from this upper level to the next 

upper level. Repeat this step for as many superstructures you have on the upper 

level. 

 

In real life engineering problems most often “upper levels” are built of several 

superstructures, as we shall see in Chapter 5. 

 

7) From all the stiffness matrices of superstructures on the upper level build the 

stiffness matrix of the next upper level from the current one. Transfer master node 

ids to the next upper level accordingly. Repeat this step until you reach the highest 

level – level one. 

 

The last obtained stiffness matrix in this step is the global stiffness matrix of our level 

one superstructure. It has the size of number of dofs per node times the total number of 

nodes in the superstructure. It needs to be pointed out that this global stiffness matrix, 

although not very large compared to conventional FEM approach, has built-in 

information of all the stiffness of the local substructures on all levels, because of the 

process of condensation performed. It contains the data of even the internal dofs stiffness 

of local substructures on the lowest level. Because of the fairly modest number of dofs 

left, solving the system for the global displacements is now much more efficient.  

 



 

 

8)  Implement boundary conditions (essential and natural) to the level one 

superstructure and solve the system  K d f  to obtain the global displacements of 

the master nodes. 

 

Since in this thesis we are dealing with thin-walled structures, during implementation of 

the boundary conditions we need to take care that if we have master nodes which are not 

interface ones and are located inside the superstructure, there are no internal forces that 

are acting upon them so we need to constrain the degrees of freedom perpendicular to the 

plane in which the given nodes are positioned. 

 

9) Return global displacements of the master nodes back through levels to the lowest 

level and transform them to get local master node displacements for each 

substructure on the lowest level. Use these displacements to get internal 

displacements from Eq. 2.4.  

 

Transformation of global displacements of the master nodes down to the lowest level for 

each substructure is done with the help of previously mentioned function 

id_local_global_transfer.m and with the extensive use of the scattering operator.  

 

10) From the total obtained displacements on the lowest level (master + internal) 

calculate the strains and stresses for each substructure, and visualize results.  

 

This is the final step of the analysis. The analyst is interpreting the results and potentially 

adapting the boundary conditions if needed. Results are exported to a more advanced 

visualization toolkit, such as Paraview [4].  

 

3.2. Data flow in multilevel substructuring with FEM 

The whole procedure of multilevel substructuring with FEM, together with the described 

steps in the previous chapter, can be presented in the form of a data flow diagram of such 

process, presented in Figures 3.1a, b, c and d.   



 

 

Note that the data flow diagram is presented for a generic multilevel substructuring type that 

can consist of any desired number of levels. Functions from FEMLAB used for this purpose, 

alongside with new functions developed specifically for this thesis, are given in the Appedix F. 

The diagram is split into phases for more convenient visualization, but also because of the logical 

separate stages that occur during the solution process. 

 

Figure 3.1a: Phase one in multilevel substructuring with FEM 



 

 

 

Figure 3.1b: Phase two in multilevel substructuring with FEM 



 

 

 

Figure 3.1c: Phase three in multilevel substructuring with FEM 



 

 

 

Figure 3.1d: Phase four in multilevel substructuring with FEM



 

 

Data flow diagrams presented in Figures 3.1a – 3.1d sum up all the described steps in 

multilevel substructuring from previous chapter to four phases. 

As we can see, phase one consists of recognizing the first level superstructure and its 

appropriate master nodes, and performing top – down substructuring to the lowest level by 

fulfilling this task. 

Phase two represents the lowest level substructure processing. On this level we generate finer 

meshes and basically perform conventional FEM analysis and obtain the classical stiffness 

matrix of all substructures on this level. The final step of this phase consists of condensing the 

desired dofs (most often internal) and obtaining condensed stiffness matrix for each substructure.  

The third phase consists of processing data from the lowest level local model through 

multiple layers up to the global level – one model, in a bottom – up direction. We are basically 

transferring and building stiffness matrices from one level to another, through multiple levels 

until we reach level one and obtain the global level – one stiffness matrix of our superstructure. 

Regarding the programming aspects, the last step of obtaining the global stiffness matrix in three 

– dimensional systems is often not trivial and demands high level programming skills and ground 

understanding of physics involved, especially in the way of how the dofs are constrained for 

different types of structures during the analysis. Third phase finishes with implementing the BCs 

and solving the system of equations to obtain the global displacements of the master nodes.  

The final, fourth phase goes in the opposite direction from the previous one as it demands 

processing new obtained global data from the highest level global model through multiple layers 

down to the local, lowest level model. It goes in top – down direction, as we need to return the 

global master node displacements through multiple levels to the lowest level and transform them 

accordingly to be able to get the previously condensed dof displacements. From these obtained 

displacements strains and stresses are calculated, and we are now able to continue to post – 

processing and visualize results of the analysis with the desired user interface intervention until 

end. 



 

 

4. Programming concept in substructuring with FEM 

The procedure of substructuring presented in the previous chapter introduces the need of 

developing programming techniques to be able to fully utilise the potential of substructuring 

concept. Since the whole concept lies on the grounds of various FEM formulations, this 

programming need imposes itself almost naturally. However, since the technique has some 

unique characteristics in the concept idea and its formulation which distincts it from practically 

every standard FEM formulation, for the very same reason the programming aspects are different 

and need to be examined more closely. 

Programming concept can most efficiently be shown through practical implementations. In 

the next few chapters we shall directly emphasize this approach and apply it to solve various 

problems in stress analysis of thin-walled structures, ranging from one to three – dimensional 

and explaining the programming concept on the way. All developed programming codes for the 

substructuring technique are presented in Appendix E.  

 

4.1. Application of substructuring and superelements technique in 1D 

and 2D test examples 

To illustrate the need of programming the substructuring procedure for real life practical 

stress analysis problems, first example (one – dimensional bar) will be solved using this 

technique by hand. This will be the first and basic application of chapters 2 and 3 and will serve 

as a ground basis to develop programming procedure itself. Together with this first example, two 

– dimensional thin plates of various complexity shall be analysed and solved, to show how 

different physical and geometrical constraints can lead to a various pre – processing setup of 

initial problems. These examples shall incorporate the programming procedure. In all these 

cases, as later in three – dimensional examples also, pre – processing decision making has very 

important role and its efficiency often depends on the experience of the analyst. 

Regarding the three – dimensional problems in stress analysis of thin – walled structures and 

its application through this technique, it is better to keep them separate from one and two – 



 

 

dimensional analysis, since there are some implications regarding the coordinate system 

transformation and general constraints that make this type of analysis more difficult to handle, 

especially in multilevel substructuring.  

 

4.1.1. 1D bar element 

Consider a bar with a length of 4L and an axial force F on its right edge, with pinned and 

roller support on both edges, as presented in Figure 4.1. Displacement analysis needs to be 

performed through an implementation of the substructuring and superelements technique. 

Displacements and reaction forces need to be determined in chosen nodes, depending on 

discretization. 

 

 

Figure 4.1: One – dimensional bar with an axial force F on the right edge 

 

So, the first step is recognizing a level one superstructure, choosing the disassembly way 

and selecting the global master nodes. The selection of master nodes depends directly on the way 

how we choose our substructures for the level two, because the interface nodes of different 

substructures on the level two must be selected as master nodes also. That is not necessary for 

the other way around, i.e. master nodes are not necessarily the interface ones, but the interface 

ones (at least on the level two) are master nodes as well. The level one superstructure for the 

problem from Figure 4.1 is shown in Figure 4.2.  



 

 

 

Figure 4.2: Level one superstructure for a one – dimensional bar substructuring analysis 

Master nodes for the upper superstructure are chosen in such way that the node number 2 

is the interface node for the two substructures on which we decided to divide our structure to.  

Now we go down to the level two, where we have two substructures for which we repeat 

the upper steps. Figure 4.3 shows the discretization on level two.  

 

 

Figure 4.3: Level two substructures and its appropriate global (master) and local nodes 

 

Nodes 4 and 5 are the local nodes for substructures S1 and S2, respectively. It should be 

noted that if we want to continue with substructuring to another level, substructures S1 and S2 

which are substructures of the global superstructure from level one, would then also become 

superstructures for their appropriate substructures on level three. Now let‟s take a look on what 

happens when we continue with substructuring to level three.  



 

 

On level three, we have four one – dimensional bar elements whose length is L, as shown 

in Figure 4.4.  

 

Figure 4.4: Level three bar elements of length L 

 

Notice that the substructures on level three which are building the level two are actually 

simple one – dimensional bar elements whose stiffness matrix is given by: 

3 1 3 2 3 3 3 4

1 1

1 1L S L S L S L S

AE
K K K K

L

 
     

 
   (4.1) 

So, these elements play the role that shall later be taken (2D examples) by triangular CST 

and LST elements, on the lowest level of substructuring where classical FEM approach needs to 

be implemented. Because of this fact, this example is basically a two – level one and an instance 

of global – local analysis. In the sense stated in Chapters 2 and 3, the lowest level for this 

example is actually a level two because further breakdown leads to the basic elements from 

which the classical FE mesh is constructed. Of course, the stiffness matrices from Eq. 4.1 have 

different numeration which, following the Figure 4.4 may be expressed as: 

3 1 3 2 3 3 3 4

1 4 2 5
; ; ; ;

4 2 5 3L S L S L S L S
id id id id

       
          
       

  (4.2) 

From these elementary stiffness matrices we are now building the stiffness matrices for 

the two substructures on level two. We‟ll substitute 1

AE
k

L
  . 



 

 

          1      4         4      2 

1 13 1 3 2

1 41 1 1 1
; ;

4 21 1 1 1L S L S
K k K k

    
    

    
 

 

          2      5         5      3 

1 13 3 3 4

2 51 1 1 1
; .

5 31 1 1 1L S L S
K k K k

    
    

    
 

Now the stiffness matrices for the two substructures on level two (Figure 4.3), are: 

              1      2      4        2      3      5 

1 12 1 2 2

1 0 1 1 1 0 1 2

0 1 1 2 ; 0 1 1 3 ;

1 1 2 4 1 1 2 5
L S L S

K k K k

    
   

   
   
         

  

So, the equations of a level two system for substructures S1 and S2 are:  

1 1 1

1 22 1

4
4 1

1 0 1
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S

S

S

d F

S k d F

Fd
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        
      

          

    (4.3) 

2 2 2
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5
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Fd

 
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    (4.4) 

Now we need to condense the chosen degrees of freedom (the ones that are not master 

dofs). It can clearly be seen that these nodes are node number 4 for substructure S1 and node 

number 5 for substructure S2 (see Figure 4.3).  

The process of static condensation for substructures S1 and S2 is presented below. 

 



 

 

SUBSTRUCTURE S1: 

1 1 1

1 22 1

4
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The above equation can be presented in the form: 

bb bi b b

ib ii i i

K K d F

K K d F

        
      
        

,           (4.5) 

which is an equivalent of Eq. 2.2 from Chapter 2. Now following the procedure from stated 

chapter, we can clearly see that this system of equations can be reduced to the equivalent of Eq. 

2.5: 

1 b bbb S
K d F  ,               (4.6) 

where 

1

1

1

bb bi ii ibbb S

b b bi ii i

K K K K K

F F K K F





   

   

 . 

Having in mind that there are no internal forces – the external force does not act on the 

internal nodes, so 0iF  , we have 
b bF F . So the Eq. 4.6 comes down to:  

 1

1 b b bb bi ii ib b bbb S
K d F K K K K d F       

From the above expression, for substructure S1 we now have: 

  1 1( 1)
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
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The condensed stiffness matrix is now: 



 

 

1
11

1/ 2 1/ 2 1 1

21/ 2 1/ 2 1 1bb S

k
K k

   
    
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, 

so now we have 

1
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2 1 1bb S
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L

 
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  

.          (4.7) 

The Eq. 4.7 corresponds to the stiffness equation of one – dimensional bar element whose 

length is 2L. From Figure 4.3 we can see that is actually the case with substructure S1. Now the 

condensed system equation for the substructure S1 on level two is:  

1 1

2 2

1 1

2 1 1

d FAE

d FL

     
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             (4.8) 

 

SUBSTRUCTURE S2:  

The same procedure for substructure S2 can be performed, where we need to condense 

the degree of freedom number 5.  
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On the same way we get the condensed stiffness matrix: 

2
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,          (4.9) 

and the condensed system equation for substructure S2 on level two: 
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           (4.10) 

Here we can see the same analogy.  

The condensed system equations 4.8 and 4.10 are describing substructures S1 and S2 

after the condensation, where they contain only the global master nodes, as depicted in Figure 

4.5.  

 

Figure 4.5: Substructures on level two after the condensation 

Now from these equations through a conventional approach we are building the stiffness 

matrix and the matrix equation of the whole system for the superstructure on level one. So, the 

numeration is as follows:  
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So for the level one superstructure from Figure 4.2 the global matrix equation is now:  

      



 

 

 

 

      1     2      3 
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             (4.11) 

In Eq. 4.11 we have:  

1 2 3

1 2 3

0 ; ? ; ? ;

? ; 0 ; .
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If we substitute 1
2

2 2

k AE
k

L
   , the system of equations comes down to: 

1

2 2

3

1 1 0 0

1 2 1 0

0 1 1

F
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     
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. 

Now this system needs to be solved for the unknown global displacements of the 

superstructure master nodes, 2d  and 3d . Of course, 1 0d   because of the pinned support at node 

one. Now we have: 

 
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2 2 1

2 2 2 3

2 2 2 3

1

2 2 0
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k d F
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From these equations we can easily get the needed displacements 2d  and 3d , which are:  
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2 4F FL
d

k AE
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Finally, from the first equation we have: 

1F F   . 

Now all the global displacements and reaction forces for a level one superstructure are 

obtained.  

To get the internal displacements of our local nodes from level two, we need to return the 

global displacements to that level and use the Eq. 2.4 from Chapter 2.  

For the substructure S1 we have:  
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For the substructure S2 we have:  
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Displacements and reaction forces are determined in chosen nodes, so now the whole 

displacement analysis is performed through an implementation of the substructuring and 

superelements technique. 

When we look at the whole procedure that needed to be carried out for such a simple one 

– dimensional problem, it is obvious why numerical implementation and programming must be 

involved, to be able to analyse complex engineering problems in stress analysis in a simpler and 

more efficient way. 

 

4.1.2. 2D plane stress example 

The implementation of substructuring procedure to two – dimensional stress analysis 

problems shall be performed by incorporating developed algorithms, presented in the Appendix 

E. Presented below is one of the similar types of problems we dealt with in Appendix C, where 

we implemented conventional FEM to a range of plane stress analysis examples. Now we shall 

implement substructuring and superelements technique to this type of problems, perform stress 

analysis and compare the analysis results with conventional FEM.  

Consider a problem presented in Figure 4.6. Thin plate fixed on the left edge is subjected 

to an in-plane bending load, applied on the right edge. 

5L m , 3h m , 0.01 ,t m 2 ,F kN 210 ,E GPa 0.33  . 

 

Figure 4.6: Thin plate subjected to an in-plane bending load 



 

 

To implement substructuring technique to this problem, the first step is to recognize a 

global level one superstructure. Then we choose in how many substructures we shall divide our 

global superstructure and where will be the interfaces of all these substructures. We select the 

global master nodes that we will generate on this structure (using one – dimensional two-node 

line elements during mesh generation in this case), and choose the mesh density which is also 

desirable to bring in this phase.  

So, for the sake of simplicity, we have chosen our whole structure from Figure 4.6 to be 

divided into total of 2 substructures which are, as presented in Figure 4.7, marked as S1 and S2, 

respectively. 

 

Figure 4.7: Substructuring of the global level one superstructure 

So, our superstructure for this problem and its mesh would be as shown in Figure 4.8. As 

this is our top level for this problem, we call it a level one superstructure. This convention will 

also be used later in every practical application in this thesis, including a three – dimensional 

model of a ship cover, consisting of total of seven level two substructures.  

What we basically did was defined the geometry from Figure 4.7, and then generated a 

mesh consisting of one – dimensional two – node line elements to this geometry. This mesh 

generated nodes along the boundary of our model from Figure 4.6, and nodes on the interface of 

our two substructures which we have chosen to divide our model to (Figure 4.7). It is very 

important to define the interface line during geometry definition of the superstructure, since 



 

 

without it, it would not be possible to have a connectivity of these 2 substructures later in the 

process of obtaining the stiffness matrix of the global model. 

 

 

Figure 4.8: Level one superstructure with master nodes and global master node ids shown 

 

Now we read in the nodal coordinate matrix of the global level one master nodes, which 

is done in the part of the Matlab code shown below. We save this coordinate matrix to disc, as it 

shall frequently be used later so it is more convenient to load it again instead of re-generating it 

by calling the function readnodes.m which imports it from Gmsh. 

clc; 
clear all; 

  
% Level one superstructure – reading in the global master nodes 

 

[node_L1,nid_L1]=readnodes('test_superstructure_LVL1.msh');   
node_L1=node_L1(:,1:2); % just first 2 columns (z-coord =0, 2D example) 

  
% Master („super“) nodes for further levels transfer 
 

sNODE = size(node_L1); 
for ii=1:sNODE 
    sXYZ(ii,:) = node_L1(nid_L1(ii),:); 
end 

  
save('sXYZ'); 

 



 

 

Since the geometry of the problem from Figure 4.6 is fairly simple, there is no need to 

continue with substructuring to lower levels. So, our lowest substructuring level would be level 

two, in which we have two substructures presented in Figure 4.9, which we are now dealing with 

separately. The important thing to note here is that, since we concluded that two levels are 

enough for this problem, this is now an instance of global – local analysis. The procedure and 

steps described in Chapter 3 are generic – they refer to the multilevel substructuring analysis, but 

since the global – local analysis is practically a sub-type of multilevel analysis consisting of just 

two levels, the procedure presented there and all its steps can also be followed. 

 

Figure 4.9: Geometry of the substructures S1 and S2 with point labels shown 

 

Since this is our lowest level, the next step is to generate standard FE mesh of the 

geometry of these substructures, by choosing finite elements of the desired type. It is very 

important here to notice that the mesh element size which we defined on our superstructure when 

generating its mesh (i.e. mesh density), should be the same when generating the mesh of the 

(local) substructures, regardless of the type of finite element we have chosen. That would secure 

that the nodal coordinates along the edge of the substructures would match those in our (global) 

superstructure. This fact is very important because then we are able to transfer variables from 

local to the global analysis, and vice versa, much more easily (even though local and global node 

ids obviously will not match – we will be discussing later on how to overcome this problem). 



 

 

Again, for the sake of simplicity and demonstration, we choose CST elements, and now 

generate a mesh of these triangular elements for the two substructures, presented in Figure 4.10, 

with local nodes and local node ids shown.  

Now, before we continue describing the next step, we shall go back a bit, explaining why 

we choose our superstructure to be as it is. 

Since our problem consisted of boundary conditions defined just on the edges of a plate 

(the left and the right edge), it was most convenient for us to define the superstructure in exactly 

that way as in Figure 4.8. What that basically means is that we are now able, through the process 

of static condensation, to eliminate (condense) all the internal degrees of freedom of both of our 

substructures, since the whole global model and the boundary of the local model (i.e. the 

substructures), contain all the nodes to which the boundary conditions are needed to be applied 

later in the solving process.  

 

 

Figure 4.10: Mesh of the substructures S1 and S2 with local node ids shown 

 

So, what we now need to do is to obtain a stiffness matrix of these substructures, which 

we do using the good old conventional FEM approach, already performed in Appendix C for 

CST and LST elements. These stiffness matrices would have the size of two times the number of 



 

 

nodes in the whole substructure (internal and boundary nodes), since this is a two – dimensional 

problem and we have 2 dofs per each node. The next step is very important. The stiffness 

matrices of the substructures need to be arranged in such a way that the boundary dofs and the 

internal dofs are separated, i.e. that it first shows the dofs on the boundary, following the dofs in 

the interior of the substructure, or vice versa.  

The basic idea is that if we want to eliminate (or better to say condense) dofs of our 

choice, they need to be sorted together in the stiffness matrix – at the beginning or at the end of 

the matrix. 

This can be performed in an elegant way thanks to the way Gmsh is generating the mesh 

and numbering the nodes. When we generate the geometry in Gmsh and then follow by 

generating a mesh to that geometry, nodes number always follow the geometry, i.e. nodes at the 

defined points are numbered first, following by nodes at the defined lines (boundary), and 

finishing by nodes in the interior of the domain. That secures that the stiffness matrix can always 

be sorted in such a way that the boundary degrees of freedom are placed first in the stiffness 

matrix, even when we use second order elements for example. But, we may want to preserve 

some node in the interior also, where may be a crack or some discontinuation that we would 

want to analyse later on locally. That can also be done thanks to the way physical ids can be 

defined in Gmsh. There is a possibility to define a physical point in Gmsh, anywhere in our 

structure during geometry definition. When we assign a property of a physical point to some 

coordinate in our geometry that may be in the interior for example, that would secure that Gmsh 

numbers the corresponding node at that coordinate before any other node in the interior. And 

consequently, the desired node would also be sorted together with the boundary nodes and not 

condensed out during the process of reduction. 

So, now the process of static condensation can be performed, as already shown in Chapter 

2 and applied in Chapter 4.1.1 for the one – dimensional example. 

The reduced or condensed stiffness matrix, obtained from Eq. 2.6, describes the 

substructures S1 and S2 in Figure 4.11, which consist only of the nodes on the boundary. 

Potentially, as stated, substructures can also contain some nodes in the interior if we chose to 



 

 

preserve some of them for global analysis, but in this example there was no need to preserve any 

node in the interior so all internal nodes were condensed out, as shown in Figure 4.11. 

It is very important to notice here that because of the form of Eq. 2.6, condensed stiffness 

matrix has built-in information of the stiffness of the whole substructure, even though its size is 

far lesser than the size of the stiffness matrix obtained through conventional FEM before 

condensation.  

 

Figure 4.11: Substructures S1 and S2 with condensed internal degrees of freedom 

The next step is to connect these condensed stiffness matrices to obtain the global 

stiffness matrix of the superstructure from Figure 4.8, which can be done by using a scattering 

operator in a for loop, as presented in the part of the MatLab code shown below.  

 

clc;  
clear all; 

  
load('sXYZ'); 

  
nn_global=size(sXYZ,1); % number of global nodes and dofs 
ndof_global=2*nn_global; 

  
KG_L1=zeros(ndof_global,ndof_global); % or through sparse 

  
nSS=2; % number of substructures    

  
for ii=1:nSS 

     



 

 

    substr_ii=sprintf('SUB_L1_S%d',ii); 
    load (substr_ii,'K_red','id_local_global','NEQ') 

     
    sctr(1:2:NEQ)=2*id_local_global-1; 
    sctr(2:2:NEQ)=2*id_local_global; 

  
    KG_L1(sctr,sctr)=KG_L1(sctr,sctr)+K_red; 

         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ 
end 

  
save('K_global_SE.mat','KG_L1') 

 

 

Now that we obtained the global stiffness matrix of our level one superstructure, we can 

apply boundary conditions and solve the system for global displacements of the master nodes. 

The obtained global stiffness matrix of the superstructure is most convenient to be saved to disc, 

and then to be loaded again in the solving process. 

After the system is solved and displacements of the master nodes obtained, we need to 

return these global displacements to the local analysis to obtain the internal displacements of the 

substructures from level two. That can be done easily from Eq. 2.4, but first the global master 

node displacements need to be transformed and expressed for each substructure on the local 

level.  

For that purposes, one other variable is very useful to be able to transfer data from local 

to global analysis and vice versa correctly, due to the fact that the global and local node ids 

generally will not match. That variable is id_local_global, and is obtained through a function 

written in MatLab called id_local_global_transfer.m, which is developed for the purposes of this 

thesis and the implementation of the described technique. The code for the function is presented 

below. 

function [id_local_global]=id_local_global_transfer(local_coord,global_coord) 

 
nn_local=size(local_coord,1); 
nn_global=size(global_coord,1); 

  
id_local_global=zeros(size(local_coord,1),1); 



 

 

 
for i=1:nn_local 

     
    IND=0;     
    for j=1:nn_global 

         
        aa = local_coord(i,:) - global_coord(j,:); 
        if ( sqrt(aa*aa') < 1.e-5) 

 
            id_local_global(i,1)=j; 
            IND=1; 
        end 

  
    end 

 
        if(IND==0) 
            disp('STOP in id_local_global_transfer():') 
            disp( i ) 
            pause 
        end     
end 

 

This function basically receives local (i.e. substructure) and global (i.e. superstructure) 

nodal coordinates, and returns a vector of node ids from the global model with the order of 

numbering from the local model. The function secures that all the data, displacements of the 

master nodes etc, is transferred correctly from one model to another through appropriate 

application of the scattering operator. For the detailed description of scattering operator see 

Appendix A.  

After we obtained the internal displacements of the substructure, and transferred the 

appropriate master node displacements from the global model to a local one (current 

substructure), we have the vector of displacements of the whole substructure which we arrange 

in a way that the displacements on the boundary are always sorted first, following by internal 

displacements (or to say more generally, we arrange it in a way that the master node 

displacements are sorted first, following by condensed node displacements). The same procedure 

is to be performed for as many substructures as we can have in our model – in this example two.  

Now that we have all the displacements of substructures on the local level, we can 

continue through the process of obtaining the stress and strain, which can be done with the re-

application of the scattering operator and using functions from FEMLAB. 



 

 

The plot of von Mises stress, with scaled displacements on the output plot for the two 

substructures from this example, using CST elements, is presented in Figure 4.12. 

 

  
Figure 4.12: Plot of von Mises stress for substructures S1 and S2 using CST elements 

 

Figure 4.13 shows the result of the same procedure, but when using LST elements in the 

discretization process for substructures on level two. We notice here that the displacements of 

the master nodes obtained when using LST elements are within the order of magnitude when 

compared with CST and with a slight difference. We also notice the difference in stress 

distribution when using LST elements, which is to be expected since the compressive stress 

which acts at the plate is more significant than the tensile one. This basically points to the fact 

that the results obtained when using LST elements are more accurate.  

 



 

 

  
Figure 4.13: Plot of von Mises stress for substructures S1 and S2 using LST elements 

 

Figure 4.14 shows the plot of von Mises stress when the analysis is performed through 

conventional FEM (CST on the left). First thing to notice here is that since the whole analysis is 

performed on the global structure, we have just one mesh for each type of finite elements used. 

The scaling in Figures 4.12 and 4.13 is done separately for each substructure, so the visual form 

of stress – displacement diagrams is not fully relevant to compare with the conventional FEM 

plots.  

  
Figure 4.14: Plot of von Mises stress for the problem from Figure 4.6, using conventional FEM (CST on the left) 

 

Table 4.1 shows the comparison of chosen obtained nodal displacements between the 

substructuring technique and conventional FEM, with two different types of elements used (CST 

and LST). 



 

 

Element 

type 

SUBSTRUCTURING 

TECHNIQUE 
CONVENTIONAL FEM 

node ID 
x – disp 

[m] 

y – disp 

[m] 
node ID 

x – disp 

[m] 

y – disp 

[m] 

CST 

3 -0.0751 -0.2103 2 -0.0731 -0.2053 

4 0.0750 -0.2103 3 0.0730 -0.2052 

10 -0.0232 -0.2070 9 -0.0228 -0.2028 

11 0.0233 -0.2070 10 0.0229 -0.2027 

 

LST 

3 -0.0763 -0.2090 2 -0.0761 -0.2086 

4 0.0763 -0.2091 3 0.0761 -0.2086 

15 -0.0228 -0.2037 14 -0.0227 -0.2037 

16 0.0228 -0.2037 15 0.0227 -0.2037 

 

Table 4.1: Comparison of displacement results between the substructuring technique and 

conventional 2D FEM approach 

We can see that the results for obtained displacements compared to the conventional FEM 

approach practically match those from the substructuring technique. However, there is a slight 

difference. To be able to understand why this little difference between two approaches exist, we 

need to understand first that the substructuring technique is not an approximation technique in 

the context that it is approximated compared to the conventional FEM. The substructuring 

technique is only an approximation technique at the order of magnitude at which the standard, 

conventional FEM is (or any other FEM formulation which is being used for the discretization at 

the lowest level of substructuring). So, when compared to the standard conventional FEM, the 

results should not deviate even a little. So, why do they slightly deviate? This is a consequence 

of discretization. When we are performing substructuring we are separating the whole 

construction to several smaller parts. Then, for each of these parts (i.e. substructures) we are 

generating FE mesh on the lowest level. Now, as we are using an automatic external mesh 

generator, even if we define an equal mesh density on all levels of substructuring, because of the 

fact that we are generating the mesh e.g. two times (for this example) instead of one (in standard 

FEM approach), because of that fact some nodes and their coordinates in the interior of the 

substructures will not fully match those from standard FEM approach mesh. So the boundary 

nodes will match because the discretization always follows the geometry (on the boundary), but 

in the interior of our domain the mesh generator creates the elements and nodes following its 



 

 

own logic (which is a consequence of its integrated algorithm that it uses for the mesh 

generation). But since for the substructures (which are of smaller dimensions than the whole 

construction) we are generating the mesh automatically, some of the coordinates inside will just 

not fully match. That does not mean that the result is not accurate, this small deviation is just a 

consequence of a slightly different discretization that always exists compared to conventional 

FEM. When we would be generating more and more dense meshes on substructures and 

conventional FEM analysed structures, the difference would just decrease more and more. Even 

now the difference shoes up at third decimal point, so we can safely conclude that the results are 

correct and the analysis performed through substructuring is accurate. 

As a conclusion, we notice here that one of the main advantages of using this approach is 

the fact that by implying the boundary conditions on the global structure only, we can perform 

stress analysis on every substructure separately and independent of each other. It is because this 

technique allows us to transfer global conditions to the local analysis without actually 

implementing the boundary conditions to the local analysis. Now, why is that good? It is good 

because we do not need to have a set of boundary conditions for each substructure locally and 

therefore the whole analysis is much less sensitive to the occurrence of random errors due to 

potential misinterpretation of BCs, which often happens in practice when dealing with large and 

complex systems, especially on the interfaces of their sub-models. 

Another great advantage is the division of labour, since we can perform analysis of 

different substructures independently of each other. So, when dealing with complex systems (i.e. 

ships, aircrafts etc.), separate groups of engineers can work on different sectors of these 

structures and divide the labour to become much more efficient.  

Third and final great advantage is the direct consequence of the first one. When 

implementing the conventional FEM to complex structures, we can have hundreds of thousands, 

even millions degrees of freedom in our problem. This technique not just reduces the total 

number of dofs used for computation (thus reducing computational time), but also facilitates the 

visualization of different sectors and their analysis. When using conventional FEM, we always 

have one structure and therefore if we want to look at a specific element in the mesh or a desired 

node somewhere in the interior, we need to do a lot of graphical manipulations (e.g. splines, cuts 

and sections) to even be able to visually analyse some local area within this complex structure. 



 

 

By using superelements approach, all we need to know is to which substructure our desired area 

belongs. And then we can perform all the analysis locally, by visualizing just that part of our 

structure.  

All MatLab codes for the procedure described in this chapter are given in the Appendix E. 

 

4.1.3. 2D plate with a non symmetrical hole 

Consider a problem presented in Figure 4.15. This is the similar problem (slightly 

different steel alloy) which is solved in Appendix C with the use of classical FEM procedures. 

Here, for a thin steel plate with a non symmetrical hole subjected to an in-plane bending load, 

with fixed support on the left edge, stress analysis needs to be performed through the application 

of substructuring and superelements technique.  

Parameters: 

6L m , 1.1h m , 0.3r m , 0.01 ,t m 20 ,F kN 200 ,E GPa 0.3  . 

 

Figure 4.15: Thin plate with a non symmetrical hole 

 

This is an interesting example because of the presence of the hole, not being symmetric in 

the constructions plane. It is obvious that we would want for our master nodes to include the 

boundary of the hole, since holes attract stress concentration and this is an important area to 

analyse later in the post – processing section.  

Since the area on the boundary of the hole is described with trigonometric functions, 

because of its geometry the stress is also expected to change more rapidly. To be able to capture 



 

 

this behaviour, we need to define our substructuring disassembly way in a clever fashion. We 

need to find a way to make a connection of the hole and the rest of the boundary, so that we can 

connect all those stiffness matrices later in the process of obtaining the global level one stiffness 

matrix. Also, it would be desirable to utilize the potential symmetry and develop it, if possible. 

So, we generate geometry in Gmsh and divide the whole structure into a total of ten 

substructures. The superstructure geometry and its mesh are presented in Figures 4.16 and 4.17.  

 

Figure 4.16: Superstructure geometry and its appropriate substructures 

 

 

Figure 4.17: Superstructure mesh and its appropriate global level one master nodes 

Now, we follow the described steps from previous chapters and perform the procedure of 

substructuring and code it. 

This is also an example of global – local analysis, so the procedure is similar as for the 

example from Chapter 4.1.2. Although, this represents a quite more demanding type of analysis 

since we have larger number of substructures, more complicated geometry and much larger 

amount of data. Here for the first time we can open the question of manipulation with large data 

structures. All this data needs to be sorted and manipulated to be able to efficiently and elegantly 

shift from between different substructures and their levels.  



 

 

So, we are transferring the master node ids to the local level, creating geometry and two – 

dimensional finite element mesh for each substructure, obtaining local stiffness matrices, sorting 

the dofs and calculating the reduced stiffness matrices. 

Finite element meshes generated with triangular elements are presented in Figure 4.18. 

Again, mesh density needs to follow the one from global analysis, in order for the coordinates of 

the master nodes in the local model to match those from global one. Figure 4.18 shows the 

substructures prior to condensation. 

 

Figure 4.18: Triangular meshes for the substructures on level two before condensation 

 

The rest of the analysis is now the same, following the recipe from Chapter 3 and the 

programming procedure performed already in Chapter 4.1.2. From the reduced stiffness matrices 

we are directly building the global stiffness matrix for the superstructure on level one, implement 

the boundary conditions and solve the system for global displacements. After the global 

displacements are obtained we transform and return them to the local analysis, calculate the 

stresses and strains, and visualize results.  

Now we will present the stress distribution with scaled displacements on the output plot 

for the whole structure through its appropriate substructures. This is presented in Figures 4.19 – 

4.22. 



 

 

   
 

Figure 4.19: Von Mises stress distribution with scaled displacements for substructures S1 – S3 

 

   
 

Figure 4.20: Von Mises stress distribution with scaled displacements for substructures S4 – S6 

 

   
 

Figure 4.21: Von Mises stress distribution with scaled displacements for substructures S7 – S9 

 



 

 

 

Figure 4.22: Von Mises stress distribution with scaled displacements for substructure S10 

 

Table 4.2 shows the comparison of chosen obtained nodal displacements between the 

substructuring technique and conventional FEM. The obtained displacement results match the 

results from classical FEM at several orders of magnitude.  

 

SUBSTRUCTURING 

TECHNIQUE 
CONVENTIONAL FEM 

node ID 
x – disp 

[m] 

y – disp 

[m] 
node ID 

x – disp 

[m] 

y – disp 

[m] 

5 -0.0009 -0.0069 2 -0.0009 -0.0068 

6 0.0009 -0.0069 3 0.0009 -0.0068 

81 -0.0004 -0.0069 68 -0.0004 -0.0068 

85 0.0002 -0.0069 72 0.0002 -0.0068 

93 0.0009 -0.0060 80 0.0009 -0.0060 

74 -0.0009 -0.0060 61 -0.0009 -0.0060 

 

Table 4.2: Comparison of displacement results between the substructuring technique and 

conventional FEM approach 



 

 

4.2. Programming substructuring technique in 3D 

As already stated at the beginning of Chapter 4, it is better to keep one and two – 

dimensional stress analysis of thin – walled structures separated from the three – dimensional, 

especially regarding programming aspects. When performing three – dimensional analysis, very 

often local substructures on lower levels are disassembled to their appropriate two – dimensional 

components, and to one extent part of this analysis can be watched through the eyes of a two – 

dimensional problem. However, when these components and the data they contain need to be 

transformed, transferred and assembled to the upper spatial level and eventually to the level one 

superstructure which is also three – dimensional, general constraints in coordinate system 

transformation appear and potential adaptations to boundary conditions and additional dof 

constraints need to be made. This process often demands to be performed even on the local 

substructure level and in the very first steps of analysis, during the local mesh generation and 

prior to obtaining the stiffness and reduced stiffness matrices of the local level substructures. 

One of the reasons for this lies in the fact that although on a certain level substructures become 

two – dimensional, they can still lie in different planes from each other and some steps in the 

programming procedure just cannot be coded in a simple way for the algorithm to be automated. 

For the reasons stated, the most demanding part of programming the three – dimensional analysis 

is the recognition of these patterns and spatial components to which the specific substructure 

belongs, then in applying the algorithm procedure for the scattering operator, and finally in the 

local - global transfer (and vice versa) of node ids from one level to another, which may not be a 

part of the same coordinate system. And when we have large structures and a great number of 

substructures on different levels (and that is usually the case when working with this technique), 

and all these levels and substructures even on the same level need not to be in the same 

coordinate system, one can understand the complexity that this type of analysis brings altogether.  

As stated earlier, the programming aspects most often offer best possible insight through 

practical implementation, and three – dimensional analysis is not an exception.  

 



 

 

4.2.1. Simple 3D hexahedron case 

Here a simple three – dimensional example shall be presented and analysed through 

substructuring, to illustrate the differences between the one and two – dimensional analysis 

performed by now and the spatial stress analysis that most often appears in practice.  

Consider a spatial stress analysis problem, presented in Figure 4.23. Simple hexahedron 

case, six meters in length, 1.1 meter in height and 2.5 meters in width, built of a total of six steel 

plates of 10mm thickness, is subjected to a bending load of 500kN  uniformly distributed along 

its one edge. The opposite side of the case is in fixed support. Young modulus is 200GPa  and 

the Poisson‟s ratio 0.3  . 

Again, displacement and stress analysis needs to be performed through an application of 

the substructuring and superelements technique.  

 

Figure 4.23: Bending of a three – dimensional hexahedron case 

 

Geometry and substructures for this model are presented in Figure 4.24. It is logical do 

disassemble the superstructure in exactly this way, to the six plates from which it is built.  



 

 

 

Figure 4.24: Geometry and substructures for a hexahedron case model 

Level one superstructure mesh of this model is presented in Figure 4.25. The chosen 

master nodes are only the interface ones between different plates, for the reasons of 

simplification and demonstration through this basic spatial example.  

 

Figure 4.25: Level one superstructure mesh of the hexahedron case model 



 

 

As before, first we need to read in the nodal coordinate matrix of the global master nodes. 

But, now we need to retain all three coordinates and import them in this form into Matlab, which 

is the first difference from 2D analysis.  

Since this is also an instance of global – local analysis, now the substructures are 

analysed locally, and 2D finite element mesh for each substructure is created. 

Prior to the process of obtaining the stiffness matrices and the condensed ones, we need 

to manipulate with the variables that contain local nodal coordinates. Since we have three pairs 

of substructures that are located in different planes, we can use mirroring and symmetry for them 

but first we need to route the procedure for each substructure in such way that the program for a 

2D analysis which we use for every substructure pair recognises its nodal coordinates as like 

they are in the x-y plane, although some of them actually are not. In other words, if we have a 

plate that lies in the x-z plane for example, and this plate is translated by some value along the y 

axis, we need to skip the y axis and route the nodal coordinate matrix of the substructure in a two 

– dimensional form containing just x and z coordinates. The part of the code which utilises this 

routing is presented below, in the example of the substructure located in the x-z plane and 

translated along y axis. 

[node_S2,nid_S2]=readnodes('substructure_S2_LVL2.msh');  % read in mesh from gmsh file 
element_S2=readelements('substructure_S2_LVL2.msh',7); 

  
node_S2_2D=node_S2(:,1:2:3); % the plate is in the x-z plane, y=const., route to the x and z coordinates 

 
element_S2=renumber(element_S2,nid_S2);  % renumber the elements and remove duplicate entries 

  
%  edge (master nodes) detection 
% read in local master node ids on the substructure 
id_edge_snodes=readnodeset('substructure_S2_LVL2.msh',8); 

  
NODE_S = size(id_edge_snodes,1); % number of nodes*number of dof per each node 
NEQ = NODE_S * 2; 
 

Now we can continue through the process of obtaining the local stiffness matrices and 

condensed ones afterwards, but having in mind to always send the 2D routed nodal coordinate 

matrix to all the functions used for the displacement processing phase. After the condensed 

stiffness matrices are obtained, we can continue the forming of the global stiffness matrix of our 

level one, three - dimensional superstructure. This process is coded in the algorithm presented 



 

 

below. We can see that for the pairs of substructures located in the same 2D planes scattering 

operator loops in the same direction.  

clc;  
clear all; 

  
load('sXYZ'); 

  
nn_global=size(sXYZ,1); 
ndof_global=3*nn_global; 

  
KG_L1=zeros(ndof_global,ndof_global); 

  
KG_L1_S1=zeros(ndof_global,ndof_global);  % or through sparse 
KG_L1_S2=zeros(ndof_global,ndof_global); 
KG_L1_S3=zeros(ndof_global,ndof_global); 
KG_L1_S4=zeros(ndof_global,ndof_global); 
KG_L1_S5=zeros(ndof_global,ndof_global); 
KG_L1_S6=zeros(ndof_global,ndof_global); 

  
% ------------------------------------------------------------------------- 
 
%  FIRST SUBSTRUCTURE:  

  
    load ('SUB_L2_S1.mat','K_red','id_local_global','NEQ') 

     
    sctr(1:2:NEQ)=3*id_local_global-2; 
% sctr( :2:NEQ)=3*id_local_global-1;  % S1 is in the x-z plane, we don't have y freedoms 
    sctr(2:2:NEQ)=3*id_local_global; 

     
    KG_L1_S1(sctr,sctr)=KG_L1_S1(sctr,sctr)+K_red; 

         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ 

     
%  SECOND SUBSTRUCTURE: 

  
    load ('SUB_L2_S2.mat','K_red','id_local_global','NEQ') 

     
    sctr(1:2:NEQ)=3*id_local_global-2; 
% sctr( :2:NEQ)=3*id_local_global-1;  % S2 is in the x-z plane 
    sctr(2:2:NEQ)=3*id_local_global; 

     
    KG_L1_S2(sctr,sctr)=KG_L1_S2(sctr,sctr)+K_red; 

         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ    



 

 

 
%  THIRD SUBSTRUCTURE:  

  
    load ('SUB_L2_S3.mat','K_red','id_local_global','NEQ') 

     
% sctr( :2:NEQ)=3*id_local_global-2;    % S3 is in the y-z plane, we don't have x freedoms 
    sctr(1:2:NEQ)=3*id_local_global-1;   
    sctr(2:2:NEQ)=3*id_local_global; 

     
    KG_L1_S3(sctr,sctr)=KG_L1_S3(sctr,sctr)+K_red; 
         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ 

  
%  FOURTH SUBSTRUCTURE:  

  
    load ('SUB_L2_S4.mat','K_red','id_local_global','NEQ') 
     
% sctr( :2:NEQ)=3*id_local_global-2;    % S4 is in the y-z plane 

    sctr(1:2:NEQ)=3*id_local_global-1;   
    sctr(2:2:NEQ)=3*id_local_global; 

     
    KG_L1_S4(sctr,sctr)=KG_L1_S4(sctr,sctr)+K_red; 

         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ 

  
%  FIFTH SUBSTRUCTURE:  

  
    load ('SUB_L2_S5.mat','K_red','id_local_global','NEQ') 

     
    sctr(1:2:NEQ)=3*id_local_global-2; 
    sctr(2:2:NEQ)=3*id_local_global-1;   
% sctr( :2:NEQ)=3*id_local_global;  % S5 is in the x-y plane, we don't have z freedoms 

     
    KG_L1_S5(sctr,sctr)=KG_L1_S5(sctr,sctr)+K_red; 

         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ 

     
%  SIXTH SUBSTRUCTURE: 

  
    load ('SUB_L2_S6.mat','K_red','id_local_global','NEQ') 

     
    sctr(1:2:NEQ)=3*id_local_global-2; 
    sctr(2:2:NEQ)=3*id_local_global-1;   



 

 

% sctr( :2:NEQ)=3*id_local_global;  % S6 is in the x-y plane 

     
    KG_L1_S6(sctr,sctr)=KG_L1_S6(sctr,sctr)+K_red; 

         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ 
     
% ------------------------------------------------------------------------- 

 
KG_L1=KG_L1_S1+KG_L1_S2+KG_L1_S3+KG_L1_S4+KG_L1_S5+KG_L1_S6; 

  
save('KG_L1') 

 

After we obtained the global level one stiffness matrix, the next step is standard, solving 

the system K d f  . Some implications of the 3D substructuring programming regarding the 

implementation of specific boundary conditions cannot be discussed here as they demand 

working on more complex problems to show up. The stated will be discussed in Chapter 5.  

Now as the global displacements are obtained we need to return them to the local 

analysis, but now alongside with the transformation of the master node ids from the global level 

to a local one, we need to transform the displacements from a three – dimensional system to a 

two – dimensional one. For that reason, we need to have additional application of the scattering 

operator prior to the stress calculation, to perform the needed transformation. The part of the 

code which performs this task and calculates the internal displacements (from the previously 

condensed dofs) is presented below, for the substructure S1.  

load('s_disp') 
load('SUB_L2_S1','id_local_global','KJI','KJJ','node_S1','element_S1','ne','C') 

  
nn_boundary=size(id_local_global,1); 
ndof_boundary=2*nn_boundary; 

  
  sctr(1:2:ndof_boundary)=3*id_local_global-2;    
% sctr( :2:ndof_boundary)=3*id_local_global-1;   % x-z plane 
  sctr(2:2:ndof_boundary)=3*id_local_global;      

  
id_local_global_dof=sctr'; 

 
disp_boundary=s_disp(id_local_global_dof,:); 

  
disp_internal=inv(KJJ)*(-KJI)*disp_boundary; 

  
disp_S1=[disp_boundary; disp_internal]; 



 

 

From this obtained data we can now calculate stresses and strains, and visualise and 

interpret results.  

Stress distribution and scaled displacements for the pairs of substructures that are in the 

same plane, are presented in Figures 4.26 – 4.28.  

 

  
 

Figure 4.26: Substructures S1 and S2 stress and displacement distribution 

 

  
 

Figure 4.27: Substructures S3 and S4 stress and displacement distribution 

 



 

 

  
 

Figure 4.28: Substructures S5 and S6 stress and displacement distribution 

 

There are some interesting conclusions that can be drawn from the performed analysis. 

Since each stress and displacement diagram is presented in the substructure‟s own plane, we can 

see how each plate moves under the given load conditions. Consequently, we see that the 

substructures S1 and S2 mainly bend (due to compressive and tensile stress) as in the separate 

2D analysis performed earlier, with the stress distribution being basically mirrored. Substructures 

S3 and S4, however, have different behaviour. Substructure S3 is fixed, so the displacements and 

stresses are zero, while S4 is practically translated in the negative z direction (looking from the x 

– perspective) because of the direction of the external load, and with the maximum stress values 

in the middle of the upper and lower edge, which is to be expected. Because of the highest stress 

value in the top middle of S4, the displacements in the z direction shall also be slightly larger in 

the middle than in the corners so the translation is not literal. Of course, substructure S4 will also 

have displacement components in x direction, but since we are watching it from the x – axis this 

displacement component cannot be seen here. But, it can be captured by analysing other four 

substructures, e.g. by looking at the displacement of the right edge of substructures S1 and S2, 

through visualizing substructures S5 and S6, or analysing the numerical results for the 

displacements. Substructure S5 has the x – displacement component moving in the negative x 

direction (compressive stress), while the S6 in the positive direction (tensile stress), naturally, 

watching from the z perspective. S5 and S6 will also have displacement components in the z 

direction. 



 

 

To be able to analyse the obtained displacements and compare them to the theoretical 

results, knowledge from mechanics of materials can be used. The construction from Figure 4.23 

with steel plates whose thickness is 10mm can be compared to the cantilever beam with the box 

rectangle cross section, presented in Figure 4.29.  

 

Figure 4.29: Cantilever beam under bending load. Cross section is on the right 

So now we need to calculate the deflection w  at the right edge of the beam, to get the 

range and order of magnitude to which the displacements on the edge of the hexahedron case 

from Figure 4.23 should fall into. So now we have, from the initial parameters for the 

hexahedron case:  

6 , 500 , 2.5 , 1.1 , 0.01 .L m F kN B m H m t m       

From mechanics of materials we know that the deflection at the end of the beam (pure 

bending) is described with the equation: 

3

3 y

F L
w

EI
          (4.12) 

Area moment of inertia of the given cross section can be calculated by:  

3 3

1 2
12 12

y y y

BH bh
I I I     , 

where b and h are the internal width and height of the box cross section from Figure 4.29 and 

they are as follows: 



 

 

2 2.48

2 1.08

b B t m

h H t m

  

  
  

So now the moment of inertia is: 

40.01695yI m , 

and the deflection is: 

3 3 3

9

500 10 6
0.0106195

3 3 200 10 0.01695y

F L
w m

EI

 
  

  
  

Table 4.3 shows the comparison of displacements in several nodes along the right edge of 

a 3D hexahedron case obtained through an application of the substructuring technique, and the 

calculated theoretical deflection on the cantilever beam using mechanics of materials. 

The displacements match at several orders of magnitude with the slight difference 

appearing just from the fourth decimal point onwards. The difference is reasonable since for the 

real three - dimensional problem we have the load distributed on the whole plate instead of being 

concentrated in just one point, so the displacements in different nodes vary around that value.  

 

MECHANICS OF 

MATERIALS 

SUBSTRUCTURING 

TECHNIQUE 

deflection w  [m] node ID z – disp [m] 

0.0106195 

2 -0.0129027 

6 -0.0129024 

40 -0.0129013 

110 -0.0129012 

 

Table 4.3: Comparison of displacement results between the substructuring technique and 

theoretical value obtained from mechanics of materials 

 



 

 

5. An application of substructuring and superelements 

technique in stress analysis of a 3D ship cover with one 

bulkhead 

Complex engineering systems often demand interdisciplinary approach for finding efficient 

solutions and transferring them to the industry design demands. Large ships, especially heavy lift 

and cargo vessels, contain great number of structuring components, such as several levels of 

decks and tween decks. Often these structures undergo different types of stress and loads 

(hydrostatic pressure, wind, thermal and mechanical stresses, etc.), so different types of 

engineers are often employed to work in different design and analysis groups considering the 

type of problem being dealt with. 

In this chapter a practical three – dimensional application for one ship cover shall be 

presented, from which the whole tween deck in a vessel, with any given number of bulkheads 

can be constructed. It will sum up all the gathered knowledge from this thesis and present and 

apply it in one place through the analysis of such engineering system of higher complexity. 

Three – dimensional ship cover with one bulkhead is presented in Figure 5.1, according to 

the drawing made in Catia. The material being used is A36 structural steel with the Young 

modulus of elasticity 200E GPa  and Poisson‟s ratio 0.26  . Thickness of the plates is 

10t mm . 

 

Figure 5.1: Three – dimensional ship cover with one bulkhead model 



 

 

Later on, during the solution processing of this problem, before entering the system of 

equations for the global level one displacements of the master nodes, we shall constrain the dofs 

on the left edge of the whole cover, and apply bending force on the right edge, similar to the 

problem being analysed in Chapter 4.2.1. We need to note here that, depending on the actual 

conditions in a vessel, the type of support and loading can be various. These are one of the most 

often boundary conditions that show up in such systems in practice and that is the reason for 

such choice upon them.  

When beginning the first steps in the substructuring analysis, one needs to be very careful 

and intuitive. Often the very first step of the analysis is proven to be the most important one, and 

when cautiously set it can reduce the error analysis and processing time considerably. This is an 

example of multilevel substructuring and in addition a three – dimensional one, so when building 

all the levels needed to complete the analysis, mistakes made especially regarding the choice of 

the master nodes at the beginning can strongly complicate and extend the analysis, and increase 

the number of iterations through which the satisfactory solution is obtained.  

Geometry of the level one superstructure for our model from Figure 5.1 is presented in 

Figure 5.2.  

 

Figure 5.2: Geometry of the level one superstructure for a ship cover model with one bulkhead 

 



 

 

Since the cover consists of several plates of various complexity, the form of such geometry is 

chosen for several reasons. The disassembly part is presented in Figure 5.3. There can be seen 

that on the first level breakdown, all substructures have physical significance, by representing 

plates from which the whole cover is built. Furthermore, substructures S6 and S7 have ribs in the 

construction, so this breakdown is also logical. But, for some substructures, such as S1 and S2, 

we generated more complex geometry right on the first level, even though some of the lines do 

not have physical significance at first. Part of the reason for this had already been discussed in 

Chapter 4.1.3, and considering a more complex problem being present here, one more detail 

needs to be added. 

 

Figure 5.3: First level breakdown in a multilevel substructuring of the ship cover model 



 

 

The reason for such disassembly lies in the fact that a global solution is possible to obtain in 

a more elegant and efficient way when using this type of geometry. If we choose our first level 

master nodes following the geometry in this way and include the nodes in a close proximity to 

the holes during mesh generation, it is simply more effective to transform global variables and 

transfer them through levels down to the lowest one and vice versa, since we can connect the 

levels for these substructures in a direct way during the programming part. This will be 

elaborated in the paragraphs to come. 

Figure 5.4 shows the level one superstructure mesh consisting of a total of 442 global level 

one master nodes. 

 

Figure 5.4: Level one superstructure mesh of the ship cover 

Since this type of analysis incorporates a three – dimensional problem with multilevel 

substructuring, we need to note that we have superstructures on lower levels also. From Figure 

5.3, every level two substructure (except S3) is also a level two superstructure for the 

substructures on level three. From the same figure it can be directly seen that on the level three 

we will have a total of 32 substructures, all of which once we get to this level, need to be 

processed, stiffness and condensed stiffness matrices obtained and calculated, etc. 



 

 

So, to complete the first phase we basically need to perform the first three steps in multilevel 

substructuring described in Chapter 3.1, with one additional iteration performed since we have 

three levels of substructuring. Here we need to have in mind that from every upper level to a 

lower one, we need to transfer global master node ids to this next level, since generally node ids 

from the first level superstructure will not match those from the next level, and so on. So, before 

going down to the lowest level, we need to create the level two superstructures – their geometries 

and meshes, with the appropriate level two master nodes, and as in the first step, read in the 

nodal coordinate matrix of these level two master nodes and transfer and transform their ids to 

the level three. 

After we transferred all the appropriate data down to the lowest level, we now create 

geometries and generate two – dimensional meshes for each of the 32 disassembled 

substructures, as presented in Figure 5.5 for the level two substructure, S6. Note how on the 

figure master nodes are distinguished from the internal ones which will be subjected to 

condensation. So, on this last level we obtain local stiffness matrices, condensed stiffness 

matrices, transfer master node ids to the upper level (level two) and finally, from all the 

condensed stiffness matrices of the appropriate substructures we build the global level two 

stiffness matrix of the appropriate level two superstructure. 

 

Figure 5.5: Two – dimensional meshes for the level three substructures of the superstructure S6 from level two, prior 

to condensation 



 

 

Note that these steps, after we obtain global level two stiffness matrices, if they would finish 

now, would practically represent a procedure as in the global – local analysis, with the similar 

code being implemented and differed by the fact that on the level two we have multiple parallel 

superstructures. But now, instead of solving the system of equations for the level two 

displacements, from all the global level two stiffness matrices (in this example there are six of 

them plus the condensed one from the level two substructure S3) we need to build the global 

stiffness matrix for our level one superstructure. 

So this whole procedure (at least when we have just three levels) can be looked at as like we 

have the two – dimensional global – local analysis as the first phase, and then the three – 

dimensional global – local analysis as the second phase and these two phases connected together 

to form a three dimensional multilevel substructuring procedure.  

However, when we get to the step of implementing the boundary conditions to our level one 

superstructure prior to system solving, one additional implication needs to be noted since this 

was not obvious in the previous 3D solved example through global – local analysis. The 

difference between the mesh of the hexahedron case from Figure 4.25 and the mesh of the ship 

cover from Figure 5.4 lies in the fact that in the mesh of the ship cover, due to existing of ribs 

and the geometrical constraints in level two substructures S1 and S2, we have master nodes 

which are located at the interior of these plates (these nodes are not the interface ones although 

they are master). So, as a consequence of the fact that we are working with thin – walled 

structures and the system is three – dimensional, we assume that the displacements exist only in 

the substructure‟s own plane, but not perpendicular to it. This is the restriction that we are 

dealing with from the beginning, since the whole model which is being used to describe thin – 

walled structures is a membrane one and there are no internal forces acting on these nodes.  

So, what we now need to do before entering the system of equations solver (otherwise we 

will get singular stiffness matrix during the solving process), is to constrain the displacements of 

these internal nodes in the direction perpendicular to the given plane. During this procedure we 

need to watch that the nodes which are interface ones remain intact. This can be done in an 

elegant way thanks to the possibility of defining physical ids in Gmsh, although some code 

manipulations need to be done. For additional details about physical ids in Gmsh, refer to 

Appendix B.  



 

 

Presented below is the programming procedure for such implementation of boundary 

conditions and integration of the constraints defined by the used membrane model, into the code. 

Note that we chose to fix the left edge of the ship cover (y-z plane, substructure S4) and to define 

the bending force of 600kN applied and evenly distributed to the right edge of the cover (y-z 

plane, substructure S5). This situation is often the case in practice. 

clc; 
clear all; 

  
% fixed support on the left edge 
nfix=readnodeset('superstructure_LVL1.msh',123); 

  
% internal nodes in the x-y plane 
nfix_in_xy=readnodeset('superstructure_LVL1.msh',126); 
nfix_in_xy=nfix_in_xy(9:size(nfix_in_xy,1)); 

  
% internal nodes in the x-z plane 

  
nfix_in_xz=readnodeset('superstructure_LVL1.msh',125); 
nfix_in_xz=nfix_in_xz(13:size(nfix_in_xz,1)); 

  
% bending load on the right edge 
nload=readnodeset('superstructure_LVL1.msh',124); 

  
% constrain all displacements in the fixed support (nfix), internal displacements in 

%  z – direction for the x-y plane, and internal displacements in y – direction for the x-z plane 

  
ifix=[ 3*nfix'-2  3*nfix'-1  3*nfix'  3*nfix_in_xy'  3*nfix_in_xz'-1 ]; 

  
load('sXYZ'); 

  
nn_global=size(sXYZ,1); 
ndof_global=3*nn_global; 
  
fext=zeros(ndof_global,1); 
fext(3*nload)=-5797.1; 

  
load('KG_L1') 

  
[s_disp,freac]=fesolve(KG_L1,fext,ifix); 

  
save('s_disp') 
  

 

Note that the global displacement nodal vector will have the size of three times the total 

number of master nodes on level one. Since our level one superstructure mesh consisted of 442 

nodes, we now have the displacement field of a total of 1326 displacement components. After 



 

 

these displacements are obtained, we now need to return them to the local analysis through 

multiple levels, following the reverse procedure from the beginning. After we obtain internal 

displacements from the global ones, transformed to the lowest local level, we can calculate 

stresses and strains and present results. 

All stress distribution diagrams shall not be presented here, since the total number of 

substructures is very large. Instead, we will focus on analysing deviations and maximum stress 

values at some sections, alongside with the maximum obtained displacements. Results of the 

stress analysis have been exported to Paraview Visualization Toolkit.  

Figure 5.6 shows the largest value of von Mises stress in the whole construction. The stress is 

captured in two sections near the hole on a level two substructure S2 (bulkhead). These two 

sections belong to the appropriate level three substructures S2 and S5. This is to be expected 

since the bulkhead is located at the middle of the construction and bears largest amount of load.  

  
 

 

Figure 5.6: Largest value of von Mises stress in the whole construction and its location 

 



 

 

Von Mises stress diagram is also presented for few other substructures in the construction. 

An example is a level two substructure S3, which is the only one that was not subjected to an 

additional level substructuring. This stress diagram is presented to point at one important 

conclusion derived from the analysis. Diagram is presented in Figure 5.7.  

 

 

Figure 5.7: Von Mises stress for level two substructure S3 

 

So, we can see from this diagram that the stress concentration shows up at two sections near 

the fixed support and the left edge. The reason that this is happening is first because we 

constrained the displacements perpendicular to the plate‟s plane, and now since stress is acting 

on the left edge due to the support, the plate tries to resist the bending and would want to 

contract. But since the bending load acts on the right edge, the plate would want to expand, and it 

can‟t because of the fixed support! And that is why the stress concentration shows up. In 

practice, this situation can be solved by not to constrain all the displacement components, and to 

allow rotation around the axis perpendicular to the plate‟s plane. 

Because of the fixed support on the left edge there will be no displacements on the 

substructure S4, nor stresses or strains.  

On the opposite side of the construction though, the situation is quite different. It can be 

compared with the stress diagram for substructure S4 from Chapter 4.2.1.  



 

 

 

  
 

Figure 5.8: Stress distribution for the level two substructure S5 and its appropriate substructures 

 

Figure 5.8 shows the von Mises stress distribution for the level two substructure S5 i.e. its 

appropriate level three substructures. We can see how the stress on the interface with the 

bulkhead‟s plate is considerably lower, again because the bulkhead takes over part of this load on 

both sides.  

It is also important to note here that the largest value of the displacement in the negative z 

direction due to bending, for the whole construction, is in the node number 251 which is located 

at the bottom edge of the substructure S1_L3 from Figure 5.8. The value of the displacement is 

0.008959d m  . Along the whole right edge of the cover where the load is applied, 

displacements in the z direction are around 8 mm.  

Finally, the stress diagram for a level two substructure S6 is presented in Figure 5.9. It is 

interesting to note that on the edges of substructures near the support where they go outwards, 

stress concentration also shows up. On the outer line following the ribs (left side of the 

substructures S3_L3 and S4_L3 from the lower figure) there is also an increased amount of stress 

acting on the ribs. 

 



 

 

   

 
 

Figure 5.9: Stress distribution for the level two substructure S6 and its appropriate level three substructures 

 

Solutions for the stress concentration that showed up during this analysis are several. For 

these types of problems, they often include reinforcements in the form of bars which are added to 

the critical parts of the construction. This type of solution is often applied even in the pre – 

processing FEM analysis, during mesh generation where simple bar elements are added. They 

contribute to the increase of stiffness in these sections which in turn decreases the stress 

concentration.  

With this final step, the analysis of a three – dimensional ship cover is performed through an 

application of the multilevel substructuring and superelements technique.  

It should be noted that, even though this problem consisted of three levels, this same 

procedure can be performed with any desired number of levels. Additionally, for a specific 

problem being solved, we can expand this analysis by making a final observation that, since the 

ship cover consisted of a three – dimensional structure whose outer edges were practically six 



 

 

sides of a hexahedron, this analysis can be expanded by its adaptability to be used to construct 

and analyse whole tween decks with any number of bulkheads and different geometry that we 

can have. We can basically construct the outer layer of the cover and then insert as many 

bulkheads as we want.  

All the programming codes for the applied procedure of performing a stress analysis of a 

three – dimensional ship cover with one bulkhead are given in the Appendix E. 



 

 

6. Manipulating with large data structures 

In the analysis process performed in the previous chapter, we had a total of 32 substructures 

on the lowest substructuring level, which in addition to the one level two substructure that was 

not disassembled furthermore, makes the total number of the disassembled components in our 

system to 33. This means that, following all the procedures and steps described in Chapter 3, 

while dealing with complex engineering problems like this one and through this technique, data 

transfer and data collection in such analysis can be very comprehensive. 

For the reasons stated, data manipulation must be introduced. Not just that we are obliged to 

design our data transfer processes as more efficient as we can, we are also typically intertwined 

with today‟s more and more urging need to automate our design processes, if possible. To be 

able to perform that, even at the very beginning of our problem analysis, we need to cleverly 

design all these data structures and develop procedures for directing and especially sorting them 

in a way that the efficient processing design through substructuring procedure can be 

accomplished.  

Figure 6.1 collects the lowest level visual data from the analysis performed in the previous 

chapter at one place. 

 

Figure 6.1: Level three visual data for the ship cover analysis 



 

 

So as we can see,  this extremely large number of nodes and elements, very large number of 

substructures, and in the end, substructures on same levels which are often symmetric and can be 

mirrored during the processing phase can make the whole managing and sorting of this data quite 

confusing and demanding.  

To be able to efficiently deal with such large amount of data, some simple steps need to be 

followed to retain consistency and facilitate the analysis to ourselves and the experts we are 

collaborating with at the end. They can be broken down to two steps, or maybe two intuitive 

advices to follow: 

1) Always sort the data in a repetitive way and utilize symmetry 

2) Whenever possible, use these repetitive procedures and previously performed design to 

automate the solution processing 

The example of the application of our first advice is presented in Figure 6.2, where data 

sorting and manipulation for the practical application from Chapter 5 is reflected in the 

multilayered hierarchical breakdown of appropriate data structures and data manipulation 

procedures. Here for the problem analysis from Chapter 5 we can see the whole processing data 

tree developed, which utilises a practical way to sort the substructures data and to be able to 

retrieve it without confusion any time later. 

Other direct implications of this practical design on data sorting and data manipulation can be 

viewed from the code for obtaining the global level two stiffness matrices from all the condensed 

ones, calculated from the generated meshes during the first phase at the lowest substructuring 

level. The example of this code was already presented in Chapter 4.1.2 in the basic programming 

example of global – local analysis consisted of only two level two substructures. The code is 

presented at page ## for the level two substructure of the ship cover analysis from Chapter 5.  

This code basically writes the formatted data to a string which we created for the 

substructures in a similar fashion and sorted it, and then loops over all substructures and scatters 

the local data from the condensed stiffness matrices to the global (level two in this example) 

stiffness matrix. If we hadn‟t designed and sorted our data in a way that makes this possible, we 

wouldn‟t be able to utilize this possibility of automating the process for obtaining the global 

stiffness matrix.  



 

 

 

 

Figure 6.2: Data sorting repetition in a multilayered hierarchical substructuring procedure for the ship cover analysis 

from Chapter 5 



 

 

Stated implication of practical design on data sorting and data manipulation is presented in 

the code below.  

load('sXYZ_L2'); 

  
nn_global=size(sXYZ_L2,1);  
ndof_global=2*nn_global; 

  
KG_L2_S1=zeros(ndof_global,ndof_global); % or through sparse 
nSS=10; % number of substructures    

  
for ii=1:nSS 

     
    substr_ii=sprintf('SUB_L3_S%d',ii); 
    load (substr_ii,'K_red','id_local_global_L2','NEQ') 
     
    sctr(1:2:NEQ)=2*id_local_global_L2-1; 
    sctr(2:2:NEQ)=2*id_local_global_L2; 

  
    KG_L2_S1(sctr,sctr)=KG_L2_S1(sctr,sctr)+K_red; 

         
    clear sctr 
    clear K_red 
    clear id_local_global_L2 
    clear NEQ 
end 

  
% transfer of data from L2 to L1 (the above procedure is from L3 to L2): 
load('sXYZ'); 
id_local_global=id_local_global_transfer(sXYZ_L2, sXYZ); 
  
NODE_S = size(sXYZ_L2,1); %number of nodes * ndof per node 
NEQ = NODE_S * 2; 

  
disp('Nodal vector for substructure S1 (LEVEL 2 ---> 1):') 
disp(id_local_global) 

  
save('SUB_L2_S1.mat','KG_L2_S1','id_local_global','NEQ') 

 

This chapter covers the basic concept in manipulation with large data structures performed in 

this thesis. Data manipulation procedures performed here can be extended in several directions 

regarding further improvement of efficiency in recognizing patterns and routing the data without 

the need for the one single data component to be copied at several locations inside the data 

structure. Solutions for such described manipulations demand high level advanced computational 

techniques such as “data mining” [5], and largely exceed the range of research field covered in 

this thesis.  



 

 

7. Conclusion 

Projecting and designing complex constructions and developing procedures oriented to 

multilayered – hierarchical substructuring is a demanding and challenging task for every 

engineer. Substructuring and superelements technique which has been implemented with 

classical finite element method to solve various range of problems in stress analysis of thin – 

walled structures, performed in this thesis, showed that for these types of problems solutions 

obtained mostly do not differ in accuracy compared to the conventional finite element method 

and the theoretical results. This is a consequence of the fact that in static analysis the theory used 

for superelement processing is exact and not based on any assumptions. Reducing the system 

using the static condensation procedure yields several benefits, as the condensed stiffness 

matrices often dramatically reduce the total number of dofs which are entering the system of 

equations needed to be solved for global displacements. The other advantage, clearly shown is 

the efficient usage of symmetry, which often saves considerable amount of time for preparing the 

complete model. To follow a technical approach, maybe one of the most important implications 

and advantages of using this technique is the fact that by implying the boundary conditions to the 

global model only, we can perform stress analysis of local models independently of each other, 

without the need of implementing the actual boundary conditions to the local model. This is 

generally considered a good thing because the whole analysis is that way much less sensitive to 

random errors which often happen in practice due to potential misinterpretation of sets of 

boundary conditions that would otherwise needed to be set on every substructure locally. 

Some of the results of the analysis performed showed very small deviations from the 

theoretical ones and the ones obtained through classical FEM, the reason for which can be traced 

to slight differences in discretization and in the fact that inverting a matrix numerically typically 

introduces an error, although this error is often hard to get within the order of magnitude of the 

computer‟s precision limit.  

This procedure demands usage and manipulation with large data structures that build up 

during the execution of provided steps, and it is often not trivial to find innovative solutions 

regarding data manipulation for complex problems and multiple levels of substructuring.  



 

 

Performed stress analysis of a three – dimensional ship cover with one bulkhead showed 

maximum values of stress along the boundary of the hole in the centrally located bulkhead. Ribs 

constructed at the top and bottom plate of the cover are also subjected to a slightly increased 

value of von Mises stress. Solutions for these sections most often include reinforcements in the 

form of bars which are generally added to such critical parts in the construction. This solution 

can be applied in the pre – processing phase of the analysis also, as a certain design failure test, 

during mesh generation where simple bar elements are added to critical sections, as they 

contribute to the increase of stiffness which in turn lowers the stress concentration.  

The procedures developed in this thesis have clear potential for further development and 

application to even more complex problems and models in stress analysis of not just thin – 

walled structures, since the code developed is in a non – negligible measure generic, and can be 

expanded and applied furthermore to a range of problems in structural analysis in general. One of 

the future researches can aim towards the dynamic substructuring, frontal technique and 

component mode synthesis, since these methods are widely used in engineering design of 

complex structures and have space for further development through the utilization of 

substructuring.  
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Appendix A: Programming FEM in Matlab 

The goal of this addition to the thesis is to give a brief overview and direction in the writing 

of finite element code using Matlab, with attention put mostly on the implementation. A test 

example finite element code for analysing static linear elastic problems written in Matlab is 

presented in the Appendix C, to illustrate how to program the finite element method, with the 

given flow diagram, data flow of variables and Matlab script files used. The Matlab script files 

from test examples and all their supporting files are listed in Appendix D and most of them can 

be found at Bit Bucket repository of professor dr. sc. Jack Chessa (University of Texas) called 

FEMLAB [1]. For the purposes of this thesis, the original code is slightly altered and adapted, 

regarding examples and problems I had to model, and in that personalized form it is given in the 

Appendix.  

 

Notation 

 

For clarity we adopt the following notation: the bold italics font v denotes a vector quantity 

of dimension equal to the spatial dimension of the problem i.e. the displacement or velocity at a 

point, the bold non-italicized font d denotes a vector or matrix which is of dimension of the 

number of unknowns in the discrete system i.e. a system matrix like the stiffness matrix, an 

uppercase subscript denotes a node number whereas a lowercase subscript in general denotes a 

vector component along a Cartesian unit vector. So, if d is the system vector of nodal unknowns, 

u I  is a displacement vector of node I and iIu  is the component of the displacement at node I in 

the i direction, or u I  e i . Often Matlab syntax will be intermixed with mathematical notation 

which hopefully adds clarity to the explanation. The typewriter font, font, is used to indicate that 

Matlab syntax is being employed. 

 
Writing Matlab Programs 

 

The Matlab programming language is useful in illustrating how to program the finite element 

method due to the fact it allows one to very quickly code numerical methods and has a vast 



 

 

predefined mathematical library. This is also due to the fact that matrix (sparse and dense), 

vector and many linear algebra tools are already defined and the developer can focus entirely on 

the implementation of the algorithm not defining these data structures. The extensive 

mathematics and graphics functions further free the developer from the drudgery of developing 

these functions themselves or finding equivalent pre-existing libraries. A simple two dimensional 

finite element program in Matlab need only be a few hundred lines of code whereas in Fortran or 

C++ one might need a few thousand. 

Although the Matlab programming language is very complete with respect to its 

mathematical functions there are a few finite element specific tasks that are helpful to develop as 

separate functions. These have been programmed and are available at the previously mentioned 

website.  

As usual there is a trade off to this ease of development. Since Matlab is an interpretive 

language, each line of code is interpreted by the Matlab command line interpreter and executed 

sequentially at run time. As a consequence, the run times can be much greater than that of 

compiled programming languages like Fortran or C++. It should be noted that the built-in Matlab 

functions are already compiled and are extremely efficient and should be used as much as 

possible. Keeping this slow down due to the interpretive nature of Matlab in mind, one 

programming construct that should be avoided at all costs is the for loop, especially nested for 

loops since these can make Matlab programs run time orders of magnitude longer than may be 

needed. Often for loops can be eliminated using Matlab's vectorized addressing. For example, 

the following Matlab code which sets the row and column of a matrix A to zero and puts one on 

the diagonal 

 

for i=1:size(A,2) 

  A(n,i)=0; 
end 
for i=1:size(A,1) 
  A(i,n)=0; 
end 
A(n,n)=1; 

 

should never be used since the following code 

 

A(:,n)=0; 
A(:,n)=0; 



 

 

A(n,n)=0; 

 

does the same in three interpreted lines as opposed to 1 ncnr  interpreted lines, where A is an 

ncnr  dimensional matrix. One can easily see that this can quickly add significant overhead 

when dealing with large systems (as is often the case with finite element codes). Sometimes for 

loops are unavoidable, but it is surprising how few times this is the case. It is suggested that after 

developing a Matlab program, one go back and see how/if they can eliminate any of the for 

loops. With practice this will become second nature.  

 

Sections of a Typical Finite Element Program 

 

A typical finite element program consists of the following sections: 

 

1. Pre-processing section 

2. Processing section 

3. Post-processing section 

 

In the pre-processing section the data and structures that define the particular problem 

statement are defined. These include the finite element discretization, material properties, 

solution parameters etc. The processing section is where the finite element objects i.e. stiffness 

matrices, force vectors etc. are computed, boundary conditions are enforced and the system is 

solved. The post-processing section is where the results from the processing section are 

analyzed. Here stresses may be calculated and data might be visualized. In this chapter we will 

primarily be concerned with the processing section, since we will be using Matlab mostly for the 

purposes of solving the problems in stress analysis through finite element code. Many pre and 

post-processing operations are already programmed in Matlab and are included in the online 

reference; if interested one can either look directly at the Matlab script files or type help 

‘function name’ at the Matlab command line to get further information on how to use these 

functions. 

 

 



 

 

Finite Element Data Structures in Matlab 

 

Here we discuss the data structures used in the finite element method and specifically those 

that are implemented in the test example code. These are somewhat arbitrary in that one can 

imagine numerous ways to store the data for a finite element program, but we attempt to use 

structures that are most eligible and conducive to Matlab. The design of these data structures 

may depend on the programming language used, but usually it is not significantly  different from 

those outlined here.  

 

Nodal Coordinate Matrix 

 

Since we are programming the finite element method it is not unexpected that we need some 

way of representing the element discretization of the domain. To do so we define a set of nodes 

and a set of elements that connects these nodes in some way. The node coordinates are stored in 

the nodal coordinate matrix. This is simply a matrix of the nodal coordinates (imagine that). The 

dimension of this matrix is nn sdim where nn  is the number of nodes and sdim is the number 

of spatial dimensions of the problem. So, if we consider a nodal coordinate matrix nodes, the y-

coordinate of the thn  node is nodes(n,2). Figure 1 shows a simple finite element discretization. For 

this simple mesh the nodal coordinate matrix would be as follows 

 

nodes 





























0.60.2

0.60.0

0.30.2

0.30.0

0.00.2

0.00.0

.                         (A.1) 

 

 

 

 

 



 

 

Element Connectivity Matrix 

 

Element definitions are stored in the element connectivity matrix. This is a matrix of node 

numbers where each row in the matrix contains the connectivity of an element. So if we consider 

the connectivity matrix elements which describes e.g. a mesh of 4-node quadrilaterals, the 36th 

element is defined by the connectivity vector elements(36,:) which for example may be 

 14134236  or that the element connects nodes 14134236  . So for the simple 

mesh in Figure 1 the element connectivity matrix is 

 

elements 





















456

254

342

321

.      (A.2) 

 

Note that the element connectivities are all ordered in a counter-clockwise direction; if this is not 

done so some Jacobians will be negative and thus can cause the stiffness matrices to be singular 

(and obviously wrong). 

 

Definition of Boundaries 

 

In the finite element method boundary conditions are used to either form force vectors 

(natural or Neumann boundary conditions) or to specify the value of the unknown field on a 

boundary (essential or Dirichlet boundary conditions). In either case a definition of the boundary 

is needed. The most versatile way of accomplishing this is to keep a finite element discretization 

of the necessary boundaries. The dimension of this mesh will be one order less that the spatial 

dimension of the problem (i.e. a 2D boundary mesh for a 3D problem, 1D boundary mesh for a 

2D problem etc.). Once again let's consider the simple mesh in Figure 1. Suppose we wish to 

apply a boundary condition on the right edge of the mesh, then the boundary mesh would be 

defined by the following element connectivity matrix of 2-node line elements 

 



 

 

rightEdge 









64

42
.                (A.3) 

 

Note that the numbers in the boundary connectivity matrix refer to the same node coordinate 

matrix as do the numbers in the connectivity matrix of the interior elements. If we wish to apply 

the essential boundary conditions on this edge we need a list of the node numbers on the edge. 

This can be easily done in Matlab with the unique function. 

 

nodesOnBoundary = unique(rightEdge); 

 

This will set the vector nodesOnBoundary equal to  642 . If we wish to form a force vector 

from a natural boundary condition on this edge we simply loop over the elements and integrate 

the force on the edge just as we would integrate any finite element operators on the domain 

interior i.e. the stiffness matrix K.  

 

Dof Mapping 

 

Ultimately for all finite element programs we solve a linear algebraic system of the form 

K d f            (A.4) 

for the vector d. The vector d contains the nodal unknowns that define the finite element 

approximation 

   



nn

I

II

h dxNxu
1

          (A.5) 

where  xN I  are the finite element shape functions, Id  are the nodal unknowns for the node I 

which may be scalar or vector quantities (if  xu h
 is a scalar or vector) and nn is the number of 

nodes in the discretization. For scalar fields the location of the nodal unknowns in d is most 

obviously as follows 

Id d ( I ),               (A.6) 

but for vector fields the location of the nodal unknown iId , where I refers to the node number 

and i refers to the component of the vector nodal unknown d I , there is some ambiguity. We need 



 

 

to define a mapping from the node number and vector component to the index of the nodal 

unknown vector d. This mapping can be written as 

  niIf ,:       (A.7) 

where f  is the mapping, I is the node number, i is the component and n is the index in d. So the 

location of unknown 
iIu  in d is as follows 

iIu d  iIf ,
.               (A.8) 

There are two common mappings used. The first is to alternate between each spatial component 

in the nodal unknown vector d. With this arrangement the nodal unknown vector d is of the form 

d











































ynn

xnn

y

x

y

x

u

u

u

u

u

u

2

2

1

1

              (A.9) 

 

where nn is again the number of nodes in the discretization. This mapping is 

n sdim   iI 1 .       (A.10) 

With this mapping the i component of the displacement at node I is located as follows in d 

iId  d ( sdim*(I-1)+i ).         (A.11) 

The other option is to group all the like components of the nodal unknowns in a contiguous 

portion of d as follows 

 

d



































y

y

xn

x

x

u

u

u

u

u

2

1

2

1

           (A.12) 



 

 

 

The mapping in this case is 

  Innin  1               (A.13) 

So for this structure the i component of the displacement at node I is located in d at 

iId  d ( (i-1) *nn + I ).         (A.14) 

For reasons that will be appreciated when we shall discuss the scattering of element operators 

into system operators, we will adopt the latter dof mapping. It is important to be comfortable 

with these mappings since this is an operation that is performed regularly in any finite element 

code. Of course which ever mapping is chosen the stiffness matrix and force vectors should have 

the same structure. 

 
Computation of Finite Element Operators 

 

At the heart of the finite element program is the computation of finite element operators. For 

example, in a linear static code they would be the stiffness matrix 

 

K 


 B
T

C B d         (A.15) 

and the external force vector 

f
ext






t

Nt d .     (A.16) 

The global operators are evaluated by looping over the elements in the discretization, integrating 

the operator over the element and then scattering the local element operator into the global 

operator. This procedure is written mathematically with the Assembly operator  : 

 

K e 
e

B
eT

C B de            (A.17) 

 

 

 

 



 

 

Quadrature 

 

The integration of an element operator is performed with an appropriate quadrature rule 

which depends on the element and the function being integrated. In general a quadrature rule is 

as follows 

    





1

1






q

qq Wfdf              (A.18) 

 

where  f  is the function to be integrated, 
q  are the quadrature points and 

qW  the quadrature 

weights. The function quadrature generates a vector of quadrature points and a vector of 

quadrature weights for a quadrature rule. The syntax of this function is as follows 

 

[quadWeights,quadPoints] = quadrature(integrationOrder, 

           elementType,dimensionOfQuadrature); 

 

so an example quadrature loop to integrate the function 
3xf  on a triangular element would be 

as follows 

 

[qPt,qWt]=quadrature(3,'TRIANGULAR',2); 

for q=1:length(qWt) 

    xi = qPt(q); % quadrature point 

    % get the global coordinate x at the quadrature point xi 

    % and the Jacobian at the quadrature point, jac 

    ... 

     f_int = f_int + x^3 * jac*qWt(q); 

end 

 
Operator "Scattering" 

 

Once the element operator is computed it needs to be scattered into the global operator. An 

illustration of scattering of an element force vector into a global force vector is shown in Figure 

2. The scattering is dependent on the element connectivity and the dof mapping chosen. The 

following code performs the scatter indicated in Figure A.1: 



 

 

 

elemConn = element(e,:);    % element connectivity 

enn = length(elemConn); 

for I=1:enn;      % loop over element nodes 

    for i=1:2      % loop over spatial dimensions 

        Ii=nn*(i-1)+sctr(I);    % dof map 

        f(Ii) = f(Ii) + f((i-1)*enn+I); 

    end 

end 

 

but uses a nested for loop (bad). This is an even more egregious act considering the fact that it 

occurs within an element loop so this can really slow down the execution time of the program 

(by orders of magnitude in many cases). And it gets even worse when scattering a matrix 

operator (stiffness matrix) since we will have four nested for loops. Fortunately, Matlab allows 

for an easy solution; the following code performs exactly the same scattering as it is done in the 

above code but without any for loops, so the execution time is much improved (not to mention 

that it is much more concise). 

 

sctr = element(e,:);    % element connectivity 

sctrVct = [ sctr sctr+nn ];   % vector scatter 

f(sctrVct) = f(sctrVct) + fe; 

 

To scatter an element stiffness matrix into a global stiffness matrix the following line 

does the trick 

 

K(sctrVct,sctrVct) = K(sctrVct,sctrVct) + ke; 

 

This terse array indexing of Matlab is a bit confusing at first but if one spends a bit of 

time getting used to it, it will become quite natural and useful.  

 

 

 

 



 

 

Enforcement of Essential Boundary Conditions 

 

The final issue before solving the linear algebraic system of finite element equations is the 

enforcement of essential boundary conditions. Typically this involves modifying the system 

 

K d f            (A.19) 

so that the essential boundary condition 

 

nn dd            (A.20) 

 

is satisfied while retaining the original finite element equations on the unconstrained dofs. In 

(A.20), the subscript n refers to the index of the vector d, not to a node number. An easy way to 

enforce (A.20) would be to modify thn  row of the K matrix so that 

 

nmnmK    Nm ,,2,1      (A.21) 

 

where N is the dimension of K, and to set 

 

nn df  .           (A.22) 

 

This reduces the thn  equation of (A.19) to (A.20). Unfortunately, this destroys the symmetry of 

K which is a very important property for many efficient linear solvers. By modifying the thn  

column of K as follows 

 

nmnmK ,   Nm ,,2,1  .    (A.23) 

 

we can make the system symmetric. Of course this will modify every equation in (A.19) unless 

we modify the force vector f: 

 

nmnm dKf  .              (A.24) 



 

 

 

If we write the modified thk  equation in (A.19) 

 

    nknkNkNnnknnkkk dKfdKdKdKdKdK    11112211           (A.25) 

 

it can be seen that we have the same linear equations as in (A.19), but just with the internal force 

from the constrained dof. This procedure in Matlab is as follows 

 

f = f - K(:,fixedDofs)*fixedDofValues; 

K(:,fixedDofs) = 0; 

K(fixedDofs,:) = 0; 

K(fixedDofs,fixedDofs) = bcwt*speye(length(fixedDofs)); 

f(fixedDofs) = bcwt*fixedDofValues; 

 

where fixedDofs is a vector of the indicies in d that are fixed, fixedDofValues is a vector of the 

values that fixedDofs are assigned to and bcwt is a weighing factor to retain the conditioning of the 

stiffness matrix (typically bcwt = trace(K)/N) 

 

Hopefully this brief overview of programming simple finite element procedures with Matlab 

has helped bridge the gap between reading the theory of finite element method and sitting down 

and writing one‟s own finite element codes. Hence, examples in the Appendix can in future be 

used as a reference to understand the basics of finite element method programming. 

 
 

Figure A.1: A simple finite element mesh of triangular elements and an example of an element force vector f
e
 

scattered into a global force vector f



 

 

Appendix B: Mesh generation – Gmsh 

 

Figure B.1: Gmsh graphical user interface (gui) 

Gmsh is an automatic three-dimensional finite element mesh generator with built-in pre- 

and post-processing facilities. With Gmsh you can create or import 1D, 2D and 3D geometrical 

models, mesh them, launch external finite element solvers and visualize solutions. Gmsh can be 

used either as a stand-alone program (graphical or not) or as a C++ library.  

For the requirements of this master thesis, Gmsh will serve mainly as a mesh generator 

used for creating the geometry of the problem and its mesh. As an “external” finite element 

solver we shall use Matlab programming language, i.e. by importing generated mesh into it and 

developing an algorithm which shall, with given input parameters and through finite element 

code, solve the problem and print the numerical results. For the purposes of the graphical 

visualization, the results will also be exported into Paraview, so the general problem solving 

approach structure shall be Gmsh + Matlab + Paraview.  

Gmsh is built around four modules: geometry, mesh, solver and post-processing. As 

stated, here the emphasis shall be put on the first two modules: geometry and mesh. The 

specification of any input to these modules is done either interactively using the graphical user 

interface or in ASCII text files using Gmsh's own scripting language, or using both of them (gui 



 

 

and ASCII) simultaneously. The latter can be very convenient because you can directly alter the 

code generated in ASCII text file, e.g. for the purpose of parametrization, correction of errors 

made in gui etc., since interactive actions generate language bits in the input files and vice versa. 

This makes it possible to automate all treatments, using loops, conditionals and external system 

calls. 

The example of such source code which is automatically generated in ASCII text file by 

defining various geometrical entities in Gmsh‟s gui (slightly manually altered for the purpose of 

parametrization) is given in Figure B.2: 

 

Figure B.2: Source code in ASCII text file which generates geometry in Gmsh for a simple plate with a hole 

problem 

Here you can see that various geometrical entities are defined, such as points, lines, circle 

arcs, surfaces etc. Gmsh uses a boundary representation (“BRep”) to describe geometries. 

Models are created in a bottom-up flow by successively defining points, oriented lines (line 

segments, circles, ellipses, splines, …), oriented surfaces (plane surfaces, ruled surfaces,  

triangulated surfaces, …) and volumes. Groups of geometrical entities, called “physical groups”, 



 

 

can also be defined based on these elementary geometrical entities, and such are physical surface 

10 and physical lines 11 and 12 in the example above, respectively. The usage of physical groups 

is very important since with the help of these we can transfer the plain geometry to a 2D or 3D 

object with physical properties, which is essential when working with real-life engineering 

problems. These can be boundary conditions, fixed edges, applied external load, material 

properties, etc. Whenever we have some of these defined on a geometrical entity in our problem, 

it is essential that we assign a property of a physical group to it.  

Gmsh‟s scripting language also allows all geometrical entities to be fully parametrized, 

which can be done either in gui or writing first two lines in the script in the example above. lc  is 

essentially a parameter that represents characteristic length whose value can be assigned to a 

specific geometrical entity and using it we can achieve different finite element densities in the 

desired areas when meshing. 

The result of such generated source code, seen from Gmsh graphical user interface, is 

shown in Figure B.3. It represents geometry of a plate with a hole, with point labels shown (.geo 

file). 

 

Figure B.3: Geometry of a plate with a hole in Gmsh graphical user interface 

Meshing this geometry can be done fairly simple in the Gmsh gui, under the module 

“Mesh”. Mesh module offers many possibilities such as defining order of the finite elements 

used (when using triangle elements – order 1 for CST, order 2 for LST, etc., refining the mesh, 

optimizing etc. 

The mesh of the geometry from Figure B.3, using 2 characteristic element mesh sizes on 

different sectors (as from Figure B.2), is shown in Figure B.4: 



 

 

 

Figure B.4: Mesh of a plate with a hole in Gmsh graphical user interface 

The mesh generation is performed in the same bottom-up flow as the geometry creation: 

lines are discretized first; the mesh of the lines is then used to mesh the surfaces; then the mesh 

of the surfaces is used to mesh the volumes. In this process, the mesh of an entity is only 

constrained by the mesh of its boundary. 

The .msh file that describes the mesh from Figure B.4, when opened in text editor as 

ASCII text file, would contain fairly large amount of data, since we have large number of 

elements and nodes. So, for the purposes of simple explanation how a general .msh file looks 

like, we shall use much simpler mesh, shown in Figure B.5. The syntax in the .msh file is always 

the same, regardless of the number of elements and nodes used. 

 

Figure B.5: Simple mesh of a 2D geometry plane stress problem with nodes and node labels shown 

The mesh above was used to describe a simple 2D geometry plane stress problem with 

essential boundary conditions imposed on the left edge (e.g. pinned and roller support), and 

natural boundary conditions imposed on the right edge (applied load), according to Figure B.6.  



 

 

 

 

Figure B.6: 2D plane stress problem with essential and natural boundary conditions imposed 

Although it may seem from Figure B.5 that we have just four triangular finite elements 

used in the mesh, when we open the mesh file in a text editor we can see that there are actually 

six finite elements generated in the mesh altogether, as shown in Figure B.7.  

 

Figure B.7: Syntax in the .msh file which represents the mesh from Figure 5 

Since we had boundary conditions imposed on the left and the right edge of a plate, we 

had to assign a property of a physical group (“physical line” in this case) to these edges during 

the geometry definition (making of .geo file). Because of that fact, and since Gmsh is an 

automatic finite element mesh generator, besides the four triangular elements it also created two 



 

 

line elements consisting of 2 nodes each, which Gmsh uses to represent a property of a physical 

group on these edges where the boundary conditions are implied. That can be seen most clearly 

when looking at the syntax of the .msh file from Figure B.7, and the data it stores.  

Every mesh file generated in Gmsh has the same general structure, and is divided in 

several sections (enclosed in $KEY and $ENDKEY pairs). At the very top we have the 

$MeshFormat which mostly varies from one software release to another. The next two fields are 

most important: $Nodes/$EndNodes defines the nodes and $Elements/$EndElements defines the 

elements.  

The syntax is as follows: 

$Nodes 

number-of-nodes 

node-number x-coord y-coord z-coord 

... 

$EndNodes 

 

$Elements 

number-of-elements 

elm-number elm-type number-of-tags <tag> ... node-number-list 

... 

$EndElements 

All the syntactic variables stand for integers except x-coord, y-coord and z-coord which stand for 

floating point values.  

The elm-type value defines the geometrical type for the element, as follows:   

1:  2-node line 

2:  3-node triangle 

3:  4-node quadrangle 

4:  4-node tetrahedron 



 

 

5:  8-node hexahedron 

6:  6-node prism 

7:  5-node pyramid 

8:  3-node second order line (2 nodes associated with the vertices and 1 with the edge) 

9:  6-node second order triangle (3 nodes associated with the vertices and 3 with the edges) 

10: 9-node second order quadrangle (4 nodes associated with the vertices, 4 with the edges and 1 

with the face) 

11: 10-node second order tetrahedron (4 nodes associated with the vertices and 6 with the edges) 

12: 27-node second order hexahedron (8 nodes associated with the vertices, 12 with the edges, 6 

with the faces and 1 with the volume) 

13: 18-node second order prism (6 nodes associated with the vertices, 9 with the edges and 3 

with the quadrangular faces) 

14: 14-node second order pyramid (5 nodes associated with the vertices, 8 with the edges and 1 

with the quadrangular face) 

15: 1-node point 

16: 8-node second order quadrangle (4 nodes associated with the vertices and 4 with the edges) 

17: 20-node second order hexahedron (8 nodes associated with the vertices and 12 with the 

edges) 

18: 15-node second order prism (6 nodes associated with the vertices and 9 with the edges) 

19: 13-node second order pyramid (5 nodes associated with the vertices and 8 with the edges) 

 

The number-of-tags value gives the number of integer tags that follow for the n-th 

element. By default, the first tag is the number of the physical entity to which the element 

belongs; the second is the number of the elementary geometrical entity to which the element 

belongs; the third is the number of a mesh partition to which the element belongs. All tags must 

be positive integers, or zero. A zero tag is equivalent to no tag. 

 

The node-number-list is essentially the connectivity of all the elements through the 

connection of their nodes. 



 

 

To conclude, the nodes section contains data which consists of total number of nodes, 

their ordinal number, and the nodal coordinates of each node. 

The elements section contains data which consists of total number of elements, their 

ordinal number, element type, total number of tags for the specific element (physical, 

geometrical and mesh partition tag), tag id (which can be verified and checked in the .geo file) 

for every tag defined in the mesh, and the connectivity of all the elements through the connection 

of their nodes. For triangular elements used in our example the order of nodes in Gmsh 

automatically always goes counterclockwise to ensure that the Jacobian is never less than zero. 

So, for our example of a mesh from Figure B.5, we can clearly see from Figure B.7 that 

our mesh consists of total of five nodes with the given coordinates, and six elements from which 

the first two are 2-node line elements that have a total of two tags, first tag being the physical id 

(number of the physical entity to which the elements belongs), and the second one being the 

geometrical id (number of the elementary geometrical entity to which the elements belongs), and 

these are physical lines 9 and 8 respectively, and geometrical lines 2 and 4, respectively. The last 

two columns show the element connectivity, i.e. the first line element connects nodes 2 and 3, 

the second one connects nodes 4 and 1.  

For the remaining four triangular elements the syntax goes the same, with a logical 

variation in the element connectivity, since for the triangular element connectivity is made from 

3 nodes.  

Source code of the .geo file which generates the geometry of this example is shown in 

Figure B.8. From it we can clearly see that the ids of geometrical and physical entities match 

with those in the .msh file. 



 

 

 

Figure 8: Source code in .geo file which generates geometry for a 2D plate from Figure 6 

 



 

 

Appendix C: Application of classical finite element 

procedures in 2D plane stress analysis problems 

Here in this addition to the thesis we shall present the application of classical finite element 

procedures in solving 2D plane stress problems. Starting from the first simple test example with 

just two finite elements, and completing with a more realistic engineering problem of modelling 

a 2D plate with a non symmetrical hole subjected to an in-plane bending load, we shall 

incorporate finite element algorithm written in Matlab to these problems and demonstrate how 

conventional finite element modelling and programming can be used and applied to engineering 

problems in practice. 

Examples will be solved using CST and LST elements separately, and then comparing the 

results from both. For the illustration and the concept idea, the first test example code will also 

be given here, together with a flow diagram of a complete modelling process, data flow of 

variables, and input/output of every function used, listed at the end. 

 

  



 

 

Test example 1 

Consider a problem presented at Figure 6.1, where 2a m , 1b m , 0.01 ,t m 1 1 ,F kN

2 2 ,F kN 210 ,E GPa 0.33  . 

 

Figure C.1: Simple plane stress problem 

This problem will be modelled using just two finite elements, as shown in Figure C.2 (CST 

example). 

 

Figure C.2: Mesh of the problem from Figure C.1 

 

a) Constant strain triangle (CST) 

Flow diagram of a complete modelling process using CST element is presented in Figure 

C.3. The process is incorporated in the Matlab script file “test_example_solve_2FE_CST.m”, 

given in the Appendix. 



 

 

 

Figure C.3a: Pre-processing and displacement processing phase 

 



 

 

 

 

Figure C.3b: Strain & stress processing phase 

 



 

 

 

 

Figure C.3c: Post-processing phase 

 

Data input and data output values for the displacement processing phase are given in 

Table C.1. 



 

 

 

Table C.1: Displacement processing input & output data 

 

Data input and output values for the strain & stress processing phase are given in Table 

C.2. 

 

Strain & Stress Processing Data 

Input Output 

1. node 

0     0 
2     0 
2     1 
0     1 

1. node 

0     0 
2     0 
2     1 
0     1 

2. element 
1     2     3 
1     3     4 

2. element 
1     2     3 
1     3     4 

3. nn 4 3. nn 4 

4. ndof 8 4. ndof 8 

5. ne 2 5. ne 2 

Displacement Processing Data 

Input Output 

1. node 

0     0 
2     0 
2     1 
0     1 

1. d 

1.0e-005 * 
 

0 
0 

0.2418 
-0.1013 
0.3296 
-0.1350 

0 
-0.0606 

2. element 
1     2     3 
1     3     4 

3. nn 4 

4 ndof 8 

5. ne 2 

2. freac 

1.0e+003 
* 
 

-1.0000 
-0.0000 
-2.0000 

6. thk 0.0100 

7. young 2.1000e+011 

8. poisson 0.3300 

9. ifix 1     2     7 

10. iforce 
3        1000 
5        2000 

11. defScale 50000 



 

 

6. thk 0.0100 6. d 

1.0e-005 * 
 

0 
0 

0.2418 
-0.1013 
0.3296 
-0.1350 

0 
-0.0606 

7. young 2.1000e+011 7. freac 

1.0e+003 * 
 

-1.0000 
-0.0000 
-2.0000 

8. poisson 0.3300 8. strain 

1.0e-005 * 
 

0.1209    0.1648 
-0.0337   -0.0606 
0.0372   -0.0372 

9. ifix 1     2     7 

9. 
stress 

 

1.0e+005 * 
 

2.5872    3.4128 
0.1468   -0.1468 
0.2936   -0.2936 
2.5679    3.5254 

 

10. iforce 
3        1000 
5        2000 

11. defScale 50000 

10. defScale 50000 

12. d 

1.0e-005 * 
 

0 
0 

0.2418 
-0.1013 
0.3296 
-0.1350 

0 
-0.0606 

13. freac 

1.0e+003 * 
 

-1.0000 
-0.0000 
-2.0000 

 

Table C.2: Strain & stress processing input & output data 



 

 

Data input values and ensight files for the post-processing phase are given in Table C.3. 

Notice that there is no output (plotting and visualizing results with optional user interface 

intervention until end).  

Post-processing Input Data 

Variables Files 

1. node 

0     0 
2     0 
2     1 
0     1 

1. fea2d.geom 

2. element 
1     2     3 
1     3     4 

2. fea2d0000.s11 

3. nn 4 3. fea2d0000.s22 

4. ndof 8 4. fea2d0000.s12 

5. ne 2 5. fea2d0000.svm 

6. d 

1.0e-005 * 
 

0 
0 

0.2418 
-0.1013 
0.3296 
-0.1350 

0 
-0.0606 

6. fea2d0000.e11 

7. freac 

1.0e+003 * 
 

-1.0000 
-0.0000 
-2.0000 

7. fea2d0000.e22 

8. strain 

1.0e-005 * 
 

0.1209    0.1648 
-0.0337   -0.0606 
0.0372   -0.0372 

8. fea2d0000.e12 

9. stress 

1.0e+005 * 
 

2.5872    3.4128 
0.1468   -0.1468 
0.2936   -0.2936 
2.5679    3.5254 

 

9. fea2d.case 

10. defScale 50000 

Table C.3: Post - processing input data 



 

 

Flow diagram from Figure 6.3 which describes the modelling process in the Matlab script 

file “test_example_solve_2FE_CST.m” has a total of eight functions called. Each of these 

functions has a specific task, described in the flow diagram. Functions are listed below, together 

with their input and output. 

test_example_solve_2FE_CST.m – functions with I/O 

FUNCTION INPUT OUTPUT 

cmat_mat1.m 

young; 

poisson; 

formulation ('PSTRESS') 

material stiffness matrix C 

for a linear isotropic elastic 

  material 

bmat_tria3.m 

nodal coordinates of the 

element (not the same as 

variable “node”) 

strain – displacement 

matrix B; 

element area A 

fesolve.m 

global stiffness matrix K; 

global load vector fext; 

constrained degrees of 

freedom ifix 

global displacements d; 

reaction forces in 

constrained dofs freac 

principal_val.m stress principal stress ps 

ensight_fegeometry.m 

filename; 

node; 

element connectivity 

matrix; 

element type 

Ensight Gold format file 

(.geom) with finite element 

geometry 

ensight_field.m 

filename; 

data (element or node); 

element type 

Ensight Gold format grid 

data file 

ensight_case.m 

jobname; 

geomfile; 

times; 

scalarvar; 

vectorvar; 

tensorvar; 

scalarcell; 

vectorcell; 

tensorcell; 

Ensight .case file 

nodal_avg.m 

element value; 

element connectivity 

matrix; 

node 

nodal average values of 

element data nval 



 

 

Table C.4: Functions used in „test_example_solve_2FE_CST.m’ 

 

Result of this analysis for stresses, strains, displacements and reaction forces in 

constrained dofs, as from Table C.2, is given below. Note that the fourth component of stress in 

the table is the von Mises stress. 

Plot of the von Mises stress with scaled displacements on the original mesh is presented 

in Figure C.4.  

 

STRESS (
510  ) STRAIN (

510  ) 

Stress 

component 
Element 1 Element 2 

Strain 

component 
Element1 Element 2 

x   2.5872 3.4128 x   0.1209 0.1648 

y   0.1468 -0.1468 y   -0.0337 -0.0606 

xy   0.2936 -0.2936 
xy   0.0372 -0.0372 

v   2.5679 3.5254 

 

Table C.5: Stress & strain results using CST element 

 

DISPLACEMENT (
510  ) REACTION FORCE (

310  ) 

NODE x y NODE x y 

1. 0 0 1. -1.0000 0 

2. 0.2418 -0.1013 2.  0 0 

3. 0.3296 -0.1350 3.  0 0 

4. 0 -0.0606 4. -2.0000 0 

 

Table C.6: Displacement & reaction force results using CST element 

 



 

 

 

Figure C.4: Von Mises stress with scaled displacements on the original mesh using CST elements 

a) Linear strain triangle (LST) 

The process is incorporated in the Matlab script file “test_example_solve_2FE_LST.m”, 

given in the Appendix.  

Since an LST element has six nodes, we will have a total of nine nodes in the mesh model 

(three nodes on the diagonal intersect).  

Flow diagram of a modelling process is basically the same as in Figure C.3, the only 

differences are: 

- The function which generates  B  matrix is now a new one, bmat_tria6.m, given in the 

Appendix 

- We had to introduce a new function in post-processing section, el_renumber.m, whose 

code along with its description is given below. 

 

 

 

 



 

 

function element2 = el_renumber(element) 

  
% function element2 = el_renumber(element)  
% 
% since for an LST element the nodes are always numbered first at vertices 
% and then at the sides, we need to renumber that sequence for the purposes 
% of plotting the mesh and the output stress in Matlab correctly. 
%  
% function el_renumber.m renumbers the element connectivity matrix on an  
% LST element so that the neighboring nodes are numbered consecutively from 
% 1 to 6, going counterclockwise. It is used just for the purposes of  
% plotting the output mesh geometry correctly. 

  
nel=size(element,1); % number of elements 

  
for i=1:nel 
  element2(i,1)=element(i,1);  
  element2(i,3)=element(i,2);  
  element2(i,5)=element(i,3);  
  element2(i,2)=element(i,4);  
  element2(i,4)=element(i,5);  
  element2(i,6)=element(i,6);  
end 
 

So in the input data in the post-processing section, along with variable element, we also 

have variable element2 which the function el_renumber.m returnes, and which we use to plot the 

von Mises stress with scaled displacements on the original mesh generated in Matlab. 

Results are presented in Table C.7 and Table C.8. The values for stresses and strains, as 

for displacements and reaction forces are slightly different due to a new middle node on the left 

and right edge of a plate, to which we applied essential and natural boundary conditions. 

Consecutively, the y – displacement in the top left corner of the plate is smaller, due to a closer 

fixed support of the middle node on the left edge.   

STRESS (
510  ) STRAIN (

510  ) 

Stress 

component 
Element 1 Element 2 

Strain 

component 
Element1 Element 2 

x   1.7643 2.5062 x   0.0845 0.1190 

y   -0.0301 0.0214 y   -0.0292 -0.0384 

xy   0.2860 -0.0012 xy   0.0362 -0.0001 



 

 

v   1.8472 2.4955 

 

Table C.7: Stress & strain results using LST element 

 

DISPLACEMENT (
510  ) REACTION FORCE (

310  ) 

NODE x y NODE x y 

1. 0 0 1. -0.0057 -0.1759 

2. 0.0005 -0.0688 2. 0 0 

3. 0.0125 -0.2787 3. 0 0 

4. 0.1351 -0.2911 4. 0 0 

5. 0.3003 -0.3095 5. 0 0 

6. 0.1457 -0.0910 6. 0 0 

7. 0 -0.0157 7. -1.0057 0 

8. 0 0 8. -1.9886 0.1759 

9. 0.0701 -0.0727 9. 0 0 

 

Table C.8: Displacement & reaction force results using LST element 

 

Plot of the von Mises stress with scaled displacements on the original mesh using LST 

elements is presented in Figure C.5. Notice how the strain linearly changes within the elements – 

at middle nodes plot is slightly changing direction. 

 

Figure C.5: Von Mises stress with scaled displacements on the original mesh using LST elements 



 

 

 

Test example 2 

Here we shall present the same problem from Test example 1, but using a different approach 

in the pre-processing phase. Justification for the stated shall be presented in the following 

paragraph. 

Test example 1 was a basis for understanding the process of modelling a specific engineering 

problem through finite element code. That is a considerably demanding process, even with just 2 

finite elements involved. But luckily, local properties of finite elements can be developed by 

considering them in isolation, as individual entities. From the standpoint of computer 

implementation, that means that you can write one subroutine or module that constructs, by 

suitable parametrization, all elements of one type, instead of writing a new one for each element 

instance and that is exactly the case with our code. And what that means for our problem is that 

we can basically apply code developed earlier to a desirable amount of finite elements (i.e. mesh 

density) which we chose our structure to be discretized with. Although that is a good thing, it is 

highly unpractical to manually inscribe the input data to Matlab, especially nodal coordinates and 

element connectivity matrix since for dense meshes this data can be extremely large. In real-life 

engineering problems we shall always have fine discretizations and dense meshes, even in just 

some parts of our structure. Therefore, much more effective approach is to use a mesh generator.  

For the purposes of this thesis we shall use Gmsh, an automatic three-dimensional finite 

element mesh generator. For a problem from previous chapter we shall generate a simple mesh 

made of six finite elements, import the data from this mesh into Matlab, and then follow the 

same procedure in processing and post-processing phase as before. Finally, in Test example 3 we 

shall implement this approach to solve a more complex 2D problem which comes closer to 

problems dealt with in practice. 

a) CST element 

So, we have the same problem s before, for which the geometry and a simple mesh using 

CST elements is now made in Gmsh and presented in Figure C.6.  



 

 

 

Figure C.6: Simple mesh using CST elements generated in Gmsh 

 

As explained earlier, this simple mesh actually consists of six finite elements, two of which are 

the 2-node line elements (left and right edge of the plate), and the remaining four triangular CST 

elements with an intersecting node 5. To the surface of the plane and the left and right edge 

physical ids were assigned, because of the boundary conditions and the connectivity of elements 

inside the surface. Boundary conditions are also the reason Gmsh automatically generated those 

two 2-node line elements at the edges.  

Now the only “trick” is in finding a way to import data from this mesh into Matlab, rather than 

inscribing it manually in Matlab input section. Few Matlab functions that are a part of FEMLAB 

are doing exactly this. The whole process is incorporated in the Matlab script file 

“test_example_solve_6FE_CST.m”, given in the Appendix. 



 

 

 

Figure C.7: Pre-processing phase by importing mesh data from Gmsh 



 

 

Figure C.7 shows the flow diagram which is basically the same as in Figure C.3a, the only 

difference is that the input data comes from Gmsh, i.e. it is imported from Gmsh into Matlab 

with the help of functions listed. Code for these functions with complete description is given in 

the Appendix. In short, readnodes.m reads in the node coordinate matrix, readelements.m reads 

in the element connectivity matrix, readnodeset.m reads in the physical node ids (the way Gmsh 

works with boundary conditions), renumber.m renumbers the node ids that there are no duplicate 

entries (sometimes Gmsh messes it up), and etypestr.m converts an element type id as from 

Gmsh to an actual element type string and is used in the function readelements.m.  

The whole rest of the process is the same as in chapter C.1a, i.e. launching a finite element solver 

in Matlab and presenting, plotting and visualizing results in post-processing.  

Plot of the von Mises stress with scaled displacements on the original mesh using CST elements 

and an imported mesh from Gmsh is presented in Figure C.8.  

 

Figure C.8: Von Mises stress with scaled displacements on the original mesh using CST elements and an imported 

mesh from Gmsh 

  



 

 

b) LST element 

The procedure for modelling this problem with an LST element in Gmsh is similar, after the 

command “mesh – 2D” inside Gmsh mesh module, we need to choose the option “Set order 2”. 

Mesh is presented in Figure C.9. 

 

Figure C.9: Mesh using LST elements generated in Gmsh for the problem from chapter 6.1 

 

The rest of the process is basically the same as in chapter C.1b, so the function that generates 

 B  matrix is bmat_tria6.m and in the post processing section we have the function 

el_renumber.m, described earlier.  

The whole process is incorporated in the Matlab script file 

“test_example_solve_6FE_LST.m”, given in the Appendix. 

Plot of the von Mises stress with scaled displacements on the original mesh using LST 

elements and an imported mesh from Gmsh is presented in Figure C.10.  

Again we see how the strain linearly changes within the elements, so the more elements 

we use, the results will be better comparing with CST (for the same number of elements, LST 

has double number of nodes per each element, so although the mesh has the same density, due to 

the larger number of nodes the results are considerably better).  



 

 

 

Figure C.10: Von Mises stress with scaled displacements on the original mesh using LST elements and an imported 

mesh from Gmsh 

Test example 3 

Consider a problem presented in Figure C.11. For a thin plate with a non symmetrical hole 

subjected to an in-plane bending load, with fixed support on the left edge, stress analysis needs to 

be performed.  

Parameters: 

6L m , 1.1h m , 0.3r m , 0.01 ,t m 20 ,F kN 210 ,E GPa 0.33  . 

 

Figure 6.11: Thin plate with a non symmetrical hole 



 

 

a) CST element 

So, we follow the procedure from Test example 2, having in mind that this is a much more 

realistic problem than those before, so we‟ll need to have a fine mesh, especially in the area 

around the hole since the curved geometry of the hole is making it more susceptible to a larger 

strain gradient. 

Mesh for this problem using CST elements and 2 different mesh densities is presented in 

Figure C.12, with nodes displayed. Notice how the nodes on the left and right edges are in 

different colours because of the essential and natural boundary conditions imposed through the 

mechanism of defining physical ids in Gmsh.  

 

Figure C.12: Mesh using CST elements generated in Gmsh for a thin plate with a hole problem 

Now the rest of the procedure is the same as in Test example 2. Mesh data is imported to Matlab, 

the solving procedure is the same, as is the structure of the post-processing phase. 

The whole process is incorporated in the Matlab script file “plate_w_hole_solve_CST.m”, given 

in the Appendix. 

Plot of the von Mises stress with scaled displacements on the original mesh using CST elements 

and an imported mesh from Gmsh is presented in Figure C.13. 

Notice how the stress in the area around the hole does not have any peaks of higher stress value, 

which isn‟t expected even visually when inspecting the results on the plot at first.  



 

 

 

Figure C.13: Von Mises stress with scaled displacements on the original mesh using CST elements and an imported 

mesh from Gmsh for a thin plate with a hole problem 

b) LST element 

We follow the procedure from Test example 2b. 

Mesh for this problem using LST elements and 2 different mesh densities is presented in 

Figure C.14, with nodes displayed. Notice how the mesh density regarding elements is actually 

the same as in CST case, but there are far much more nodes. 

 

Figure C.14: Mesh using LST elements generated in Gmsh for a thin plate with a hole problem 



 

 

The rest of the procedure is the same as in Test example 2b. Mesh data is imported to Matlab, 

the solving procedure is the same, as is the structure of the post-processing phase. 

The whole process is incorporated in the Matlab script file “plate_w_hole_solve_LST.m”, 

given in the Appendix. 

Plot of the von Mises stress with scaled displacements on the original mesh using LST 

elements and an imported mesh from Gmsh is presented in Figure C.15. 

Notice how the stress in the area around the hole does have peaks of higher stress value, 

especially in the top and bottom corner of the hole, which is expected when visually inspecting 

the results on the plot at first. To conclude, LST element has much greater accuracy, especially 

around curved edges such as the hole in this example.  

 

Figure C.15: Von Mises stress with scaled displacements on the original mesh using LST elements and an imported 

mesh from Gmsh for a thin plate with a hole problem 

 



 

 

Comparison of the area around a hole is presented in Figures C.16 and C.17.  

 

Figure C.16: Area around the hole – CST element 

 

Figure 6.17: Area around the hole – LST element 

 



 

 

Appendix D: Matlab codes for classical finite element 

procedures 

% fea2d.m 
% 
% A two dimensional finite element code  
% 
%--------------------------------------------------------------------- 
%  
%  Input Variables (must be defined) 
% 
%       node - nodal coordinate matrix (2xnn matrix) 
%       conn - element connectivity matrix (2xnumelem matrix) 
%       area - element cross sectional area (column vector) 
%       young - element Young's modulus (column vector) 
% 
%       ifix - fixed global dofs 
%       iforce - global dofs where point forces are applied (1st col) 
%                and value of nodal forces (2nd col) 
% 
%       defScale - optional parameters that scales the displacement on  
%                  output plot 
% 
%--------------------------------------------------------------------- 
  
clear all; 
clc; 
  
% ------------------------------------------------------------------------- 
%           S T A R T    O F   I N P U T     S E C T I O N 
% ------------------------------------------------------------------------- 
node=[0.0 0.0; 
      2.0 0.0; 
      2.0 1.0; 
      0.0 1.0 ]; 
   
element=[1 2 3;  
         1 3 4];  
  
thk=0.01; 
  
young=210e9; 
poisson=0.33; 
  
ifix=[ 2*1-1 2*1 2*4-1 ];  
  
iforce = [ 2*2-1 1000;  
           2*3-1 2000]; 
  
defScale = 50000; 



 

 

  
%-------------------------------------------------------------------------- 
%             E N D     O F   I N P U T     S E C T I O N 
%-------------------------------------------------------------------------- 
  
% 
% You should not need to touch anything below 
% 
fprintf('\n\n-----------------------------------------------\n'); 
fprintf('|    2D PLANE STRESS FINITE ELEMENT CODE      |\n'); 
fprintf('-----------------------------------------------\n'); 
  
nn=size(node,1);  % number of nodes 
ndof=2*nn;        % number of dofs 
ne=size(element,1);  % number of elements 
  
% ----------------------- COMPUTATION SECTION ------------------------- 
  
% assemble K 
fprintf(' ASSEMBLING STIFFNESS MATRIX\n'); 
  
c1=young/(1-poisson^2);  % plane stress material stiffness matrix 
c2=poisson*c1; 
c3=0.5*(1-poisson)*c1; 
C=cmat_mat1(young,poisson,'PSTRESS'); 
  
K=sparse(ndof,ndof); 
for e=1:ne 
  
  conne=element(e,:); 
  
  sctr(1:2:6)=2*conne-1; 
  sctr(2:2:6)=2*conne; 
  
  [B,A]=bmat_tria3( node(conne,:) ); 
  ke=B'*C*B*A*thk; 
   
  K(sctr,sctr) = K(sctr,sctr) + ke;  
end 
  
% compute the external force 
fext=zeros(ndof,1); 
fext(iforce(:,1))=iforce(:,2); 
  
% solve the system 
fprintf(' ASSEMBLING STIFFNESS MATRIX\n'); 
[d,freac]=fesolve(K,fext,ifix); 
  
% compute the strains and stresses and plot results 
fprintf(' CALCULATE THE STRESSES\n'); 
stress=zeros(4,ne);  % matrix of element stresses and strains 
strain=zeros(3,ne);  % 
  



 

 

for e=1:ne 
  
  conne=element(e,:); 
  B=bmat_tria3( node(conne,:) );   
  sctr(1:2:6)=2*conne-1; 
  sctr(2:2:6)=2*conne; 
  strain(:,e)=B*d(sctr); 
  stress(1:3,e)=C*strain(:,e);  
   
  ps=principal_val(stress(1:3,e));  % principal stresses 
  stress(4,e)=sqrt( 0.5*( (ps(2)-ps(1))^2 + (ps(3)-ps(2))^2 + ... 
    (ps(1)-ps(3))^2 ) );   % the von Mises stresses - equivalent shear  
                           % stresses according to von Mises 
   
end 
  
% ---------------------- POST PROCESSING SECTION ------------------------- 
% plot the stresses 
if ( ~exist('defScale') ) 
    defScale = 10; 
end 
x = node + defScale*[d(1:2:ndof) d(2:2:ndof)]; 
fprintf(' PLOTTING RESULTS\n'); 
clf 
hold on 
trisurf(element,x(:,1),x(:,2),zeros(nn,1),stress(4,:),'EdgeColor','cyan') 
trimesh(element,node(:,1),node(:,2),zeros(nn,1),'FaceColor','none','EdgeColor','black','LineStyle','--') 
title('PLOT OF MISES STRESS');  
colorbar 
view(2) 
axis equal 
  
% write the results to an ensight file (you can  read this with 
% paraview,  www.paraview.org) 
fprintf(' WRITING RESULTS\n'); 
ensight_fegeometry('fea2d.geom',node,element,'Tria3'); 
ensight_field('fea2d0000.s11',nodal_avg(stress(1,:),element,node)); 
ensight_field('fea2d0000.s22',nodal_avg(stress(2,:),element,node)); 
ensight_field('fea2d0000.s12',nodal_avg(stress(3,:),element,node)); 
ensight_field('fea2d0000.svm',nodal_avg(stress(4,:),element,node)); 
ensight_field('fea2d0000.e11',nodal_avg(strain(1,:),element,node)); 
ensight_field('fea2d0000.e22',nodal_avg(strain(2,:),element,node)); 
ensight_field('fea2d0000.e12',nodal_avg(strain(3,:),element,node)); 
ensight_case('fea2d','fea2d.geom',0,... 
  {'s11','s22','s12','svm','e11','e22','e12'}); 
  
fprintf('\n-----------------------------------------------\n'); 
fprintf(  '|                END OF PROGRAM               |'); 
fprintf('\n-----------------------------------------------\n'); 
  

 

 



 

 

%---------------------------------------------------------------------- 
% 
% fea2d.m 
% 
% A two dimensional finite element code  
% 
%--------------------------------------------------------------------- 
%  
%  Input Variables (must be defined) 
% 
%       node - nodal coordinate matrix (2xnn matrix) 
%       conn - element connectivity matrix (2xnumelem matrix) 
%       area - element cross sectional area (column vector) 
%       young - element Young's modulus (column vector) 
% 
%       ifix - fixed global dofs 
%       iforce - global dofs where point forces are applied (1st col) 
%                and value of nodal forces (2nd col) 
% 
%       defScale - optional parameters that scales the displacement on  
%                  output plot 
% 
%--------------------------------------------------------------------- 
  
clear all; 
clc; 
  
% ------------------------------------------------------------------------- 
%           S T A R T    O F   I N P U T     S E C T I O N 
% ------------------------------------------------------------------------- 
node=[0.0 0.0; 
      1.0 0.0; 
      2.0 0.0; 
      2.0 0.5; 
      2.0 1.0; 
      1.0 1.0; 
      0.0 1.0; 
      0.0 0.5; 
      1.0 0.5 ]; 
   
element=[1 3 5 2 4 9;  
         1 5 7 9 6 8];  
  
young=210e9; 
poisson=0.33; 
  
thk=0.01; 
  

  
iforce = [ 2*3-1 500; 
           2*4-1 1000; 
           2*5-1 1500]; 
  

        



 

 

ifix=[ 2*1-1 2*1 2*7-1 2*8-1 2*8 ];  
  

  
defScale = 50000; 
  
%-------------------------------------------------------------------------- 
%             E N D     O F   I N P U T     S E C T I O N 
%-------------------------------------------------------------------------- 
  
% 
% You should not need to touch anything below 
% 
fprintf('\n\n-----------------------------------------------\n'); 
fprintf('|    2D PLANE STRESS FINITE ELEMENT CODE      |\n'); 
fprintf('-----------------------------------------------\n'); 
  
nn=size(node,1);  % number of nodes 
ndof=2*nn;        % number of dofs 
ne=size(element,1);  % number of elements 
  
% ----------------------- COMPUTATION SECTION ------------------------- 
  
% assemble K 
fprintf(' ASSEMBLING STIFFNESS MATRIX\n'); 
  
c1=young/(1-poisson^2);  % plane stress material stiffness matrix 
c2=poisson*c1; 
c3=0.5*(1-poisson)*c1; 
C=cmat_mat1(young,poisson,'PSTRESS'); 
  
K=sparse(ndof,ndof); 
for e=1:ne 
  
  conne=element(e,:); 
  
  sctr(1:2:12)=2*conne-1; 
  sctr(2:2:12)=2*conne; 
  
qpt = [ 0.1666666666667, 0.1666666666667 ; 
    0.6666666666667, 0.1666666666667 ; 
    0.1666666666667, 0.6666666666667 ]; 
  
qwt = [0.3333333333333, 0.3333333333333, 0.3333333333333]; 
  
ke=zeros(12,12); 
for q=1:3 
  xi=qpt(q,:); 
  [B,jac]=bmat_tria6( node(conne,:),xi ); 
  ke = ke + B'*C*B*jac*thk*qwt(q); 
end 
  K(sctr,sctr) = K(sctr,sctr) + ke;  
end 
  



 

 

  
% compute the external force 
fext=zeros(ndof,1); 
fext(iforce(:,1))=iforce(:,2); 
  
% solve the system 
fprintf(' ASSEMBLING STIFFNESS MATRIX\n'); 
[d,freac]=fesolve(K,fext,ifix); 
  
% compute the strains and stresses and plot results 
fprintf(' CALCULATE THE STRESSES\n'); 
stress=zeros(4,ne);  % matrix of element stresses and strains 
strain=zeros(3,ne);  % 
  
for e=1:ne 
  
  conne=element(e,:); 
  
  sctr(1:2:12)=2*conne-1; 
  sctr(2:2:12)=2*conne; 
   
  for q=1:3 
    xi=qpt(q,:); 
    B=bmat_tria6( node(conne,:),xi ); 
    strain(:,e)=B*d(sctr); 
  end 
   
  stress(1:3,e)=C*strain(:,e);  
   
  ps=principal_val(stress(1:3,e));  % principal streses 
  stress(4,e)=sqrt( 0.5*( (ps(2)-ps(1))^2 + (ps(3)-ps(2))^2 + ... 
    (ps(1)-ps(3))^2 ) );   % the von Mises stresses - equivalent shear  
                           % stresses according to von Mises 
   
end 
  
% ---------------------- POST PROCESSING SECTION ------------------------- 
% plot the stresses 
if ( ~exist('defScale') ) 
    defScale = 10; 
end 
x = node + defScale*[d(1:2:ndof) d(2:2:ndof)]; 
fprintf(' PLOTTING RESULTS\n'); 
  
% el_plot=[1 2 3 4 5 9;         % renumbering the sequence of nodes on LST  
%          1 9 5 6 7 8];        % element by hand 
  
element2 = el_renumber(element); % renumbering function for the LST element 
                                 % renumbers the sequence of nodes on the 
                                 % LST element (for the neccesity of 
                                 % plotting the stresses and displacements 
                                 % on the output plot) 
                                 



 

 

clf 
hold on 
trisurf(element2,x(:,1),x(:,2),zeros(nn,1),stress(4,:),'EdgeColor','cyan') 
trimesh(element2, node(:,1),node(:,2),zeros(nn,1),'FaceColor','none','EdgeColor','black','LineStyle','--') 
title('PLOT OF MISES STRESS');  
colorbar 
view(2) 
axis equal 
  
% write the results to an ensight file (you can  read this with 
% paraview,  www.paraview.org) 
fprintf(' WRITING RESULTS\n'); 
ensight_fegeometry('fea2d.geom',node,element,'Tria6'); 
ensight_field('fea2d0000.s11',nodal_avg(stress(1,:),element,node)); 
ensight_field('fea2d0000.s22',nodal_avg(stress(2,:),element,node)); 
ensight_field('fea2d0000.s12',nodal_avg(stress(3,:),element,node)); 
ensight_field('fea2d0000.svm',nodal_avg(stress(4,:),element,node)); 
ensight_field('fea2d0000.e11',nodal_avg(strain(1,:),element,node)); 
ensight_field('fea2d0000.e22',nodal_avg(strain(2,:),element,node)); 
ensight_field('fea2d0000.e12',nodal_avg(strain(3,:),element,node)); 
ensight_case('fea2d','fea2d.geom',0,... 
  {'s11','s22','s12','svm','e11','e22','e12'}); 
  
fprintf('\n-----------------------------------------------\n'); 
fprintf(  '|                END OF PROGRAM               |'); 
fprintf('\n-----------------------------------------------\n'); 
 
 

 
% ------------------------------------------------------------------------- 
%           S T A R T    O F   I N P U T     S E C T I O N 
% ------------------------------------------------------------------------- 
  
clear all; 
clc; 
fprintf('\n READING INPUT\n'); 
  
% ------------------------ DATA INPUT SECTION ------------------------- 
[node,nid]=readnodes('plate_w_hole_CST.msh');       % read in mesh from 
element=readelements('plate_w_hole_CST.msh',10);    % gmsh file 
nfix=readnodeset('plate_w_hole_CST.msh',11); 
nload=readnodeset('plate_w_hole_CST.msh',12);  
                                         
node=node(:,1:2);               % renumber node ids in element, nfix and  
element=renumber(element,nid);  % nload since gmsh does not always number  
nfix=renumber(nfix,nid);        % them  consecutively 
nload=renumber(nload,nid); 
  

  
young = 210e9; 
poisson = 0.33; 
thk=0.01; 



 

 

  
ifix=[ 2*nfix'-1 2*nfix' ];     % fix nfix nodes in x and y direction, 
                                % constraining dofs on the left edge 
  
% ifix=[ 2*1-1 2*1 2*4-1 2*4 2*31-1 2*31 2*32-1 2*32 ]; % fixing individual 
                                                        % nodes by hand 
  

  
fext(2*nload)=-2857.14;   % line load at nload in y-direction - load on the  
                        % whole right edge 
  

  
% iforce = [ 2*2 -20000;     % optional, applied load in individual nodes 
%            3*2 -20000;     % and directions 
%            18*2 -20000;  
%            19*2 -20000]; 
  
defScale = 50; 
  

                   
%-------------------------------------------------------------------------- 
%             E N D     O F   I N P U T     S E C T I O N 
%-------------------------------------------------------------------------- 
% 
% You should not need to touch anything below 
% 
fprintf('\n\n-----------------------------------------------\n'); 
fprintf('|    2D PLANE STRESS FINITE ELEMENT CODE      |\n'); 
fprintf('-----------------------------------------------\n'); 
  
nn=size(node,1);  % number of nodes 
ndof=2*nn;        % number of dofs 
ne=size(element,1);  % number of elements 
  
% ----------------------- COMPUTATION SECTION ------------------------- 
  
% assemble K 
fprintf(' ASSEMBLING STIFFNESS MATRIX\n'); 
  
c1=young/(1-poisson^2);  % plane stress material stiffness matrix 
c2=poisson*c1; 
c3=0.5*(1-poisson)*c1; 
C=cmat_mat1(young,poisson,'PSTRESS'); 
  
K=sparse(ndof,ndof); 
for e=1:ne 
  
  conne=element(e,:); 
  
  sctr(1:2:6)=2*conne-1; 
  sctr(2:2:6)=2*conne; 
  



 

 

  [B,A]=bmat_tria3( node(conne,:) ); 
  ke=B'*C*B*A*thk; 
   
  K(sctr,sctr) = K(sctr,sctr) + ke;  
  
end 
  
% compute the external force 
fext=zeros(ndof,1); 
fext(2*nload)=-2857.14; 
% fext(iforce(:,1))=iforce(:,2);  % when defining iforce in input 
  
% solve the system 
fprintf(' ASSEMBLING STIFFNESS MATRIX\n'); 
[d,freac]=fesolve(K,fext,ifix); 
  
% compute the strains and stresses and plot results 
fprintf(' CALCULATE THE STRESSES\n'); 
stress=zeros(4,ne);  % matrix of element stresses and strains 
strain=zeros(3,ne);  % 
  
for e=1:ne 
  
  conne=element(e,:); 
  B=bmat_tria3( node(conne,:) );   
  sctr(1:2:6)=2*conne-1; 
  sctr(2:2:6)=2*conne; 
  strain(:,e)=B*d(sctr); 
  stress(1:3,e)=C*strain(:,e);  
   
  ps=principal_val(stress(1:3,e));  % principal streses 
  stress(4,e)=sqrt( 0.5*( (ps(2)-ps(1))^2 + (ps(3)-ps(2))^2 + ... 
    (ps(1)-ps(3))^2 ) );    % the von Mises stresses - equivalent shear  
                            % stresses according to von Mises 
   

   
end 
  
% ---------------------- POST PROCESSING SECTION ------------------------- 
% plot the stresses 
if ( ~exist('defScale') ) 
    defScale = 0.1; 
end 
x = node + defScale*[d(1:2:ndof) d(2:2:ndof)]; 
fprintf(' PLOTTING RESULTS\n'); 
clf 
hold on 
trisurf(element,x(:,1),x(:,2),zeros(nn,1),stress(4,:),'EdgeColor','cyan') 
trimesh(element,node(:,1),node(:,2),zeros(nn,1),'FaceColor','none','EdgeColor','black','LineStyle','--') 
title('PLOT OF MISES STRESS');  
colorbar 
view(2) 
axis equal 



 

 

  
% write the results to an ensight file (you can  read this with 
% paraview,  www.paraview.org) 
fprintf(' WRITING RESULTS\n'); 
ensight_fegeometry('fea2d.geom',node,element,'Tria3'); 
ensight_field('fea2d0000.s11',nodal_avg(stress(1,:),element,node)); 
ensight_field('fea2d0000.s22',nodal_avg(stress(2,:),element,node)); 
ensight_field('fea2d0000.s12',nodal_avg(stress(3,:),element,node)); 
ensight_field('fea2d0000.svm',nodal_avg(stress(4,:),element,node)); 
ensight_field('fea2d0000.e11',nodal_avg(strain(1,:),element,node)); 
ensight_field('fea2d0000.e22',nodal_avg(strain(2,:),element,node)); 
ensight_field('fea2d0000.e12',nodal_avg(strain(3,:),element,node)); 
ensight_case('fea2d','fea2d.geom',0,... 
  {'s11','s22','s12','svm','e11','e22','e12'}); 
  
fprintf('\n-----------------------------------------------\n'); 
fprintf(  '|                END OF PROGRAM               |'); 
fprintf('\n-----------------------------------------------\n'); 
 
 

 



 

 

Appendix E: Matlab codes for substructuring and 

superelements technique 

 
%Superstructure – read in the master nodes 
[node_L1,nid_L1]=readnodes('superstructure_LVL1.msh');   

 
% node_L1=node_L1(:,1:2); % just first 2 columns (z-coord =0, 2D example) 
  
%master nodes to work with: 
sNODE = size(node_L1); 
for ii=1:sNODE 
    sXYZ(ii,:) = node_L1(nid_L1(ii),:); 
end 
  
save('sXYZ'); 
 --- END----- 

 

 

 
%Level two superstructure – read in nodes 
[node_L2,nid_L2]=readnodes('superstructure_LVL2.msh');  %  
  
% node_L1=node_L1(:,1:2); % just first 2 columns (z-coord =0, 2D example) 
  
sNODE = size(node_L2); 
for ii=1:sNODE 
    sXYZ_L2(ii,:) = node_L2(nid_L2(ii),:); 
end 
  
save('sXYZ_L2'); 
 
----END----- 

 
% ------------------------------------------------------------------------- 
%           S T A R T    O F   I N P U T     S E C T I O N 
% ------------------------------------------------------------------------- 
  
clear all; 
clc; 
fprintf('\n READING INPUT\n'); 
  
% ------------------------ DATA INPUT SECTION ------------------------- 
[node_S1,nid_S1]=readnodes('substructure_S1_LVL3.msh');   % read in mesh from 
element_S1=readelements('substructure_S1_LVL3.msh',7);    % gmsh file 
                                         
node_S1_2D=node_S1(:,1:2:3); element_S1=renumber(element_S1,nid_S1);  %  



 

 

% edge detection 
  
%read in master node ids od the substructure 
  
id_edge_snodes=readnodeset('substructure_S1_LVL3.msh',8); 
  
NODE_S = size(id_edge_snodes,1); 
NEQ = NODE_S * 2; 
  
young = 200e9; 
poisson = 0.3; 
thk=0.01; 
                   
%-------------------------------------------------------------------------- 
%             E N D     O F   I N P U T     S E C T I O N 
%-------------------------------------------------------------------------- 
% 
% You should not need to touch anything below 
% 
fprintf('\n\n-----------------------------------------------\n'); 
fprintf('|    2D PLANE STRESS FINITE ELEMENT CODE      |\n'); 
fprintf('-----------------------------------------------\n'); 
  
nn=size(node_S1,1);  % number of nodes 
ndof=2*nn;        % number of dofs 
ne=size(element_S1,1);  % number of elements 
  
% ----------------------- COMPUTATION SECTION ------------------------- 
  
% assemble K 
fprintf(' ASSEMBLING STIFFNESS MATRIX\n'); 
  
c1=young/(1-poisson^2);  % plane stress material stiffness matrix 
c2=poisson*c1; 
c3=0.5*(1-poisson)*c1; 
C=cmat_mat1(young,poisson,'PSTRESS'); 
  
K=sparse(ndof,ndof); 
for e=1:ne 
  
  conne=element_S1(e,:); 
  
  sctr(1:2:6)=2*conne-1; 
  sctr(2:2:6)=2*conne; 
  
  [B,A]=bmat_tria3( node_S1_2D(conne,:) ); 
  ke=B'*C*B*A*thk; 
   
  K(sctr,sctr) = K(sctr,sctr) + ke;  
  
end 
  
KII = K(1:NEQ,1:NEQ); KIJ=K(1:NEQ, NEQ+1:ndof); 



 

 

KJI = K(NEQ+1:ndof,1:NEQ);  KJJ =K(NEQ+1:ndof, NEQ+1:ndof); 
  
K_red=KII-KIJ*inv(KJJ)*KJI; 
  
load('sXYZ_L2'); 
node_S1_boundary=node_S1(1:NODE_S,:); 
  
id_local_global_L2=id_local_global_transfer(node_S1_boundary, sXYZ_L2);   
                                                                            
disp('Nodal vector for substructure S1 (LEVEL 3 ---> 2):') 
disp(id_local_global_L2) 
  
save('SUB_L3_S1.mat','K_red','id_local_global_L2','NEQ','KII','KIJ','KJI','KJJ','node_S1','element_S1','ne','C') 
  
fprintf('\n-----------------------------------------------\n'); 
fprintf(  '|                END OF PROGRAM               |'); 
fprintf('\n-----------------------------------------------\n'); 
  

 

 

clear all; 
clc; 
  
load('s_disp') 
load('SUB_L2_S1.mat','id_local_global') %  
  
nn_L2=size(id_local_global,1); 
ndof_L2=2*nn_L2; 
  
  sctr(1:2:ndof_L2)=3*id_local_global-2;    
% sctr( :2:ndof_L2)=3*id_local_global-1;    
  sctr(2:2:ndof_L2)=3*id_local_global;      
  
id_local_global_dof_L2=sctr'; %  
  
s_disp_L2=s_disp(id_local_global_dof_L2,:); % L2  
   
load('SUB_L3_S1','id_local_global_L2','KJI','KJJ','node_S1','element_S1','ne','C') 
  
nn_boundary=size(id_local_global_L2,1); 
ndof_boundary=2*nn_boundary; 
  
  sctr2(1:2:ndof_boundary)=2*id_local_global_L2-1;    
  sctr2(2:2:ndof_boundary)=2*id_local_global_L2;      
  
id_local_global_dof=sctr2'; 
  
disp_boundary=s_disp_L2(id_local_global_dof,:); 
  



 

 

disp_internal=inv(KJJ)*(-KJI)*disp_boundary; 
  

 
disp_S1=[disp_boundary; disp_internal]; 
  
fprintf(' CALCULATE THE STRESSES\n'); 
  
stress=zeros(4,ne);  % matrix of element stresses and strains 
strain=zeros(3,ne);  % 
  
node_S1_2D=node_S1(:,1:2:3); %  
  
% obtaining stress 
for e=1:ne 
  
  conne=element_S1(e,:); 
  B=bmat_tria3( node_S1_2D(conne,:) );   
  sctr3(1:2:6)=2*conne-1; 
  sctr3(2:2:6)=2*conne; 
  strain(:,e)=B*disp_S1(sctr3); 
  stress(1:3,e)=C*strain(:,e);  
   
  ps=principal_val(stress(1:3,e));  % principal streses 
  stress(4,e)=sqrt( 0.5*( (ps(2)-ps(1))^2 + (ps(3)-ps(2))^2 + ... 
    (ps(1)-ps(3))^2 ) );    % the von Mises stresses – equivalent tensile  
                            % stresses according to von Mises 
  
end 
  

 
defScale = 20; 
  
nn=size(node_S1_2D,1);                 % number of nodes of substructure S1 
ndof=2*nn;                             % number of dofs of S1 
  

  
if ( ~exist('defScale') ) 
    defScale = 0.1; 
end 
x = node_S1_2D + defScale*[disp_S1(1:2:ndof) disp_S1(2:2:ndof)]; 
fprintf(' PLOTTING RESULTS\n'); 
clf 
hold on 
trisurf(element_S1,x(:,1),x(:,2),zeros(nn,1),stress(4,:),'EdgeColor','cyan') 
trimesh(element_S1,node_S1_2D(:,1),node_S1_2D(:,2),zeros(nn,1),'FaceColor','none','EdgeColor','black','LineStyle'

,'--') 
title('PLOT OF MISES STRESS FOR SUBSTRUCTURE S1 (L3)');  
colorbar 
view(2) 
axis equal 
  

  
% write the results to Paraview (ensight file format):  



 

 

fprintf(' WRITING RESULTS\n'); 
ensight_fegeometry('fea2d.geom',node_S1,element_S1,'Tria3'); 
ensight_field('fea2d0000.s11',nodal_avg(stress(1,:),element_S1,node_S1)); 
ensight_field('fea2d0000.s22',nodal_avg(stress(2,:),element_S1,node_S1)); 
ensight_field('fea2d0000.s12',nodal_avg(stress(3,:),element_S1,node_S1)); 
ensight_field('fea2d0000.svm',nodal_avg(stress(4,:),element_S1,node_S1)); 
ensight_field('fea2d0000.e11',nodal_avg(strain(1,:),element_S1,node_S1)); 
ensight_field('fea2d0000.e22',nodal_avg(strain(2,:),element_S1,node_S1)); 
ensight_field('fea2d0000.e12',nodal_avg(strain(3,:),element_S1,node_S1)); 
ensight_case('fea2d','fea2d.geom',0,... 
  {'s11','s22','s12','svm','e11','e22','e12'}); 
  
fprintf('\n-----------------------------------------------\n'); 
fprintf(  '|                END OF PROGRAM               |'); 
fprintf('\n-----------------------------------------------\n'); 
  

 

 
load('sXYZ_L2'); 
  
nn_global=size(sXYZ_L2,1); %  
ndof_global=2*nn_global; 
  
KG_L2_S1=zeros(ndof_global,ndof_global); %  
  
nSS=10; % number of substructures    
  
for ii=1:nSS 
     
    substr_ii=sprintf('SUB_L3_S%d',ii); 
    load (substr_ii,'K_red','id_local_global_L2','NEQ') 
     
    sctr(1:2:NEQ)=2*id_local_global_L2-1; 
    sctr(2:2:NEQ)=2*id_local_global_L2; 
  
    KG_L2_S1(sctr,sctr)=KG_L2_S1(sctr,sctr)+K_red; 
         
    clear sctr 
    clear K_red 
    clear id_local_global_L2 
    clear NEQ 
end 
  
% transfer of dana from L2 to L1 
  
load('sXYZ'); 
id_local_global=id_local_global_transfer(sXYZ_L2, sXYZ); 
  
NODE_S = size(sXYZ_L2,1); 
NEQ = NODE_S * 2; 
disp('Nodal vector for substructure S1 (LEVEL 2 ---> 1):') 
disp(id_local_global) 
save('SUB_L2_S1.mat','KG_L2_S1','id_local_global','NEQ'  



 

 

  

  

 
clc;  
clear all; 
  
load('sXYZ'); 
  
nn_global=size(sXYZ,1);  
ndof_global=3*nn_global; 
  
KG_L1=zeros(ndof_global,ndof_global); 
  
KG_L1_S1=zeros(ndof_global,ndof_global);  

KG_L1_S2=zeros(ndof_global,ndof_global); 
KG_L1_S3=zeros(ndof_global,ndof_global); 
KG_L1_S4=zeros(ndof_global,ndof_global); 
KG_L1_S5=zeros(ndof_global,ndof_global); 
KG_L1_S6=zeros(ndof_global,ndof_global); 
KG_L1_S7=zeros(ndof_global,ndof_global); 
  
% ------------------------------------------------------------------------- 
 
% S1: 
  
    load ('SUB_L2_S1.mat','KG_L2_S1','id_local_global','NEQ') 
     
    sctr(1:2:NEQ)=3*id_local_global-2; 
%   sctr( :2:NEQ)=3*id_local_global-1;  %  
    sctr(2:2:NEQ)=3*id_local_global; 
     
    KG_L1_S1(sctr,sctr)=KG_L1_S1(sctr,sctr)+KG_L2_S1; 
         
    clear sctr 
     
    clear id_local_global 
    clear NEQ 
     

     
% S2: 
  
    load ('SUB_L2_S2.mat','KG_L2_S2','id_local_global','NEQ') 
     
    sctr(1:2:NEQ)=3*id_local_global-2; 
%   sctr( :2:NEQ)=3*id_local_global-1;  % 

    sctr(2:2:NEQ)=3*id_local_global; 
     
    KG_L1_S2(sctr,sctr)=KG_L1_S2(sctr,sctr)+KG_L2_S2; 
         
    clear sctr 
     
    clear id_local_global 



 

 

    clear NEQ 
  

     
%  S3:  
  
    load ('SUB_L2_S3.mat','K_red','id_local_global','NEQ') 
     
    sctr(1:2:NEQ)=3*id_local_global-2; 
%   sctr( :2:NEQ)=3*id_local_global-1;  %  
    sctr(2:2:NEQ)=3*id_local_global; 
     
    KG_L1_S3(sctr,sctr)=KG_L1_S3(sctr,sctr)+K_red; 
         
    clear sctr 
    clear K_red 
    clear id_local_global 
    clear NEQ 
  

     
%  S4:  
  
    load ('SUB_L2_S4.mat','KG_L2_S4','id_local_global','NEQ') 
     
%   sctr( :2:NEQ)=3*id_local_global-2;    % 

    sctr(1:2:NEQ)=3*id_local_global-1;   
    sctr(2:2:NEQ)=3*id_local_global; 
     
    KG_L1_S4(sctr,sctr)=KG_L1_S4(sctr,sctr)+KG_L2_S4; 
         
    clear sctr 
     
    clear id_local_global 
    clear NEQ 
  

     
%  S5: 
  
    load ('SUB_L2_S5.mat','KG_L2_S5','id_local_global','NEQ') 
     
%   sctr( :2:NEQ)=3*id_local_global-2;    % 

    sctr(1:2:NEQ)=3*id_local_global-1;   
    sctr(2:2:NEQ)=3*id_local_global; 
     
    KG_L1_S5(sctr,sctr)=KG_L1_S5(sctr,sctr)+KG_L2_S5; 
         
    clear sctr 
     
    clear id_local_global 
    clear NEQ 
  

     



 

 

%  S6:  
  
    load ('SUB_L2_S6.mat','KG_L2_S6','id_local_global','NEQ') 
     
    sctr(1:2:NEQ)=3*id_local_global-2; 
    sctr(2:2:NEQ)=3*id_local_global-1;   
%   sctr( :2:NEQ)=3*id_local_global;  %  
     
    KG_L1_S6(sctr,sctr)=KG_L1_S6(sctr,sctr)+KG_L2_S6; 
         
    clear sctr 
     
    clear id_local_global 
    clear NEQ 
     

  
%  S7: 
  
    load ('SUB_L2_S7.mat','KG_L2_S7','id_local_global','NEQ') 
     
    sctr(1:2:NEQ)=3*id_local_global-2; 
    sctr(2:2:NEQ)=3*id_local_global-1;   
%   sctr( :2:NEQ)=3*id_local_global;  %  
     
    KG_L1_S7(sctr,sctr)=KG_L1_S7(sctr,sctr)+KG_L2_S7; 
         
    clear sctr 
     
    clear id_local_global 
    clear NEQ 
     
% ------------------------------------------------------------------------- 
     
KG_L1=KG_L1_S1+KG_L1_S2+KG_L1_S3+KG_L1_S4+KG_L1_S5+KG_L1_S6+KG_L1_S7; 
  
save('KG_L1') 
  

 

-----END----- 

 
nfix=readnodeset('superstructure_LVL1.msh',123); 
  

 
nfix_in_xy=readnodeset('superstructure_LVL1.msh',126); 
nfix_in_xy=nfix_in_xy(9:size(nfix_in_xy,1)); 
  
nfix_in_xz=readnodeset('superstructure_LVL1.msh',125); 
nfix_in_xz=nfix_in_xz(13:size(nfix_in_xz,1)); 
  
nload=readnodeset('superstructure_LVL1.msh',124); 



 

 

ifix=[ 3*nfix'-2 3*nfix'-1 3*nfix' 3*nfix_in_xy' 3*nfix_in_xz'-1 ]; 
  
load('sXYZ'); 
  
nn_global=size(sXYZ,1); 
ndof_global=3*nn_global; 
  
fext=zeros(ndof_global,1); 
fext(3*nload)=-8695.65; 
  
load('KG_L1') 
  
[s_disp,freac]=fesolve(KG_L1,fext,ifix); 
  
save('s_disp') 
 

---END--- 

 


