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Résumé 
 

Les mélanges aqueux diffèrent des mélanges de liquides simples, du fait que les molécules d'eau tendent à 
s'associer préférentiellement entre elles au travers de la liaison hydrogène, de ce fait ségréguant les 
molécules de soluté sans pour autant entraîner une démixtion totale des mélanges. Même des mélanges 
aussi simples que l'eau et le méthanol exhibent ce type d'ordre. La micro-hétérogénéité (MH) résultante 
apparaît comme étant distincte des fluctuations de concentration (CF), qui jouent un rôle important dans 
la stabilité des mélanges. En établissant la correspondance entre les micro-émulsions, et ce mélanges que 
nous appelons ”émulsions moléculaire“ à partir de la théorie Ornstein-Zernike aux petits vecteurs d’onde, 
nous montrons comment certains problèmes intrinsèques aux simulations, et qui gênaient par exemple le 
calcul des intégrales de Kirkwood-Buff, peuvent être résolus en recalculant les corrélations à longue 
portée. De même, l’introduction des fonctions bridges des corps purs extraits des simulations, permet de 
mieux comprendre le comportement des équations intégrales pour les mélanges, en particulier en ce qui 
concerne la distinction entre CF et MH.  

 

Mots-clefs: mélanges aqueux, micro-hétérogénéité, fluctuations de concentration, simulations 
numériques, émulsion moléculaire, équations intégrales. 

 

 

 

STATISTIČKA I TERMODINAMIČKA  ANALIZA MIKRO-STRUKTURE U 
MOLEKULARNIM EMULZIJAMA 

Sažetak 

 

Vodene mješavine se razlikuju od mješavina jednostavnih tekućina, jer se molekule vode između sebe 
povezuju vodikovom vezom te uzrokuju segregaciju otopljene tvari na molekularnoj razini. Ovakva vrsta 
mikro-strukture postoji čak i u vodenoj mješavini najjednostavnijeg alkohola, a to je metanol. 
Rezultirajuća mikro-heterogenost (MH) se razlikuje od koncentracijskih fluktuacija (KF), koje imaju 
važnu ulogu u stabilnosti mješavina. Pomoću analogije između mikro-emulzija i ovih mješavina koje smo 
nazvali “molekularnim emulzijama” u Ornstein-Zernike teoriji za male valne vektore, pokazat ćemo kako 
se određeni problemi računalnih simulacija, primjerice problemi vezani za račun Kirkwood-Buff 
integrala, mogu rješiti tako da se uzmu u obzir dugodosežne korelacije. Iz računalnih simulacija 
jednokomponentnih tekućina izračunat ćemo korelacije višeg reda koje će nam omogućiti bolje 
razumijevanje ponašanja integralnih jednadžbi za mješavine tekućina, a prvenstveno razlikovanje između 
MH i KF. 

Ključne riječi: vodene mješavine, mikro-heterogenost, koncentracijske fluktuacije, računalne simulacije, 
molekularna emulzija, integralne jednadžbe. 
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CHAPTER 1  

Introduction 
 

 

What makes liquid state different from gas and solid state of matter? In a gas state, molecules 

move randomly and independently of each other, with rare collision between them. In a solid 

state, molecules are sitting on the knots of a regular lattice and are allowed only to vibrate 

around their fixed positions. Liquid state is characterized by the greater importance of collision 

processes and short–range positional correlations [1]. For example, in liquid acetone, since 

molecules are polar, they tend to lie parallel or antiparallel to each other, but this order is lost 

beyond a certain distance [15]. The concept of order is described in Statistical Mechanics 

through the use of an order parameter. Generally, this is the one–body density function )1(  

specifying the positions and orientations of all molecules in the liquid. If the liquid is 

homogeneous and isotropic, then this is just the bulk number density VN / , where N is the 

number of particles closed in a volume V . Correlations between two particles are described by 

the two–body density function )2,1(2  and the range of correlations is associated to a single 

length scale called the correlation length . It is possible to relate this quantity to density 

fluctuations in a single–component liquid and concentration fluctuations in a two–component 

liquid. When the correlation length diverges, density (or concentration) fluctuations grow and a 

phase transition occurs. When the correlation length grows, the system is metastable. There is a 

known effect of critical opalescence that happens in some binary mixtures, such as the mixture 

of methanol and cyclohexane [2], when the correlation length reaches the visible light wave 

length at some temperature. The light is scattered by fluctuations and as a consequence the 

mixture appears fuzzy. In scattering experiments, it is possible to determine the static structure 

factor )(kS which is determined by the two–body correlation function in the absence of the 

external field. This is an example of the fluctuation–dissipation theorem [1].   
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In a mixture of species a and b, the concentration fluctuations can be written as [3]  

ba

baba
ab NN

NNNN
Vrdrg




)1)(( ,  

where )(rgab is the radial distribution function. This function represents the probability of 

finding particle 2 at a distance r from particle 1 fixed at the origin, if the system is uniform and 

isotropic. Otherwise, it depends also on the mutual orientation of the particles.  Integrals of the 

pair distribution functions are called the Kirkwood–Buff integrals (KBI) [3] and they are directly 

related to some thermodynamic properties, such as partial molar volumes. They provide also a 

measure for concentration fluctuations, but I will show in this thesis that this link is not as 

straightforward as one may think.  

In 1984 Matteoli and Lepori [4] published an article where they compared the experimental 

values of KBI for a variety of aqueous mixtures, and the results are surprising. Figure 1.1 shows 

KBI for 9 different aqueous mixtures.  

 

Figure 1.1: The KBI from Ref. [4]. The water–water pair is in red, the solute–solute pair is in 
green and the cross pair is in magenta. 

 

Aqueous mixture of 1–butanol demixes, as one observes in the middle panel. Some KBI look 

almost as if the mixture were ideal (non–interacting particles), such as water–DMSO, while most 
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others look as if the mixture were metastable and would demix with a small decrease of 

temperature. This concerns in particular mixtures such as water–tert–butanol (TBA), water–

acetone, or water–acetonitrile. We know that these mixtures are stable at room temperature, so 

the origin of high KBI values cannot be in high concentration fluctuations. In particular, high 

KBI values are seen for the water–water pair. The decay of the pair correlation function is given 

by the Ornstein–Zernike form  

rrrgab /exp1)( 










. 

If there are no significant concentration fluctuations, this means that the correlation length  is 

not very large. This suggests that the high KBI value does not come from the long–range part 

of )(rgab , but rather the short–range part. Non–trivial local structure produces high )(rgab . In 

other words, this is an indication of a strong segregation of water molecules, which is driven by 

the H–bonding interaction. Associated liquids, such as water or alcohols, are therefore different 

from simple liquids in a sense that the same phenomenon (high KBI) is not necessarily explained 

in the same way, by invoking concentration fluctuations.  

There is a related and equally intriguing experimental feature, known from various calorimetric 

experiments. When mixing 2 liquids, where the solvent is an associated liquid (for example, 

water), then various quantities such as excess enthalpy, speed of sound, excess heat capacity, 

viscosity, show two weak singularities, one at low solute mole fraction (typically below x = 0.30, 

when NNx S / , where N is the total number of particles and SN  is the number of solute 

molecules) and the other at high solute mole fraction (typically above x = 0.60). These 

singularities are weak since they represent a rapid variation of the derivative near these 2 points. 

For example, excess enthalpy of aqueous ethanol solution [5] has two slope variations: one at x ≈ 

0.20 and another at x ≈ 0.70 mole fraction of ethanol, while for cyclopenthane–

tetrachloroethylene [6] mixture this function has almost an ideal shape (Figure 1.2). 
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Figure 1.2: Experimental excess enthalpies for cyclopenthane–tetrachloroethylene mixture [6] 
(left panel) and aqueous ethanol [5] (right panel). 

 

These changes in slope are not signs of any known types of phase transition, since no 

discontinuities are observed in the first and the second derivatives of the Gibbs free energy [7]. 

Instead, they are attributed to the changes of the microscopic order in the system and the way 

molecules reorganize themselves at a certain concentration [8]. Studies on aqueous mixtures of 

ethanol [9, 10] and TBA [11] suggest that the anomalous behaviour of thermodynamic quantities 

is a signature of the structural complexity these systems exhibit, due to the H–bonding ability of 

water and the amphyphilic nature of the solute molecules.  

How can we study the microscopic origin of this complexity? Computer simulations are a 

valuable tool to study the molecular structure in details, but they are not free from restrictions. 

Let us consider for example the dynamics of micro–emulsions. Micro–emulsion is a mixture of 

water, oil and a surfactant, where oil and water form domains that are in continuous movement 

and collision with each other, while the surfactant molecules help stabilizing these objects by 

sitting in between water and oil domains [12]. An average collision time between two domains is 

1 μs, which is not out of reach of modern computers, but is still far from desktop calculations. 

Each domain is regarded as a spherical droplet which can contain tens of thousands of molecules 

and if we take for example 50 droplets, the total number of molecules in the simulation box 

becomes of the order of 106, which is beyond the reach of the current computational power.  

It is seen that even mixtures of water and higher alcohols, such as TBA, require larger simulation 

box with more than 2048 particles, which is generally accepted to be enough in the study of 

simple aqueous mixtures. Indeed, this mixture is known for its micro–heterogeneous structure, 
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where water and alcohols form domains or micelles and therefore can be regarded as a baby 

micro–emulsion. In fact, in this thesis, I present a new concept of molecular–emulsion, having in 

mind the difference in size between the objects that form in micro–emulsion and in molecular–

emulsion. The analogy I find between the two systems is quite simple. Let us consider a mixture 

of water and a molecule with a large oily tail. This type of emulsion can form two different 

structural profiles. First one is the oil–in–water emulsion, where oil droplets are dispersed in 

water, and the second is the water–in–oil emulsion with water being in the dispersed phase. This 

mixture will eventually de–mix unless there are surfactant molecules that allow for its stability. 

Now, imagine that the oil molecule becomes smaller and smaller, having at the end a short 

hydrophobic tail and keeping its hydrophilic head. What kind of structure will take place in such 

an emulsion? Clearly, there is no large size difference between the water and the solute 

molecules and the effect of concentration fluctuation becomes of significance, but there will still 

be domain formation. It is not obvious how one can distinguish between these two phenomena. 

One possible answer is hidden in the long–range part of the correlation functions and the 

associated small–k behaviour of the structure factors. Although this solution appears to be rather 

simple, it has been shown by many researches in the field of computer simulations that these 

systems are not easy to study, since they require large sizes and simulation times to 

accommodate both size and dynamics of the objects forming in the system. When simulating 

systems characterized by the domain or micelle formation, it is possible in principle to modify 

the interaction parameters in order to accommodate the micro–objects within a reasonably large 

box. However, it is not clear whether this method distorts the “true” micro–segregation.  

This brings us to the heart of the problem computer simulations have in the study of ordered 

systems with fluctuations. If we consider that one realisation (or one micro-state) of the system 

is an instantaneous snapshot, then fluctuations allows us to appreciate how different one 

micro-state is from another. There are 2 major problems. The first is the fact that one snapshot 

does not represent the whole macroscopic system, but only a part of it. So, this 

representation is possible only if the part of the system is not  different from the rest of the 

whole system. This is more valid for simple liquids with truly random disorder than complex 

liquids that have extended local order. In such systems, the periodic boundaries can affect the 

way the system is connected inside the box, and hence alter its statistical properties. This may 

not be so important in thermodynamic quantities, but it can be a subtle effect. The second  

problem  is closely related  to  the  first, since  it  appears  when  the  system shows a complex 

spatial organisation. This is the case of mixtures such as aqueous mixtures. Clear patterns 
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appear which are not defined by a simple geometrical method. The box will then distort these 

patterns to accommodate them inside the periodic boundary conditions. Both problems pose the 

question of the “coherence” of the system with respect to box size and time scale. If the system 

is de–correlated before reaching the boundaries, then the usual statistical analysis is adequate. 

A third problem,  but  which  is  not  directly  related  to  simulations, is  how  this  “coherence”  

can  be measured in real experiments. 

An alternative technique to study these systems is to use Integral Equations [1, 13] (IE), which 

are free from those constraints. The main problem of such equations is that they contain 

severe approximations on  the  many  body  contributions  (the so called bridge  terms)  and  

therefore,  they  do  not describe fluctuations properly. So, a major issue is to see what the 

difference between fluctuations and local heterogeneity is from the point of view of the Liquid 

State Theory. It is known that near the critical point, where fluctuations become important, IE 

either lead to spurious solutions either do not converge numerically in the thermodynamic limit 

of interest [1, 13].They also fail in producing the numerical solution mostly in the high density–

low temperature regime. For instance, the behaviour of the hypernetted–chain theory (HNC) in 

the approach to the phase boundary is characterized by an increasing instability of the numerical 

algorithm, until a limiting density (or temperature) is reached beyond which no solution can be 

found [13]. This line of no solution is not the true phase boundary of the system. It is obvious 

that when fluctuations exceed a certain spatial range, these theories loose solution. Now, if 

spatial heterogeneity is akin to some sort of fluctuation, how would they be described by IE? If 

IE do not make any difference between fluctuations and heterogeneity, they will cease to 

have solution by mistakenly taking heterogeneity for a big fluctuation.  So, in a way, the 

behaviour of these theories would inform us about the status of fluctuations versus micro–

heterogeneity, albeit in an indirect way. 

The central equation of IE is the exact Ornstein Zernike (OZ) equation. In the molecular form, 

it is the Molecular Ornstein Zernike equation (MOZ), and in terms of site–site correlations it is 

the site–site Ornstein Zernike equation (SSOZ). The SSOZ equation is approximate equation 

where the molecular direct correlation functions are written as a sum of the site–site direct 

correlation functions. This is exactly true for the pair interaction, and since the asymptotical 

form of the direct correlation function is exactly that of the pair interaction, this approximation 

is justified in this limit. However, it is not true for medium and short range distances, so the 

SSOZ approximation suffers from many inconsistencies. For example, the results obtained 
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from the equation of state and those obtained for quantities that depend on angular correlations 

in the fluid, such as dielectric constant, are incorrect [1, 14] 

Both MOZ and SSOZ equations have to be solved in conjecture with another equation, called 

the closure equation. This equation contains the uncontrolled approximation since it does not 

take into account the correct form of the many–body correlations. Even now, after 50 years of 

using IE, it is still not clear why some approximations are well suited to describe some systems 

and badly for other systems. Concerning the accuracy of the solution, the MOZ equation gives 

better results than the SSOZ equation [15]. However, when applied to liquid water at room 

temperature, both equations fail severely and none of them is able to describe the correct 

tetrahedral structure of water [16-22]. Figure 1.3 shows the comparison between the two IE 

theories and the Molecular Dynamics simulation results for SPC/E water. As one can see, both 

theories are missing some features of the site–site radial distribution functions. In the MOZ 

formalism, the full molecular distribution function has one distance and 5 angle variables and 

its representation extends over an infinite set of functions [1, 23]. This is difficult to represent, 

even if one considers a finite set of such functions. This is why the site–site representation is so 

appealing – one can see how pairs of sites are correlated and there is always a finite set of these 

functions. Since both MOZ and SSOZ suffer from approximations contained in the closure 

equation, it is unclear whether any of them would in fact give the correct description of 

fluctuations and micro–heterogeneity. In addition, both theories are seen to fail to describe 

correlations beyond the range of a few molecular diameters for some systems, so it is easier to 

try first with the easier to implement SSOZ theory.  
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Figure 1.3: Comparison between of the pair distribution functions  from theory and simulations 
for SPC/E water at ambient conditions. Magenta dotted line is for the MD simulation results, 
blue full line is for the MOZ/HNC results [22] and black full line is for the SSOZ/HNC results.   

 

The thesis is organized as follows. Chapter 2 presents a summary of IE theories, namely the 

SSOZ and the MOZ theory. Chapter 3 presents the results of the SSOZ equation for various pure 

liquids, such as acetone, carbon–tetrachloride, formamide, lower alcohols and water. Several 

closure relations (HNC, KH, PY) are used and both structure and thermodynamics are tested 

against the simulation results. A new procedure of extracting the bridge functions from the 

simulation data is also discussed in this Chapter. In Chapter 4, results of the SSOZ equation for 

selected aqueous mixtures are discussed, as well as the role of fluctuations and micro–

heterogeneity. The mixtures are aqueous methanol and a mixture of water and modified water 

model. Molecular simulation results for aqueous ethanol are presented and the structure and 

thermodynamics of this mixture is analysed in Chapter 5. The concept of molecular–emulsion is 

discussed in Chapter 6. In Chapter 7, aqueous mixtures of TBA and acetone are analysed through 

the concept of molecular–emulsion. Computer simulation results for structure and 

thermodynamics of these mixtures are presented and discussed. Mixture of water and three 

different modified water models was studied through computer simulations. The results are 

discussed in Chapter 8. OZ equation was applied to a binary mixture of core–soft fluids and the 
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results are compared with computer simulations in Chapter 9. Finally, the conclusion of this 

thesis is given in Chapter 10. Exact derivations of the important equations in this thesis are 

shown in Appendices A, B, C and D. 
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CHAPTER 2  

Integral Equation Theory 
 

2.1 Introduction  
 

I give an overview of the basic definitions of the correlation functions and their relations to the 

thermodynamic properties in the Liquid Theory, following the standard textbook by Hansen and 

McDonald “Theory of simple liquids” [1]. 

Consider a one–component monoatomic liquid that consists of N  particles enclosed in a 

volumeV . Position and momenta of all the particles in the system are 

 N
N rrr 


 ,,1 and  N

N ppp 


 ,,1 , respectively. The equilibrium particle density )( n
N is 

defined as 
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where )/(1 TkB , Bk  is the Boltzmann constant and T  is the absolute temperature. Here 

H and NU are the Hamiltonian and the total potential energy of the system.  

The canonical partition function NQ  is defined as 

  NN
NN pdrdH

Nh
Q )exp(

!
1

3                                                     (2.2)       

and the configurational integral   N
NN rdUZ )exp(  .  

The quantity nnn
N rdr  )()( is the probability of finding n particles of the system with coordinates 

in the volume element nrd  irrespective of the positions of the remaining particles and 
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irrespective of all momenta. The particle densities and the equilibrium particle distribution 

functions )(n
Ng completely describe the structure of a fluid. Low–order particle distribution 

functions, the pair distribution function ),( 21
)2( rrg N

  in particular, are sufficient to calculate the 

equation of state and other thermodynamic properties of the system in the case of pairwise 

additive intermolecular energy potentials. The definition of the n–particle density means that 

)!(
!)()(

nN
Nrdr nnn

N 



  .                                                    (2.3)  

The single particle density of a uniform fluid is therefore equal to the number density  : 

 
V
NrN )()1(   .                                                       (2.4) 

The particle densities can also be expressed in terms of δ–functions:   





N

i
iN rrr

1

)1( )()(                                                           (2.5) 

 and  

   (2) ' '

1 1
( , ) ' ( ) ( )

N N

N i j
i j

r r r r r r  
 

       
,                                               (2.6) 

where the prime on the summation indicates that terms for which i = j must be omitted. 

The n–particle distribution function )(n
Ng is defined in terms of the corresponding particle 

densities: 

 

 n

i iN

n
n

Nnn
N

r
rrrg

1
)1(

1
)(

)(

)(

),,()( 










  .                                                     (2.7) 

For a homogeneous system, Eq. (1.14) reduces to 

)()( )()( nn
N

nn
N

n rrg 
  .                                                      (2.8) 

The particle distribution functions measure the extent to which the structure of a fluid deviates 

from complete randomness. If a system is also isotropic, the pair distribution function 

),( 21
)2( rrg N

  is a function only of the separation 1212 rrr 
 . Then it is usually called the radial 
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distribution function and written as )(rg . This function is measurable by radiation–scattering 

experiments and it contains important information about the structure of a liquid.  

Equations (2.1) and (2.2) can be extended to the grand–canonical ensemble (ensemble with 

constant chemical potential , volume V  and temperature T ). It can be shown that in the dilute 

gas limit 0 , one has 

))(exp()( rUrg  .                                                       (2.9) 

Consider a uniform fluid for which the total potential energy is given by a sum of the pair terms: 


 


N

i

N

ij
ij

N
N rUrU

1

)()( ,                                                     (2.10) 

where )( ijrU is the pairwise interaction potential between particles i and j and jiij rrr 
 . 

The excess internal energy exU  per particle of this system is given as 





0

2)()(2 drrrgrU
N

U ex

 ,                                                   (2.11) 

Similarly, it is possible to express the equation of pressure (called also the equation of state): 





0

3)()('
3

21 drrrgrUP 



,                                           (2.12) 

where drrdUrU /)()('  . 

In a grand canonical ensemble isothermal compressibility T  is expressed as an integral over 

)(rg  via the so called compressibility equation: 

  TBTkrdrg   
1)(1 .                                           (2.13) 

Eq. (2.13) is written for a homogenous system and it is applicable regardless the pairwise 

additivity of the interparticle forces. This equation also relates the fluctuations in the system with 

the isothermal compressibility.  
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In radiation–scattering experiments the measured quantity is the structure factor )(kS which has 

the following form in the homogeneous case: 

 rdrkirgkS 
  )exp()(1)(  .                                                (2.14) 

Therefore, )(rg  is given by the inverse transform of )(kS : 

   kdrkikSrg
 )exp()1)(()2()( 3 .                                       (2.15) 

In a uniform and isotropic fluid, the so called Ornstein–Zernike (OZ) relation is defined as 

  ')'(')()( rdrhrrcrcrh 
   ,                                            (2.16) 

where   is the number density of a fluid, 1)()(  rgrh  is the pair correlation function and 

)(rc is the pair direct correlation function between two particles separated by the distance r . 

Here the integration is taken over the position 'r of a third particle. On taking the Fourier 

transform of Eq. (2.16), one obtains 

)(~1
)(~

)(~
kc

kckh


 ,                                                       (2.17) 

where )(~ ka is defined as   rdrkiraka  )exp()()(~ , cha , . 

In an isotropic fluid, from Eq. (2.13) and Eq. (2.14) at the limit k = 0, one has 

TBTkS )0( .                                                        (2.18) 

From Eq. (2.17) and Eq. (2.18), it is easily shown that 

1(0) 1
B T

c
k T


 

  .                                                      (2.19) 

Eq. (2.19) suggests that (0)c  is finite so the function )(rc  decays as 
31 r  or more rapidly.  

If one iteratively substitutes )(rh  inside the kernel of Eq. (2.16), one obtains 



  ''')''()'''()'(')'()'()()( 2 rdrdrcrrcrrcrdrcrrcrcrh    .              (2.20) 
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This result has an obvious physical explanation: the pair correlation function )(rh is a sum of 

different contributions, first one being the direct correlation function )(rc , and the indirect 

correlations propagated via increasingly large number of intermediate particles.    

The OZ equation alone is not sufficient since both the pair correlation function )(rh and the 

direct correlation function )(rc are unknown. Therefore, another equation, the so called closure 

equation, is needed to complement the OZ equation. For simple fluids, the exact form of the 

closure equation is given by  

))()()()(exp()( rbrcrhrUrg   ,                                    (2.21) 

where )(rb is the bridge function, which can be formally expressed as infinite sum over integrals 

involving higher order correlation functions. Since the direct correlation function itself is a 

second functional derivative of excess free energy, the bridge function is very difficult to 

determine and approximations are needed. 

Speaking in terms of diagrams, the direct correlation function is an infinite sum of diagrams and 

the bridge function is an infinite sum of graphs which are a subset of these diagrams. If the 

bridge function is completely neglected and we set 0)( rb , then the closure becomes of the 

form 

))()()(exp()( rcrhrUrg   .                                        (2.22) 

This is the so called hypernetted–chain closure (HNC). The HNC closure has given good results 

for systems with long–range interactions, such as electrolyte solutions [24]. If one expands the 

power term of     exp h r c r  in (2.2) and keeps just the first two terms of the expansion, 

one obtains the Percus–Yevick (PY) closure 

   ))()(1))((exp()( rcrhrUrg   .                                      (2.23) 

Comparison of Eq. (2.22) and Eq. (2.23) reveals that the PY closure can actually be obtained by 

linearization of the HNC result with respect to ))()(( rcrh  . In diagrammatic analysis the PY 

approximation sums a smaller class of diagrams than the HNC approximation. The PY closure 

has proven to be more successful than the HNC when the potential is strongly repulsive and 

short ranged, such as that of a hard sphere fluid and the Lennard–Jones fluid. 
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The mean spherical approximation (MSA) is defined in terms of the pair distribution function 

)(rg and the direct correlation function )(rc as 

drrUrc
drrg




),()(
,0)(

1
 

where d is the hard–sphere diameter and the interparticle potential is given by 

 
.),(

,)(

1 drrU
drrU




                                                                 (2.26) 

Eqs. (2.24) and (2.25) complement the OZ equation; the first equation is exact and the second is 

an approximation. The MSA gives better results for a square–well fluid than the HNC or the PY 

closure [25].  

The Kovalenko–Hirata (KH) closure [26, 27] combines the HNC and the MSA closure in the 

following way: 

,0)(),(1
0)()),(exp()(



rdrd

rdrdrg
                                                     (2.27) 

where )()()()( rcrhrUrd   .  

The KH closure has been successfully employed in the study of water in contact with a metal 

surface [26] and in the study of the phase behaviour of SPC water [27]. Although it is an 

empirical closure and therefore diagrammatically incorrect, the KH closure is often used for 

systems in which the HNC closure fails to produce a numerical solution [28]. 

There are other closures, such as the Martynov–Sarkisov closure (MaS) [29], the Roger–Young 

closure (RY) [30], the hybridized mean spherical approximation (HMSA) [31] the soft mean 

spherical approximation (SMSA) [32] and the Ballone–Pastore–Galli–Gazzillo (BPGG) [33] 

closure. All these closures provide useful information about specific systems, depending on the 

nature of the interaction between particles. 

The equivalent of the OZ equation for a multicomponent fluid is given by  

   
c

ababcabab rdrhrrcrcrh ')'(')()( 
 ,                                      (2.28) 

where 1 abab gh and abc  are the pair and the direct correlation functions between two particles 

of species a and b, respectively, and the summation is taken over all species. 

(2.24) 

(2.25) 
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The closure relation (2.21) for multicomponent fluid is given by 

))()()()(exp()( rbrcrhrUrg ababababab   .                             (2.29) 

The partial structure factors )(kSab  are defined as 

)exp()1)(()()( 2/1 rkirgrdkS abbaabab


  ,                               (2.30) 

where a is the number density of species a. 

The equation of state for mixtures is given by 

drrrgrUP
abab

ba
ba

3

0,

)()('
3

21 

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


,                                       (2.31) 

with the summation taken over all the component species. 

It is very instructive to study the integrals of the species pairs of the radial distribution functions.  

The running Kirkwood–Buff integrals (running KBI), )(rG ij are defined as [3] 

  2

0

( ) 4 ( ') 1 ' '
r

ij ijG r g r r dr  ,                                          (2.32) 

where i and j are the species index. The KBI are defined as the large–r limit of the running 

Kirkwood–Buff integrals as 

  2

0

lim ( ) 4 lim ( ') 1 ' '
r

ij ij ijr r
G G r g r r dr

 
   .                                   (2.33) 

2.2 The Molecular Ornstein–Zernike Equation 
 

Any pair correlation function )2,1(a  can be expanded as [1, 23] 

   
 

  


nm

nm

nml

m

m

n

n

mnlmnl RRaRaa
,

1221122112 )ˆ,,()(),,()2,1(
 




,              (2.34) 
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where 2112 RRR


 is the distance between the center of molecules 1 and 2. Set of 

angles ),,( iiii  , i = 1,2 define the orientation of molecule 1 and 2, respectively. 

Functions )ˆ,,( 1221 Rmnl  are called rotational invariants and they are defined by 

)ˆ()()(
''

)ˆ,,( 1202'1'
''

1221 rRRR
lnm

R lnmmnl



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







  ,                  (2.35) 

where )( 1' mR  is Wigner's generalized spherical harmonic [34]. 

On taking the Fourier transform of Eq. (2.34) we get: 

 


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,
,,

2121 )ˆ,,()(~),,ˆ(~)2,1(~
lnm

mnlmnl kkakaa ,                                (2.36) 

where the terms )(~ ka mnl
 are defined as Fourier–Hankel transform of )(ramnl

 as 


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
0

2)()(4)(~ drrrakrjika mnl
l

lmnl
  ,                                            (2.37) 

and )(krjl are spherical Bessel functions. 

The MOZ equation in k–space can therefore be written as [35]  
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(2.38) 

where ˆ d    is the measure of the angular space defining the molecular orientation  . We 

have  ˆ 1  , 4 , and 28  for molecules with spherical, linear, and arbitrary symmetry, 

respectively. If we define )2,1()2,1()2,1( ch  , then the above expression can be written in 

the form [36]  
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(2.39) 

Fries and Patey [36] used the so called χ–transformations [37, 38] to reduce the matrix 

calculation in Eq. (2.39) and to rewrite the MOZ equation in a matrix form. The χ–

transformations are defined as 
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 ,                                                 (2.40) 

where ca , , and they greatly reduce the dimensionality of the matrices which must be 

inverted numerically. The matrices )(~ kN and )(~ kC can be defined in such a way that the 

elements (i,j) of these matrices are the quantites )(~ kn mn
 and )(~ kc mn

 , the indices of which 

satisfy the equations:  
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mmi                                                      (2.41) 

With the definition of the  ijPP  matrix as 
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otherwise
mmj
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Pij 
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                                         (2.42) 

The MOZ equation (2.39) can be rewritten in this form of [36] 

  ,)(~)()(~)(~)()(~ 11  kCPIkCPkCkN 





                          (2.43) 

where I is the identity matrix. In many cases Eq. (2.42) will be reduced by molecular symmetry 

and the number of independent coefficients can be drastically reduced. This explains why the 

MOZ equation has been applied only to simple molecular geometries [15, 22, 39].  

The MOZ equation accompanied by the closure relation provides a solution for molecular fluids 

in terms of molecular distribution functions )2,1(g  and the thermodynamic quantities can be 
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obtained by weighted integration of )2,1(g . The excess internal energy per particle NU ex /  is 

computed by a configurational average of the pair potential U as [1] 

   2,12,1
2 21122 gUddRd

N
U ex




 
 .                                      (2.44) 

The pressure equation is given by [1] 
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
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.                                     (2.45) 

The isothermal compressibility T is computed by [1] 
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2112 1)2,1(1 gddRdTk TB


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The Kirkwood factor is defined as [15] 
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                 (2.47) 

and used to calculate the dielectric constant  from the Kirkwood equation 

,
9

)12)(1(
KD gy



                                                               (2.48) 

where )9/(4 2 Tky BD  and  is the dipole moment. 

The MOZ equation for a binary mixture of species a and b is given by [40] 

3 3(1,2) (1, 2) (1,3) (3,2)ˆ
c

ab ab ac cb
c c

h c dR d c h
  

 


,                                (2.49) 

where the summation goes over all species and the integration is taken over the position 3R


 and 

the orientation 3 of particle 3. For linear molecules, one has ˆ (cos ) 4c i id d      and 
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for nonlinear molecules 2ˆ (cos ) 8c i i id d d      . VN cc / is the number density 

of species c.  

The excess internal energy per particle NU ex / for mixture is given by [40] 

   12 1 2 12 1 2 12 1 2
,
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  
,            (2.50) 

where  /iix  , i = a, b and 
c

c . 

The compressibility factor  /P can be obtained from the virial expression [40] 
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The isothermal compressibility T is related to the pair distribution function by the equation [40] 
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ba T
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,
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
 ,                                                               (2.52) 

where 1F is the inverse of the matrix F . The elements of F are defined by [40] 
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where ab  is the Dirac delta function. 

2.3 The Site–Site Ornstein Zernike Equation    
 

In the Interaction Site Model (ISM) [41], the interaction energy between molecule 1 and 2, 

)2,1(U may be approximated by a sum of interactions between specific sites in molecules 1 and 2 

which are regarded as perfectly rigid. If we denote the potential between site   on molecule 1 



38 
 

and site  on molecule 2 as )(  rU , where )2()1(
 rrr 

 is the distance between these sites, 

then )2,1(U is given by [42] 
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m

rUU
1,

)()2,1(


 ,                                                      (2.54) 

where we assume that each molecule has m interaction sites. Chandler and Andersen [41] 

considered potentials of the form: 

)()()( )1()0( rUrUrU   ,                                                 (2.55) 

where )()0( rU is the hard sphere potential with diameter  and )()1( rU is the perturbation. In 

the Reference Interaction Site Model (RISM) sites interact through the potential of the form [41]: 
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where  is the interaction distance between the pair of sites. 

As given by Eq. (2.34), the pair correlation functions )2,1(h and direct correlation 

function )2,1(c are functions of both positions and orientations of molecules 1 and 2. Since 

molecules interact via site–site interactions, the natural way to describe the structure of a fluid is 

by using the site–site correlation functions )(rh which are defined as [1] 
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where il


is the vector displacement of site   on molecule i from the molecular centre iR


, 

iii Rrl


  , for i = 1, 2. Chandler and Andersen [41] were able to derive the site–site Ornstein–

Zernike (SSOZ) equation by making an assumption that the direct correlation function between 

molecules 1 and 2 can be written as a sum of the pair terms 
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.                                                    (2.58) 
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The site–site Ornstein Zernike (SSOZ) Equation has the following matrix form in k–space: 

HCWWCWH ~~~~~~~  ,                                                      (2.59) 

where  is the number density of the fluid, the matrices  )(~~ khH   and  )(~~ kcC   contain 

three dimensional Fourier transforms of the site–site pair and direct correlation functions 

respectively and the elements of  )(~~ kwW  are given by 
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 
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)1()(~  ,                                             (2.60) 

where l is the fixed distance between sites   and  within the same molecule. Eq. (2.60) is a 

three dimensional Fourier transform of )(rw which is defined as 
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Function )(rw 
  is called the site–site intramolecular correlation function and it is proportional 

to the probability density of finding site at distance r from site  [23]. The SSOZ equation can 

be written for mixtures as  

HRCWWCWH ~~~~~~~  ,                                                        (2.62) 

where  cR   is the matrix of the numerical densities. The derivation of the SSOZ equation 

from the MOZ equation for one–component and n–component systems is given in Appendix A. 

As in the case of the OZ equation, the SSOZ equation needs the closure relation in order to be 

solved analytically. Chandler and Andersen [41] suggested an approximate closure of the form: 
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Eq. (2.63) is exact, while Eq. (2.64) is an approximation based on the analogy with the MSA for 

central force potentials [43]. In practice, any closure can be chosen to complement the SSOZ 

equation and obtain results for the site–site distribution functions )(rg . Various 

thermodynamic properties can be calculated as integrals of the site–site functions )(rg  , 

(2.63) 

(2.64) 
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)(rh and )(rc . The excess internal energy per particle for single–component liquids is given 

by [1] 
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,                                               (2.65) 

where N is the total number of particles and the summation is taken over all pairs of sites (α, β). 

For mixtures of n–components, NU ex / is given by [44] 
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where )()( rg ab
 and )()( rU ab

 denote the pair radial distribution function and the pair potential 

between sites   and   on molecules of species a  and b , respectively. )( a
 and )(b

 are the 

density of sites of type   and   on molecules of species a  and b , respectively and the 

summation goes over all pairs of species and all pairs of sites. 

The excess Helmholtz free energy exA  can be calculated by using the formula of Hiroike [45] 
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where  is the coupling parameter of the interaction 


excU between all the pairs of molecules. 

Following diagrammatic arguments, Morita and Hiroike [46] wrote an expression for exA which 

involves the integration of the pair distribution function. Singer and Chandler [47] derived a 

formula which is consistent with the HNC closure   
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The excess chemical potential ex  is defined by [48] 
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where '  is the coupling parameter of the interaction 
'

uv  between a single molecule of type 

a  with all the molecules in the system. Morita and Hiroike [46] derived ex  for simple fluids 

and Lue generalized it to the case of interaction site fluids [49]. When the HNC closure is used, 

the expression from Ref. [49] reduces to the expression obtained by Singer and Chandler [47] 
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The compressibility T  can be computed from any site–site distribution function g as [1]  

 



0

21)(41 drrrgTk TB                                              (2.71) 

The dielectric constant of SSOZ is given by [1] 

Dy31 .                                                              (2.72) 

One sees from Eq. (2.72) that the dielectric constant in SSOZ theory does not depend of the site–

site correlation functions.  

2.4 Previous applications of the Integral Equation Theories 
 

The OZ equation complemented by different integral equations has been applied for various 

simple systems, namely the hard sphere fluid [50, 51], the charged hard sphere fluid [52-54], the 

hard–core Yukawa fluid [55-57], the mixtures of hard spheres [58-60] and the mixtures of 

charged hard spheres [40]. The OZ equation in conjunction with the HNC closure has been used 

to study dipolar hard–spheres [36], [61], hard ellipsoids [62], spherocylinders [63], homonuclear 

dumbells [64, 65], as well as realistic fluids such as hydrogen chloride [66], sulphor dioxide [67], 

acetone [15, 39], chloroforme [15], acetonitrile [39], formamide [68], N–methylformamide [68] 

and dimethyl–formamide [68]. Systems consisting of hard dumbbells [69-73], charged hard 

dumbells [14, 74] and the mixtures [75] of the two were studied within the SSOZ formalism. 

Previous application of the SSOZ equation include as well the study of polar and quadrupolar 

fluids [76], water [16], methanol [77], sulphor dioxide [78], liquid oxygen [79], nitrogen [79, 

80], bromine [79], benzene [80], polymer fluids [81, 82], aqueous solutions of salt [83, 84], 

aqueous solutions of alkanes [85], aqueous solutions of monoatomic solutes [86], aqueous 
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solutions of methanol [87] and aqueous solutions of t–butanol [88]. Generally, it has been shown 

that the integral equation theories are successful in describing the structure and thermodynamics 

of simple fluids and their mixtures, but for associated liquids they do not provide a correct 

description.   

 
 

 

 

2.5 Conclusion 
 

Integral equation theories are a valuable tool for studying structural and thermodynamic 

properties of model and realistic liquids, since they do not suffer from constraints such as 

statistical errors in the thermodynamic limit and restrictions concerning size of the system and 

simulation times. The OZ equation is the basic equation for all these theories and is accompanied 

by another integral equation called the closure equation. This pair of equations is solved for two 

unknown functions, the pair correlation function )(rh and the direct correlation function )(rc , 

whose relation is exact in the OZ equation, but not in any of the existing closures. 

Diagrammatically proper closure contains an infinite sum over integrals involving higher order 

direct correlation functions, or the so called bridge function. The definition of the direct 

correlation function includes computing the second functional derivative of the excess free 

energy and one cannot build these many–body correlations intuitively, so the approximation of 

the bridge functions seems to be an appropriate way to solve this problem. Unfortunately, all 

known approximations fail to some extent in describing the dense liquid region and one can 

hardly expect that improving the closure would lead to a general accurate description of realistic 

fluids. In the case of liquid water at ambient conditions for example, all of these theoretical 

approaches never produce the tetrahedral structure of the liquid and the origin of this inefficiency 

is the lack of the many–body correlations. In view of this inherent drawback of integral 

equations, it is absolutely required to perform experiments or simulations and fit the theoretical 

input.  
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CHAPTER 3 

Application of the Site–Site Ornstein Zernike 
Equation to pure liquids 
 

3.1 Introduction 
 

Direct computation of the bridge functions in the closure relation turned out to be an impossible 

task, for they are defined through functional derivatives of the excess free–energy. Hence, 

approximation was desperately needed in the closure to make the theory operational. 

Unfortunately, none of these approximations gave results in par of simulations, especially for the 

dense liquid region [13]. Two papers have previously explored the possibility of improving 

RISM by computing the missing bridge diagrams. First, Lue and Blackstein [19] have explicitly 

computed the first few diagrams of the bridge function for water at ambient conditions, but this 

has not affected much the accuracy of results. It has been found previously that the addition of 

the first few bridge diagrams does not improve the results significantly [89]. This is because the 

diagrammatic expansion has an alternate sign and one might need more diagrams in the 

expansion. In the second work, Roux and co–workers [90] have fitted the bridge function using 

computer simulation data for solvation of polar and non–polar molecules in water. Functional 

form of the bridge was implemented and it needs careful adjustment depending on the type of 

solute in water. Kolafa and co–workers [91] inverted the OZ equation and computed the bridge 

functions from the simulation data for a system of hard spheres. However, this has never been 

done so far for realistic fluids. In this Chapter, I present a procedure for extracting the bridge 

functions from Molecular Dynamics simulations. This procedure consists of inverting the SSOZ 

equation and taking the radial distribution functions from simulations as a first guess in the 

iteration process. I also compute the bulk thermodynamic properties of each system and compare 

the results with and without the bridge functions. 
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3.2 Models, simulation and computational details 
 

Molecular Dynamics simulations have been conducted in this work for several realistic liquids, 

namely:  acetone (CH3OCCH3), carbon–tetrachloride (CCl4), formamide (CH3NO), methanol 

(CH3OH), ethanol (CH3 CH2OH), 1–propanol (CH3 CH2 CH2OH) and water (H2O). In all cases, 

NPT ensemble was treated at ambient conditions of pressure p = 1 atm and temperature T = 300 

K using the DLPOLY–2 code [92]. Number of particles in the simulation box, N = 2048 and the 

size of the box, L ≈ 30 Å. Berendsen thermostat and barostat were used, with relaxation times of 

0.1 ps and 0.5 ps, respectively. Equations of motion were integrated with ∆t = 2 fs.  

The interaction potential between any site a on molecule 1 and site b on molecule 2 at distance r 

is given by 
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The first term in the sum accounts for the Lennard–Jones (LJ) potential and the second 

corresponds to the electrostatic interaction due to the partial charges on molecules. LJ interaction 

was truncated at one quarter of the box size and Ewald summation was used for the Coulomb 

interaction. The LJ parameters for different types of sites were calculated according to the usual 

Lorentz–Berthelot rules, bbaaab    and 2/)( bbaaab   . OPLS (Optimized Potential for 

Liquid Simulations) force field was used to model interactions in acetone [93] and carbon–

tetrachloride [94]. Cordeiro [95] force field was used for formamide. Alcohols were modelled 

with OPLS [96] and water with SPC/E [97] (Simple Point Charge Extended) force field. Force 

field parameters are given in Tables 3.1, 3.2 and 3.3. 

 

 

 

 

 

Table 3.1: SPC/E force field for water 

 SPC/E  [97] 

 O H 

ε(kJ/mol) 0.65 0.0 

σ(Å) 3.165 0.0 

q(e) –

0.8476 

0.4238 
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Table 3.2: OPLS force field for alcohols. 

 

 

Table 3.3: Force fields for acetone, formamide and carbon–tetrachloride. 

 

 

 Methanol OPLS [96]                    Ethanol OPLS  [96] 

 H O CH3  H O CH2 CH3 

ε(kJ/mol) 0.0 0.71131 0.86612  0.0 0.71355 0.33823 0.86887 

σ(Å) 0.0 3.071 3.775  0.0 3.071 3.85 3.775 

q(e) 0.435 –0.7 0.265  0.435 –0.7 0.265 0.0 

                                     1–Propanol OPLS [96] 

 H O CH2
(1) CH2

(2) CH3 

ε(kJ/mol) 0.0 0.71131 0.33823 0.33823 0.86887 

σ(Å) 0.0 3.071 3.85 3.85 3.775 

q(e) 0.435 –0.7 0.265 0.0 0.0 

         Acetone OPLS [93] 

 C O CH3 

ε(kJ/mol) 0.440 0.879 0.67 

σ(Å) 3.75 2.96 3.91 

q(e) 0.3 –0.424 0.062 

          Formamide [95] 

 H O C N H 

ε(kJ/mol) 0.1591 0.8792 0.4396 0.7117 0.0 

σ(Å) 2.75 0.296 0.375 0.325 0.0 

q(e) 0.12 –0.46 0.34 –0.83 0.415 

               Carbon–tetrachloride [94] 

 C Cl  

ε(kJ/mol) 0.1016 0.2034  

σ(Å) 4.6 3.5  

q(e) 0.0 0.0  
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As described in Section 2.2 of Chapter 2, the SSOZ equation can be written in terms of matrices 

as 

HCWWCWH ~~~~~~~  ,                                                         (3.2) 

where the matrix elements are defined by  )(~~ khH ab ,  )(~~ kcC ab ,  )(~~ kwW ab  and 

VN /  is the number density of the system.  This equation can be rewritten in order to 

express the H~ matrix as: 

WCWCWH ~~~)~~1(~ 1                                                         (3.3) 

and solved by iteration once an initial guess for the direct correlation function matrix C~ is 

provided. It is solved on a grid of 2048 points with a step of Wr 02.0 , where 165.3W  Å 

is the diameter of the water molecule. The initial guess for the )()0( rc ab in the SSOZ equation are 

the Mayer functions of the form: 

1))(exp()()0(  rUrc abab  ,                                                    (3.4) 

where )()( rUrU LJ
abab   and TkB/1 . The long range Coulomb part )(rU Coul

ab  is removed 

from the interactions and fitted by an error function following the method of Ng [98]. This is 

done because the long–range part of the direct correlation function has the following decay: 

r
qqrc ba

ab


)( , as r .                                                  (3.5) 

The Fourier transform )(~ kcab in the small–k limit assumes the form of: 

2

4)(~
k

qqkc ba
ab


 , as 0k .                    (3.6) 

The divergence of the )(~ kcab is therefore avoided by fitting the )(rcab  with the function: 

 rerf
r

qqrf ba
ab 


)(      (3.7) 

whose Fourier transform )(~ kfab  is given by: 
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where  is an arbitrary parameter. In this work,   is set to 1 Å–1.  

The short–range part of the direct correlation function is transformed into k–space and the fitted 

part is added to obtain the functions )(~ )0( kc ab .  

Further, functions )(~ )0( khab  are calculated from (3.3) and functions )()0( rhab are calculated by 

inverse Fourier transform. After setting )()()( )0()0()0( rcrhr ababab  , one of the three closure 

relations is used. The HNC closure is defined as: 

))()(exp()( rrUrg ababab   ,                     (3.9) 

the PY closure as: 

))(1))((exp()( rrUrg ababab   .                                 (3.10) 

and the KH closure as: 
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                           (3.11) 

Solution of one of the three closures gives the function )()0( rg ab from which the next solution 

)()1( rc ab is built as 1)()()( )0()0()1(  rrgrc ababab  .  

The first and the second solution, )()0( rcab  and )()1( rcab , are then mixed to get the new input for the 

SSOZ equation: 

( 0 ) (1)( ) (1 ) ( )new
ab ab abc c r c r    ,      (3.12) 

where 75.0 . This is the so called Picard iteration [99]. Both closures are used and the data 

are compared with the simulation results.  

Next problem concerns the inversion of the SSOZ equation in order to extract the exact bridge 

functions, )(rbab  from simulation results. The SSOZ equation can be rewritten in a 

computationally more convenient way by expressing the C~ matrix explicitly as 
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11 ~~~~  SHWC   ,                                                           (3.13) 

where S~ is the matrix of the total structure factor which contains both intra–molecular and inter–

molecular  contribution, HWS ~~~  and H~ is the total correlation function matrix obtained 

from Molecular Dynamics calculations. 

One can determine the )0(~ kcab values analytically, since 1)0(~ kwab and hkhab  )0(~
. 

The first relation comes from the definition of )(~ kwab and the second is a property of site–site 

functions whose integral cannot depend on the choice of any particular pair of sites [1]. Direct 

use of Eq. (3.13) would cause numerical problems in the small–k region, because the W~ matrix 

is singular at k = 0. However, this can be easily treated by interpolating the )(~ kcab in the small–k 

limit.  

Before applying this procedure, one should remove the divergent 2/1 k Coulomb part from 

the )(~ kcab . In other words, the extrapolation from exact k = 0 values holds only for the short 

range part of the site–site direct correlation functions. Once an initial guess of the functions 

)(rcab is found one can compute the corresponding site–site bridge functions, )(rbab using the 

following equation:  

  ( ) ln( ( )) ( ) ( ) ( )ab ab ab ab abb r g r h r c r U r     .                              (3.14) 

The bridge functions )(rbab  can only be computed for distances above the hard core region, 

because the interaction term )(rUab  creates divergence inside the core and also 

))(ln( rgab diverges for abr  . In practice, the values of )(rbab are kept until distances for which 

the effective interaction )()( rbrU abab   is smaller than 10. This allows for sufficiently 

repulsive steepness to consider 0)( rgab  beneath this distance. With the current estimate of 

)(rbab it is necessary to converge the solution, since the functions )(~ kcab  have been extrapolated 

in the small–k limit. This is done by adding the bridge function to the first guess )()0( rc ab and 

calculating the next solution )()1( rc ab through the closure relation. After a few iterations, one 

obtains the solution that is consistent with )(rbab  and remains very close to )(rgab  from 

simulations. Details of this procedure are illustrated in Fig. 3.1 in the case of pure methanol.  
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Figure 3.1: Details of )(~ kcab  in the small–k range. Thick lines show the final converged values 
of . Thin lines show  as initially computed by direct inversion of the SSOZ equation. Dashed 
lines show the Coulomb part of . Magenta is for H–H, green for O–H, blue for O–O, black for 
H–M, cyan for O–M and red for M–M. 

 

We examine in detail the inversion of the SSOZ equation for the case of an asymmetric 

dumbbell molecule. The W~ matrix is defined as 
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where 121212 /)sin()(~ klklkw   and 12l is the distance between sites 1 and 2 of the same molecule. 

Similarly, the H~ matrix is defined as 
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The exact result for the C~ matrix from Eq. (3.13) is  
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where )~~~)(1~( 2
122211

2
12 ssswD  . It is clear that divergence occurs at k = 0, because 

of 1)0(~
12 kw , but since it is known that the C~ matrix is well behaved everywhere, there must 

be some cancellation of the divergent part by the terms inside the matrix in Eq. (3.17).  

Indeed, all the three projections should be equal at k = 0, hkhkhkh  )0(~)0(~)0(~
221211 . 

This comes from the fact that in the k = 0 limit the choice of the molecular centre does not 

depend on any particular site [1]. In simulations, there are often small differences in these values 

so the inversion procedure becomes impossible to handle. Writing the three projections exactly 

at k = 0, gives from Eq. (3.17) the )0(~ kcab values as 

 )2~1)(~1(/)0(~)0(~)0(~
1212221211 hwwhkckckc  .                   (3.18) 

Obviously, these values are not divergent at k = 0. Higher order matrices would appear if one 

considers more complex molecules, but the overall procedure remains the same.  

3.3 Site–site distribution functions from Molecular 
Dynamics 
 

Site–site distribution functions )(rgab , where indices a and b denote site a and b on molecules 1 

and 2, respectively, where calculated using Molecular Dynamics simulations. It is a known fact 

that the periodic boundary conditions in simulations are implemented to mimic the properties of 

an infinitely large system. This simple mathematical solution works well for many simple 

systems, though one can question whether the fact that the observed system is confined in a box 

with finite size distorts the correlations among molecules and gives a different microscopic 

picture. 

This is indeed true, as it was proved decades ago by Lebowitz and Percus [100] who found that 

in a one component system of N particles in a finite sized box, the tail of )(rgab  in the limit 

r  does not go to 1, but is shifted by a certain correction factor 

TT
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where  is the number density, P  is the pressure, T  is the absolute temperature,   is the 

chemical potential and TkB/1 . If the system is indeed infinite, N  and 1)( rgab .  

For a finite system, the correction term is not negligible and has an impact on the Fourier 

transform of )(rgab  in the small k–limit.  

A way to handle this problem is to shift the tail of )(rgab by adding an asymptote, while keeping 

the short–range behaviour of the pair correlation function intact, as it was proposed in the work 

of Perera and co–workers [101]. Therefore, )(rgab becomes: 


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2
1)()(  ,                               (3.20) 

where   is the shift of the function, cr and  are the position in )(rgab where the shift starts and 

the smoothness of the shift, respectively. The α–value is found empirically by looking at the 

original data and setting them to unity. The other two parameters were also found 

empirically: rrc 2 , where r  is the mean period of the first oscillations in )(rgab and in all 

cases,  is set to 1. While the behaviour of the tail of )(rgab doesn’t seem to be important for the 

structural features of a liquid, where the first two peaks correspond to the first and the second 

neighbours shell, it influences extremely the value of the KBI. As mentioned before, the tail of 

)(rgab determines the 0k  limit of the structure factor )(kSab , which is defined as 

)1)(~(1)(  rgkS abab  .                                                (3.22) 

Fig. 3.2 illustrates the procedure for )(rgOO and )(rgMM in OPLS methanol. As seen in the upper 

panel, there is not much of a difference between the corrected and the uncorrected pair 

correlation function. However, the difference between two sets of running KBI values is striking. 

Moreover, KBI without the correction don’t converge to a single value. Instead, they have a 

descending, unphysical behaviour after about 10 Å. Adding the asymptotic shift solves the 

problem, which is proved by the convergence of the KBI close to the experimental value. The 

structure factor )(kSab is shown in the lower panel, for which the difference arises in the 0k  

limit. 
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Figure 3.2: Detail of the long–range correction of )(rgab of OPLS methanol. Top panel shows 
the zoom on the tail of the two site–site functions between oxygen atoms (O) )(rgOO  in blue and 

the methyl site (M = CH3) )(rgMM in red. The green line is the wrong asymptote as produced by 
the simulations. Thick lines for corrected data and thinner lines for uncorrected data. The thick 
black line shows the switching function used in Eq. (3.3). Middle panel shows )(rGOO and 

)(rGMM with same line and color convention as in top panel. Bottom panel shows the structure 
factors )(kSOO and )(kSMM with the same conventions as in top panel.  

 

3.4 Application of RISM and the SSOZ inversion procedure 
to realistic liquids 
 

3.4.1 Acetone  
 

The site–site distribution functions )(rgab and the site–site structure factors )(kSab  are computed 

for liquid acetone and presented in Figs 3.3 and 3.4, respectively. As it was previously observed 

by Fries and co–workers [15], the agreement between the simulation data and the data produced 

by both HNC and PY closure is quite good. Some discrepancies are seen in )(rgOO , )(rgOC  and 

)(rgOM which indicates that here the higher order correlations should not be neglected. I show 
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also the bridge–corrected results which are practically indistinguishable from the simulation 

results. The agreement is even better in k–space (Fig. 3.4) where the differences in the short 

range r–region correspond to the ones in the long range part. Instead of showing the bridge 

functions directly, I plot the effective interaction, )(rU eff
ab to see how much the bridge term 

affects the original interaction. )(rU eff
ab  is defined as 

)()()( rbrUrU ab
SR
ab

eff
ab   ,                                                       (3.23) 

where )(rU SR
ab is the short–range part of the interaction potential. In all cases, )(rU SR

ab is simply 

the LJ potential. Fig. 3.5 [102] shows some of the LJ interactions and effective interactions 

between sites. It is seen that adding the bridge function in the interaction makes it more attractive 

in the short range. For the CC interaction, there is a nontrivial repulsive part in the long range. 

Having in mind all these subtle, but significant changes of the potential, I conclude that the local 

order in acetone is affected by the many–body effects. 

Molar excess internal energy Uexc, molar excess Helmholtz free energy Aexc, molar excess 

chemical potential μexc and the isothermal compressibility κT were calculated and listed in Table 

3.4. Results obtained by solving the HNC equation with the bridge functions and without them 

are compared with available simulation and experimental data. Experimental molar excess 

internal energies for all substances were calculated by using the formula RTUH exc
vap   

and the enthalpies of vaporization vapH were found in Ref. [103]. Unfortunately, I have not 

found experimental and simulation data for molar excess Helmholtz energy and molar excess 

chemical potential, but it is worth reporting the calculated results. As one can see from Table 3.4, 

molar excess internal energies Uexc are close to the simulation result and the result is even 

slightly better from the HNC equation, than with the addition of the bridge.  
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Figure 3.3: Site–site distribution functions )(rgab for OPLS acetone at ambient conditions. Thick 
blue line is for current results (RISM+BRIDGE obtained from simulation), dashed magenta line 
for simulation results, cyan thin line for PY, and black thin line for HNC. 

 

 

Figure 3.4: Structure factors )(kSab for the OPLS acetone at ambient conditions. Line and colour 
conventions are as in Fig. 3.3. 
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If one looks closely, one will see small differences between the HNC+Bridge results and the 

simulation results. These small differences get blown by the 2r – term in the integral of the 

molar excess internal energy (Eq. 2.63) and we get a difference in the final result. We cannot get 

exactly the same results, because of the iterative procedure of the SSOZ equation which treats 

the exact solution from simulations only as a first guess. This is another confirmation that the 

SSOZ equation is an approximate equation. The HNC result shows good agreement with the 

simulations, despite of the fact that the structure does not exactly match the simulations.  This 

effect is found in results of the MSA equation for electrolyte solutions were it is seen that the 

excess internal energies match the simulations, while the structure is poorly reproduced [1]. A 

significant difference is seen between the values of the isothermal compressibility κT  from HNC 

and HNC+Bridge equation. The fact that this value is more than 5 times bigger as calculated 

from the HNC equation suggests that the addition of the bridge function diminishes the density 

fluctuations. The values of Aexc from the HNC and the HNC+Bridge calculation differ by 12 

kJ/mol, while the value of μexc from the HNC+Bridge calculation is about 7 times the one from 

the HNC calculation.  

 

 

Figure 3.5: LJ interaction (thin curves) and bridge corrected effective interactions (thick curves) 
for OPLS acetone. Blue lines for O–O, magenta for C–C, cyan for M–M, and gold for O–C. 
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Table 3.4: Predictions of some thermodynamic properties of the SSOZ equation for liquid 
acetone at ambient conditions and comparison with experimental values and simulations. 

 SSOZ 

(HNC+Bridge) 

SSOZ (HNC) Expt. MD 

–Uexc (kJ/mol) 29.16 26.6 28.5 [103] 24.32 

–Aexc (kJ/mol) 41.28 29.47 – – 

μexc (kJ/mol) 133.74 17.60  – – 

1011κT (Pa–1) 42.16 225.50 124 [103] – 

 

3.4.2 Carbon tetrachloride 
 

CCl4 has been previously studied integral equation theories [104, 105]. HNC and PY closures 

were used to solve the SSOZ equation and the results were compared with the simulation data. 

Bridges from simulations were extracted and added inside the HNC closure as well. Figs. 3.6 and 

3.7 show )(rgab and )(kSab , respectively. As in the case of acetone, both HNC and PY theory 

reproduce the correlations very close to the ones from simulations, while the bridge–corrected 

results fit exactly the simulations.  

Fig. 3.8 shows the site–site LJ and the effective interaction for CCl4. The bridge term has pushed 

the attractive interaction part further in r–space and has grown a weak repulsion, especially 

noticeable in the Cl–Cl potential. These differences could hardly be reproduced by changing the 

original correlation function in any way, which has been done in many closures such as the 

Verlet bridge [106], the Rogers–Young closure (RY) [30], the Hybridized Mean Spherical 

Approximation (HMSA) [31] closure, the Martynov–Sarkisov closure (MS) [29] and the 

Kovalenko–Hirata (KH) [27] closure. The weak brakes of the slope in the repulsive part of the 

effective interaction are caused by small incertitude in the simulation pair correlation function in 

the region of strong repulsion. One has to take the )ln( abg term in order to calculate the bridge 

function which then affects the effective potential. 

 



57 
 

 

Figure 3.6: Site–site distribution functions )(rgab for OPLS carbon–tetrachloride at ambient 
conditions. Line convention: thick blue (RISM+Bridge), dashed magenta (simulation), cyan thin 
(PY) and black thin (HNC). 

 

Figure 3.7: Structure factors )(kSab for OPLS carbon–tetrachloride at ambient conditions. Line 
and colour conventions are as in Fig. 3.6. 
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Thermodynamic properties are calculated for liquid carbon–tetrachloride using the bridge 

corrected HNC closure and the HNC closure. Results are compared with the available simulation 

data and experimental values in Table 3.5. As in the case of liquids acetone, the value of Uexc is 

lower from the HNC+Bridge calculation than the HNC calculation. The isothermal 

compressibility κT from the HNC equation is by a factor of 4 bigger than the value from the 

HNC+Bridge calculation. This suggests that the density fluctuations are lowered by the addition 

of the missing bridge diagrams. The calculated values of Aexc and μexc are different. The HNC 

result for Aexc is about 14 kJ/mol more positive than the HNC+Bridge result and the HNC result 

for μexc is about 5 times lower than the HNC+Bridge result.    

 

Table 3.5: Predictions of some thermodynamic properties of the SSOZ equation for liquid CCl4 
at ambient conditions and comparison with experimental values and simulations. 

 SSOZ 

(HNC+Bridge) 

SSOZ 

(HNC) 

Expt. MD 

–Uexc (kJ/mol) 29.34 28.45 29.94 [103] 27.32 

–Aexc (kJ/mol) 46.70 33.18 – – 

μexc (kJ/mol) 124.89 26.10 – – 

1011κT (Pa–1) 72.15 289.06                 105 [103] – 

   

 

 

Figure 3.8: LJ interaction (thin curves) and bridge corrected effective interactions (thick curves) 
for OPLS CCl4. Blue lines for C–C, magenta for Cl–Cl, and gold for C–Cl. 
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3.4.3 Formamide 
 

Formamide is a hydrogen bonding liquid similar to water in such a way that it forms micro–

emulsions with appropriate surfactants, although to a lesser extent than water [107]. Figs. 3.9 and 

3.10 show site–site distribution functions )(rgOH , )(rgOO , )(rgNN , )(rgCC in r– and k–space, 

respectively. As seen in these figures, bridge corrected HNC theory agrees quite well with the 

simulations, while HNC theory alone, could not give the proper structure of formamide. The 

agreement is better in k–space, as seen in Fig. 3.10. The PY closure clearly does not capture the 

structure of formamide properly, as it is observed in Fig. 3.9. Thermodynamic properties are 

calculated and listed in Table 3.6 for liquid formamide at ambient conditions. The two calculated 

values for Uexc are quite close, but 10 kJ/mol more positive than the simulation value. The values 

of Aexc are different by 6 kJ/mol and the HNC value of μres is two times lower than with the 

addition of the bridge. Density fluctuations are lower after the addition of the bridge which is 

seen by comparing the values of κT. 

 

Table 3.6: Predictions of some thermodynamic properties of the SSOZ equation for liquid 
formamide at ambient conditions and comparison with experimental values and simulations. 

 SSOZ 

(HNC+Bridge) 

SSOZ (HNC) Expt. MD 

–Uexc (kJ/mol) 45.77 45.97 57.65 [103] 55.75 

–Aexc (kJ/mol) 31.48 37.73 – – 

μres (kJ/mol) 81.13 41.35 – – 

1011κT (Pa–1) 35.05 52.81 41.1 [108] – 
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Figure 3.9: Site–site distribution functions )(rgab  in r–space for Cordeiro formamide. Line and 
colour conventions are as in Fig. 3.6. 

. 
 

 

Figure 3.10: Site–site distribution functions )(kSab in k–space for Cordeiro formamide. Line and 
colour conventions are as in Fig. 3.6. 
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3.4.4 Methanol, ethanol and 1–propanol 
 

Alcohols are hydrogen bonding liquids that form very specific clusters, such as chains and loops 

[109]. Since this type of clustering is highly non–trivial, one expects that the many–body 

correlations will play an important role in the short–range structure of these liquids. Therefore, 

the bridge function is supposed to give special features in the pair correlation function. RISM 

theory has been previously used in the study of alcohols [77, 105, 110]. When handling the pair 

interactions involving the H–atom only the repulsive 12/1 r part was kept, with parameters 

1HH Å, KkB 50/  and Lorentz–Berthelot mixing rules. The HH LJ–interaction was set to 

zero. This trick was used by Pettit and Rossky [16] and by Lue and Blackstein [19], in order to 

numerically avoid the O–H Coulomb attraction core–collapse. Fig. 3.11 shows three specific 

site–site distribution functions )(rgOH , )(rgOO and )(rgMM for methanol, ethanol and 1–propanol. 

It is seen that the results of the KH closure and the HNC closure are almost indistinguishable for 

site–site distribution functions of all three liquids. Bridge corrected data match the simulations 

perfectly, as seen in the example of methanol (upper left panel) and ethanol (upper right panel). 

Fig. 3.12 shows the same set of functions as Fig. 3.11, but in k–space. It is seen that all the 

bridge corrected )(kSab for methanol (upper left panel of Fig. 3.12) match the simulation results. 

However, this is not true for ethanol O–O correlations (upper right panel of Fig. 3.12) and 1–

propanol correlations in the small–k region (lower panel of Fig.3.12). Thermodynamic properties 

are calculated and listed in Table 3.7 for liquid methanol, ethanol and 1–propanol at ambient 

conditions. For methanol, the value of Uexc from the HNC+Bridge calculation matches the 

simulation value, but for ethanol and 1–propanol is about 10% more positive. The values of Aexc 

from the HNC+Bridge calculation are lower than the ones from the HNC equation and the values 

of μexc are bigger than the HNC results for all alcohols. Isothermal compressibility, κT from the 

bridge calculations is closer to the experimental value than the HNC result for all three alcohols.  
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Table 3.7: Predictions of some thermodynamic properties of the SSOZ equation for liquid 
methanol, ethanol and 1–propanol at ambient conditions and comparison with experimental 
values and simulations. 

 SSOZ 

(HNC+Bridge) 

SSOZ (HNC) Expt. MD 

Methanol     

–Uexc (kJ/mol) 32.14 36.86 35.78 [103] 32.00 

–Aexc (kJ/mol) 39.15 36.44 – – 

μexc (kJ/mol) 45.20 –9.77 – – 

1011κT (Pa–1) 43.04 178.82 121.4 [103] – 

Ethanol     

–Uexc (kJ/mol) 30.76 32.16 36.06 [103] 34.44 

–Aexc (kJ/mol) 70.33 36.70 – – 

μexc (kJ/mol) 6.43 –1.26 – – 

1011κT (Pa–1) 88.34 347.67 111.9 [103] – 

1–Propanol     

–Uexc (kJ/mol) 32.41 32.83 44.95 [103] 36.10 

–Aexc (kJ/mol) 47.60 38.31 – – 

μexc (kJ/mol) 46.82 7.13 – – 

1011κT (Pa–1) 109.98 383.47 84.3 [103] – 
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Figure 3.11: Oxygen–hydrogen, oxygen–oxygen and methyl–methyl correlation functions in r–
space for OPLS methanol (upper left panel), ethanol (upper right panel) and 1–propanol (lower 
panel). Thick blue line is for current results (RISM+BRIDGE obtained from simulation), dashed 
magenta line for simulation results, green thin line for KH, and black thin line for HNC closure. 
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Figure 3.12: Oxygen–hydrogen, oxygen–oxygen and methyl–methyl correlation functions in k–
space for OPLS methanol, ethanol and 1–propanol. Panel, line and colour conventions are as in 
Fig. 3.11. 

 

 

As seen from these figures, the quality of the bridge calculation technique is perfect for 

methanol, quite good for ethanol, but significantly low for 1–propanol. Obviously, it depends on 

the number of methyl groups in the molecule, indicating that this procedure is not appropriate for 

higher alcohols, hence larger bio–molecules. There is absolutely no logical reason why this 
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procedure works well for small molecules and poorly for bigger ones, unless one takes into 

account the approximations within the SSOZ equation. Fig. 3.13 shows O–O, O–H and M–M 

effective interactions for three alcohols. It is seen that the hydrogen bonding O–O effective 

interaction develops a stepwise repulsion in all three alcohols, indicating that the inclusion of the 

bridge function produces a core–softening effect, very similar to the one found in the case of 

water [111].  

 

Figure 3.13: LJ interaction (thin curves) and bridge corrected effective interactions (thick 
curves) for OPLS alcohols. Blue lines for O–O, red for O–H and green for M–M. 

. 
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3.4.6 Water 
 

Water has always been an important test ground for both force field models and theories. 

Generally, it is known that none of the integral equation theories are able to produce accurate 

pair correlation functions for this liquid [14, 17-21]. As in the case of alcohols, only the 12/1 r  

part in the OH interaction was kept, with parameters 1HH Å and KkB 5/  . The HH 

interaction was set to zero. Table 3.8 presents the thermodynamic properties of water as 

calculated by RISM and compared to literature data. The value of Uexc from the HNC equation is 

2 kJ/mol more negative than the simulation value and the value from the HNC+Bridge 

calculation is about 5 kJ/mol more negative. Since the SSOZ equation contains approximations, 

the result after the addition of the bridge functions does not match the simulations. There are also 

different simulation values of Uexc, because the long–range interactions between molecules are 

treated differently [19]. The value of excess free energy Aexc from the HNC equation is closer to 

the simulation value than the value from the HNC+Bridge calculation. The theory predicts 

wrong values of the excess chemical potential μexc, when compared to the experimental value, 

although the HNC+Bridge calculation produce a result with a positive sign. The isothermal 

compressibility κT from the HNC+Bridge calculation produces a value only 10% higher than the 

experimental value and it is closer to it then the HNC value.  

Figs. 3.14 and 3.15 show all the site–site distribution functions )(rgab and )(kSab  in direct and k–

space, respectively. It is seen that the bridge modified results agree almost perfectly with the 

simulations. Both HNC and PY theory do not capture properly the structure of water. Small 

discrepancies are seen in Fig. 3.15 in the small–k part of )(kSOO .This illustrates the incapability 

of the SSOZ equation to find the correct long–range behaviour of the O–O correlation in water. 

Fig. 3.16 shows the effective interaction for all three pairs of sites. As for alcohols, the O–O 

effective potential grows a repulsive part and has a rather unpredictable oscillatory structure. The 

O–H and the H–H effective potentials have also a non–trivial behaviour.  
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Table 3.8: Predictions of some thermodynamic properties of the SSOZ equation for liquid 
methanol, ethanol and 1–propanol at ambient conditions and comparison with experimental 
values and simulations. 

 SSOZ 

(HNC+Bridge) 

SSOZ (HNC) Expt. MD 

–Uexc (kJ/mol) 37.73 44.26 

41.42  

(46.44) [49] 

41.42 [112] 42.91 

42.59 [113] 

37.7 [114] 

45.19 [114] 

–Aexc (kJ/mol) 7.09 18.69 

20.63 (25.86) [49] 

24.02 [112] 23.01 (26.77) 

[115] 

μexc (kJ/mol) 0.74 –13.10 

–10.45 (–15.77) [49] 

24.46 [116] – 

1011κT (Pa–1) 48.09 54.72 

54.87 [49] 

44.65 [117] 26.65 [118] 

 

 



68 
 

 

Figure 3.14: Site–site distribution functions )(rgab  for SPC/E water at ambient conditions. 
Thick blue (current results), dashed magenta (simulations), thin black (HNC), thin green (KH), 
thin black dashed (PY). 

 

Figure 3.15: Site–site distribution functions )(kSab in k–space for SPC/E water at ambient 
conditions. Line and colour conventions are as in Fig. 3.14. 
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Figure 3.16: LJ interaction (thin curves) and bridge corrected effective interactions (thick 
curves) for SPC/E water. Blue lines for O–O, gold for O–H and magenta for H–H. 

 

3.5 Conclusion 
 

In this Chapter, I presented a procedure for extracting the exact bridge functions, which have 

been missing so far in the closure relation, from the pair correlation functions from Molecular 

Dynamics simulations. Since they contain higher order correlations, these functions are 

extremely important in the description of the structure of liquids. Both HNC and PY theory were 

compared with simulation data and it is found that the agreement is better for liquids with a 

simple, Lennard–Jones–like structure (acetone, carbon–tetrachloride), than for H–bonded liquids 

(alcohols, water). 

This methodology allowed calculating new, bridge–corrected pair correlation functions for 

several liquids. In the case of small H–bonding liquids, an excellent agreement was found 

between the calculated data and the simulations. However, this is not the case when studying 

larger molecules, such as 1–propanol, where the bridge function alone cannot cure the 

insufficiency made by the approximations in the SSOZ equation itself. This throws a serious 

doubt in the ability of integral equations to serve as a tool in describing large molecular liquids 

or even bio–molecular systems [28]. The only way to solve this problem is to correct the SSOZ 

equation rather than to improve the closure relation, as it was attempted here. One could avoid 

using the SSOZ equation and use the diagrammatically proper CSL equations [119, 120] instead, 

but these equations are more difficult to handle, since they split each of the bridge functions in 4 
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parts, in a physically non–intuitive way. Therefore, this procedure could not be easily 

implemented in the CSL equations.  
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CHAPTER 4 

Application of the Site–Site Ornstein Zernike 
Equation to aqueous mixtures 
 

4.1 Introduction 
 

The structure of aqueous mixtures is known to possess a micro–heterogeneous nature, besides 

the density and concentration fluctuations that exist in any mixture. It is particularly challenging 

to find observables that will allow differentiating between these phenomena in order to describe 

the correct structural behaviour of these mixtures. Computer simulation studies have brought 

important insights about aqueous mixtures and have successfully complemented experimental 

measurements. However, there are systems, such as aqueous mixtures of higher alcohols for 

example, for which inherent problems of computer simulations, become a serious obstacle in 

detailed analysis [121]. Previous IE studies on realistic mixtures include the study of methanol–

water mixture [87], TBA–water mixture [110] and methanol–carbon–tetrachloride mixture [105]. 

Tanaka, Walsh and Gubbins [87] used the SSOZ equation complemented by the HNC equation 

for aqueous methanol, where they renormalized the Coulomb interaction in the HNC equation, 

but did not explore the problem of micro–heterogeneity. Yoshida et al. [110] used the SSOZ 

equation with the KH closure to reproduce the short–range structure of the correlations in 

aqueous TBA mixtures over the whole concentration range. The SSOZ/HNC study of methanol–

carbon–tetrachloride mixture [105] showed good agreement with the Molecular Dynamics 

results, with a better accuracy in description of the apolar liquid than the alcohol. On the other 

hand, the site–site structure factors of this system are seen to overestimate the simulation results. 

In this Chapter, the SSOZ equation is used with two closures, namely the BHNC and the KH 

closure, to study aqueous mixtures of methanol and “weak water”. A new closure is introduced, 

named the BHNC closure, which uses the bridges from pure liquids in the HNC closure 
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belonging to the site–site correlations that correspond to those liquids. I compare the results of 

both closures against the simulations.  

 

4.2 Details of the computational procedure 
 

In Chapter 3, a procedure that extracts the exact bridge functions from the simulation results for 

a variety of pure liquids is proposed and solved the SSOZ equation with the closure containing 

all the missing many–body correlations. However, this methodology cannot be applied to 

aqueous mixtures since it requires very accurate pair radial distribution functions )(rg ij  from 

simulations. The problem lies in the long–range behaviour of )(rg ij , since it has been seen that, 

even in aqueous methanol, the asymptote of the correlations does not stabilize [122]. Fig. 4.1 

from Ref. [122] shows all pairs of running Kirkwood–Buff integrals )(rG ij for aqueous methanol 

at x = 0.20 mole fraction of methanol. Simulation results of two systems, N = 2048 and N = 16 

384 particles, are presented and also the results after the LP correction of the erroneous 

asymptote of the correlations. The differences between the results from simulation of larger and 

smaller system are striking, especially for methanol, which is the minority species. One observes 

apparent oscillations of )(rG ij in the long–range region of the larger system for all three pairs and 

the periodicity seems to be matched. These oscillations confirm the existence of methanol 

clusters and the matching periodicity means that methanol clusters leads to voids in water 

domains. Similar effects in the running )(rG ij  appear in mixtures of x = 0.50 and x = 0.80 mole 

fraction of methanol. Clearly, aqueous methanol is a system that requires intensive 

computational effort in order to be described properly, so the exact bridge functions for this 

mixture remain unreachable. 

An alternative way is introduced to improve the use of integral equations in the study of aqueous 

mixtures. The SSOZ equation is complemented by a new closure, called the BHNC closure, of 

the following form: 

 )()()()(exp)( rBrcrhrUrg ababababab   ,                             (4.1) 
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where )(rBab  is the effective bridge function which is taken from that of the neat liquids and 

used only in conjunction to the site–site correlations related to the species component in the 

mixture. 

 

 

If the bridge function in Eq. (4.1) is neglected, one recovers the usual HNC equation. Bridge 

functions )(rBab between sites belonging to the same species are calculated as: 

)()( )()1()( S
abS

W
abWab BarBxarB  ,                                             (4.2) 

where )(W
abB is the site–site bridge function for pure water and )( S

abB is the site–site bridge function 

for pure solute. In Eq. (4.1), x is the mole fraction of the solute and parameters Wa , Sa serve as 

scaling factors that allow optimising the numerical solutions. For aqueous methanol mixtures in 

the water–rich region, aw is set to 1 and aS is set to 0. For the equimolar mixture, aw is chosen to 

be 0.50 and aS is 0, while for the solute–rich region, 0Wa  and 90.0Sa .  

Figure 4.1: (from Ref. [122]) Running Kirkwood–Buff integrals )(rG ij for aqueous methanol at 
x = 0.20 mole fraction of methanol.  Thin lines are uncorrected results and thick lines are 
corrected results. Water–Water pair: blue (N=2048) and grey (N=16 384). Cross pair: green 
(N=2048) and jade (N=16 384). Methanol–methanol pair: magenta (N=2048) and orange (N=16 
384). Horizontal dashed lines are expt. results [172] with the same colour codes as N=2048 
systems and full lines are actual predictions from the N=16 384 system. 
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For the water–“weak water” mixtures, the total bridge function of water is put for all 

concentrations. The cross bridge functions are absent from calculations for each system in this 

study. 

The SSOZ equation is coupled by the BHNC closure and solved on a grid of 2048 points, both in 

r and in k space. The bridge function for pure liquids are used from our previous work on pure 

liquids [102], where the bridge functions is extracted from the simulation data. The procedure of 

solving the SSOZ equation is the following. First, a solution is obtained at a high temperature 

where all the integral equations produce numerical solutions. Then, the solution is used as a first 

guess in a standard iterative procedure [99]. The temperature is slowly decreased until room 

temperature is reached. When the solution for a given concentration x is obtained, it is used in 

the iteration process for another value of x. The whole concentration range is studied, from x = 0 

to x = 1, with steps of 0.1. In addition, the SSOZ equation complemented by the KH closure is 

solved for these systems. This closure is often used for micro–heterogeneous systems [26, 28], 

since it offers numerical solution over the whole concentration range, contrary to the HNC 

closure, which tends to enhance the long–range correlations, loosing solution as a consequence. 

The HNC closure could not produce numerical solutions, except at very high temperatures, due 

to the increasing correlations, indicated by a rapid growth of site–site structure factors 

)(kSab near 0k . Previous HNC studies [123, 124] showed that this closure looses solution 

passed a certain point were structure factors reach some high value, but do not diverge. When the 

bridge functions from pure liquids were inserted in the HNC closure, numerical solutions over 

the whole concentration range were obtained. 

4.3 Structural results of the SSOZ Equation for aqueous 
methanol mixtures 
 

Fig. 4.2 shows the radial distribution functions )(rg ij between oxygen sites of water–water, 

water–methanol and methanol–methanol molecules for mixtures at x = 0.20, 0.50 and 0.80 mole 

fraction of methanol. Results from the SSOZ/HNC equation and the SSOZ/KH equation are 

compared against simulations. One can conclude from these figures that the addition of bridge 

functions from pure liquids inside the HNC closure produces a structure very similar to those 

from simulations, as far as the like–like correlations are concerned. This suggests that the 

correlations between the like–like species in the mixture are not so different from those of pure 
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liquids. In other words, this is an indirect proof for micro–segregation of species into domains. 

The KH closure, on the other hand, gives a solution in poor agreement with the simulations.  

         

 

Figure 4.2: Oxygen–oxygen correlation functions for all three pairs of correlations for x = 0.20 
mixture (upper left panel), x = 0.50 mixture (upper right panel) and x = 0.80 (lower middle 
panel). On each panel, upper inset is for water–water correlations, middle one is for cross 
correlations and lower one is for methanol–methanol correlations. Blue lines are BHNC results, 
green lines are KH results and dashed magenta lines are simulation results.  
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Figure 4.3: Oxygen–oxygen structure factors corresponding to the pair correlation functions in 
Fig. 4.2. Panel, line and colour convention is the same as in Fig. 4.2. 

 

Fig. 4.5 shows the site–site structure factors )(kS ij that correspond to )(rg ij from Fig. 4.4, and as 

one can see, the long–range correlations are not properly described by the BHNC closure, though 

some pairs show better agreement with the simulations that the others. A closer look at the top 

panel of Fig. 4.5 for the x = 0.20 mixture, reveals that )(kSWW  beyond k = 2 Å–1 actually 
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assumes the correct behaviour. One observes the same thing for )(kSMM in the middle panel of 

Fig. 4.6 that shows the results for x = 0.50 mixture and for )(kSMM  in the bottom panel of Fig. 

4.7 that concerns the x = 0.80 mixture. This is a direct consequence of the excellent agreement 

these correlations have with simulations in the real space. However, the BHNC results show a 

weak pre–peak at k = 1 Å–1 of all )(kSWW , which is absent from both simulation and KH results, 

meaning that it promotes the existence of water aggregates size of about 6 Å.  

4.4 Structural results of the SSOZ Equation for aqueous 
“weak water” mixtures 
 

The SSOZ equation is solved in conjunction with the BHNC and the KH closure for a selected 

mixture of water and “weak water” model. A detailed simulation study of this aqueous mixture is 

conducted and results are discussed in Chapter 7. “Weak water” model has the same geometry as 

water, only the partial charges on sites are scaled by a factor λ = 4/5. It is found that this model 

solute is miscible with water in all concentrations and micro–heterogeneity is observed, which is 

similar to realistic aqueous mixtures. Bridges from pure SPC/E water are added to water–water 

correlations using Eq. (4.1) with parameter Wa  set to one. Fig. 4.4 shows three different pairs of 

oxygen–oxygen correlation functions for mixtures with x = 0.20, 0.50 and 0.80 mole fraction of 

“weak water” compared with the simulation results. As seen in Fig. 4.4, the BHNC results show 

good agreement with the simulation results, especially concerning water–water correlations, 

where the position of the first peak is properly reproduced. However, the height of the first peak 

is underestimated, which is particularly observed in the x = 0.80 mixture. Clearly, the 

correlations between water molecules in the mixture where water is the minority species are 

stronger than those of the pure liquid. The KH closure is seen to produce results almost the same 

as BHNC for the cross and “weak water” correlations, while those for water are far from the 

correct structure.  Fig. 4.5 shows the same functions as in Fig. 4.4, but seen in k–space. Similar 

to the case of aqueous methanol, BHNC closure does not predict the correct long–range 

correlations, as seen in the small–k behaviour of the site–site structure factors. The KH closure is 

seen to be slightly closer to simulation results in the small–k region and there is no weak pre–

peak that one observes in )(kSWW from BHNC in all three mixtures. Knowing that the same 

effect is observed in the methanol–water mixture, one can conclude that adding the effective 

bridge from pure water to the water–water correlations promotes the self aggregation of water. 
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Figure 4.4: Oxygen–oxygen distribution functions for all three pairs of correlations for x = 0.20 
mixture (upper left panel), x = 0.50 mixture (upper right panel) and x = 0.80 (lower middle 
panel). Panel, line and colour convention is the same as in Fig. 4.2. 
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Figure 4.5: Oxygen–oxygen structure factors corresponding to the pair correlation functions in 
Fig. 4.2. Panel, line and colour convention is the same as in Fig. 4.2. 
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4.5 Conclusion 
 

In the simulations of aqueous methanol mixtures [122], the tail of the radial distribution function 

does not stabilize to an asymptote, which indicates the existence of concentration fluctuations at 

temporal and spatial scales larger than the time of the simulation and the size of simulation box. 

This behaviour was already observed in simulations of higher alcohols such as TBA [121, 125] 

and now one faces the same difficulties in aqueous methanol. This indicates that there is a 

universal structural mechanism of aqueous mixtures and its origin certainly lies in the hydrogen–

bonding interactions between molecules. Results of the study on aqueous mixtures of methanol 

and “weak water” have shown that the Integral Equation Theory does not describe the correct 

structural behaviour of these mixtures. The KH closure is useful in the sense that it provides a 

numerical solution over the whole range of concentrations, but since it is a diagrammatically 

incorrect closure, the results are in poor agreement with the simulations. The results of the new 

closure, called the BHNC closure, are accurate in the short–range part of the correlations, but 

fails in describing the long–range structure, which is seen in the small–k part of the site–site 

structure factors, )(kSab . The HNC closure does not have numerical solutions for aqueous 

mixtures, because the correlations in this closure grow too rapidly so the value of )(kSab at k = 0 

becomes too large. The BHNC closure suppresses the growth of correlations by including the 

bridge functions from neat liquids for those site–site correlations that belong to these species 

components in the mixture. Unfortunately, the BHNC closure does not produce the correct 

)0( kSab behaviour. While the simulations show a raise of )0( kSab  indicating concentration 

fluctuations, the BHNC closure misses this feature, which suggests the importance of the 

diagrammatical links that are not included in the HNC closure. It is important to note that the 

HNC and the KH closure produce almost the same results for neat water and neat methanol, as 

shown in Chapter 3 of this thesis, while they have completely different results for aqueous 

methanol. This comes as a consequence of the incorrect description of the cross correlations that 

each of these closures has.  
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 CHAPTER 5 

Structure and thermodynamics of aqueous 
ethanol mixture  
 

5.1 Introduction 
 

Ethanol–water mixture has been studied by various experimental techniques [126-130], as well 

as computer simulations [131-134]. What makes it different from a random mixture of two 

liquids is the fact that it has a particular organisation on a molecular scale, with clusters of 

alcohol and water that are similar to micelles [135]. Nontrivial molecular structure was also 

found in the aqueous mixture of methanol, which is even smaller molecule than ethanol [136, 

137]. Based on their neutron scattering data, Dixit and co–workers [138] conclude that there are 

coexisting methanol and water clusters and that the local immiscibility of the two species results 

in anomalous thermodynamics of this mixture. This anomalous behaviour of aqueous alcohol 

mixtures concerns in the first place the entropy of the system which increases less than expected 

for an ideal solution of randomly mixed molecules [139]. It is generally believed that these 

properties are a direct result of a specific interaction that occurs between amphiphilic alcohol 

molecules and water molecules where alcohol molecules group together their hydrophobic 

(methyl) parts [140]. D’Arrigo and Paparelli [127] gave a quantitative explanation for the 

volume and adiabatic compressibility of the ethanol–water mixture through the concept of 

clathrate–like structures filled with ethanol. Egashira and Nishi [126] proposed a model of 

ethanol clustering in water based on their Raman spectroscopy measurements. They introduce a 

picture where ethanol molecules form a polymer cluster with ethyl groups stacked alternatively 

along the hydrogen–bonding chain of alcohols. Noskov and co–workers [132] performed 

Molecular Dynamics study of the ethanol–water mixture by using a polarizable force field which 

revealed the complexity of water clusters in the mixture over the whole composition range. For x 

< 0.30 mole fraction of ethanol, water forms large clusters which break with the increasing 
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ethanol content. At the concentration slightly less than x = 0.50 mole fraction of ethanol, there 

are water clusters of various sizes and in the ethanol–rich regions, water exists mostly as dimers 

and monomers.  

5.2 Models and simulation details 
 

OPLS flexibile force field [96] was used for ethanol and SPC/E force field [97] was used for 

water. The parameters of these force fields are shown in Tables 2.1 and 2.2 in Chapter 2 of this 

thesis. All the simulations were conducted using the DLPOLY–2 simulation package [92] for a 

constant NPT ensemble with a total of N = 2048 particles at ambient conditions of temperature 

(T = 300 K) and pressure (p = 1 atm). The condition of pressure and temperature were 

maintained through Berendsen thermostat and barostat with relaxation times of 0.1 ps and 0.5 ps, 

respectively. Ewald summation was used to account for the electrostatic interactions in periodic 

conditions. The integration time step was set to 2 fs. The mixtures were studied over the whole 

concentration range from x = 0.1 to 1, with a step of 0.1. Typical equilibration was in the 0.5–1 

ns range, which was followed by a series of production runs of 0.5 ns. The total accumulated 

statistics were in the range of 1–2 ns, which was found sufficient to obtain smooth distribution 

functions in the long–range part [101, 107]. 

5.3 Molecular Dynamics results 

5.3.2 Structure of neat liquids 
 

Alcohols have a very specific microstructure which was confirmed by the direct cluster study 

[109, 141]. It was found that methanol forms chain–like clusters, while TBA forms micellar–

type structures. The site–site structure factors )(kSab between O–O, CH2–CH2 and CH3–CH3 

sites of OPLS ethanol and between O–O and H–H of SPC/E water were computed. On the left 

panel of Fig. 5.1, the site–site structure factors between methyl and methylene sites show a 

typical Lennard–Jones type structure with large oscillatory structure behind the main peak. In 

contrast, the O–O structure factor shows a peak at 75.0k Å–1, which corresponds to O–O 

domains size of 8/2  kr  Å. This suggests the presence of small clusters in pure ethanol. 

However, for water there is no such distinct pre–peak. There may be an H–bonded network of 

water molecules [142, 143], but the structure of water is still not well understood.   



83 
 

      

Figure 5.1: Site–site structure factors, )(kSab of pure ethanol (left panel) and water (right panel). 
Blue is for O–O, magenta is for CH2–CH2 and green is for CH3–CH3 for ethanol. For water, blue 
is for O–O, magenta is for H–H. 

 

5.3.3 Structure and thermodynamics of aqueous ethanol mixture 
 

Microscopic structure of liquids is completely described by the site–site correlation functions, 

which are direct observables of the correlations in liquids. In Figs. 5.2–5.4, selected site–site 

correlation functions are reported for several mole fractions of ethanol. Fig. 5.1 shows the 

)(rg between two oxygen sites on water molecules for various concentrations from x = 0 to x = 

0.90. It is seen that the first peak increases in magnitude as water becomes more dilute which is a 

sign of increasing water H–bond correlations. The correlations beyond the first peak are seen to 

first increase until x ≈ 0.60–0.70 and then sharply decrease in the second neighbour shell. This 

can be interpreted by the increasing H–bond network which starts to break into smaller clusters 

at a certain threshold. Fig. 5.3 shows O–O, CH2–CH2 and CH3–CH3 correlations between the 

two ethanol molecules. Ethanol O–O correlations behave in the inverse fashion to those of water 

with respect to the ethanol content and they decrease with less ethanol in the mixture, indicating 

the fact that H–bond induced clustering in ethanol is not of the same percolating nature as that of 

the water network [142, 144].  
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Figure 5.2: Water O–O site distribution functions for ethanol mole fractions from x = 0 (red 
curve) to x = 0.90 (black curve). Inset shows the zoom on the first peak of the )(rgWW . Colour 
convention:  x = 0.80 (brown), x = 0.70 (gray), x = 0.60 (cyan), x = 0.50 (purple), x = 0.40 
(yellow), x = 0.30 (green), x = 0.20 (blue), x = 0.10 (magenta).  

 

Middle and bottom panel of Fig. 5.3 show a nontrivial behaviour of the CH2–CH2 and CH3–CH3 

correlations. The first ones exhibit a clear narrowing in the first neighbour shell as x increases, 

while the second ones broaden and decrease with the same trend. In both cases, the position of 

the first peak does not change with x. The rate at which all these correlations vary is faster at 

smaller x values and tends to saturate after about x = 0.60, which is a signature of important 

clustering changes at lower content to ethanol.  
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Figure 5.3: Selected ethanol site–site distribution functions for various concentrations. Top 
panel (O–O), middle panel (CH2–CH2) and bottom panel (CH3–CH3). Colour convention: x = 
0.90 (black), x = 0.80 (brown), x = 0.70 (gray), x = 0.60 (cyan), x = 0.50 (purple), x = 0.40 
(yellow), x = 0.30 (green), x = 0.20 (blue) and x = 0.10 (magenta). 

 

Ethanol–water cross correlations are presented in Fig. 5.4. The x dependence of the cross 

oxygen–oxygen correlations is similar to that of water molecules: the correlations increase as one 

adds more ethanol to the mixture. Cross methyl–oxygen and methylene–oxygen correlations 

reveal an interesting behaviour of ethanol molecules as one goes from the ethanol–poor to the 

ethanol–rich side of the mixture.  From x = 0.10 to x = 0.40, the CH3–OW correlations decrease in 

magnitude, after which they increase again. The way these correlations change with 

concentration indicates that ethanol molecules are shielded from the water surrounding in the 

low ethanol region, just as if they were forming micelles. These micelles then break when the 

mixture becomes rich with ethanol and the methyl groups are re–exposed to water.  
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Figure 5.4: Selected cross site–site distribution functions for various concentrations. Top panel 
(O–OW), middle panel (CH2–OW) and bottom panel (CH3–Ow). Colour convention is the same as 
in Fig 5.3. 

 

In the analysis of micro–heterogeneous mixtures, it can be quite instructive to look at various 

snapshots and to observe whether there is a dominant topology in the system. Three snapshots 

are taken for systems at x = 0.10, x = 0.50 and x = 0.80 mole fraction of ethanol and given in Fig. 

5.5. In the snapshot for x = 0.10 mixture, there are small ethanol clusters of about 2 to 4 

molecules which pack their methyl groups together. Driving mechanism for the formation of 

these clusters is the creation of H–bond between alcohol OH groups and water molecules, and 

the hydrophobic CH3 groups are buried inside the clusters. For the equimolar mixture, one 

observes many segregated domains of water and ethanol. For the x = 0.80 mixture, water 

molecules are seen to form H–bonded clusters, with water monomers present as well. These 

clusters are different from ethanol clusters because they are more filament–like and every water 

molecule inside the cluster bonds to a surrounding ethanol molecule with the free OH bond.  
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Figure 5.5: Snapshots for x = 0.1 (left), x = 0.5 (middle) and x = 0.8 (right) mole fraction of 
ethanol. For snapshots at x = 0.1 and x = 0.8, only the minority species is shown. Colour 
convention: oxygen atom (red), hydrogen atom (white), methyl and methylene group (cyan). 

 

Densities, volumes and excess volumes for ethanol–water mixture are shown in Fig. 5.6. As seen 

from Fig. 5.6, the results agree quite well with the experimental results for density and molar 

volume, but slightly worse for excess molar volume than the simulation results from Ref. [145] 

were the authors used a constant NVT ensemble. 

 

Figure 5.6: Densities (top panel), molar volumes (middle panel) and excess molar volumes 
(bottom panel) for ethanol–water mixture. Colour and line convention: experimental results 
[146] (lines), simulation results from Ref. [145] (red dots), calculations (green dots). 
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Fig. 5.7 shows enthalpies and excess enthalpies for ethanol–water mixture. Experimental excess 

enthalpies are negative, as shown in the bottom panel of Fig. 5.7, which indicates that the mixing 

of the two species is energetically favourable. SPC/E enthalpies for pure water are lower than the 

experimental ones by the factor of E 5 kJ/mol, which corresponds to the water polarization 

contribution. Following the argument by Berendsen [97], the pure water enthalpy is corrected by 

adding this term and the mixture enthalpies by adding the term )1(5 x kJ/mol, where x is the 

ethanol mole fraction. As a consequence of a low pure ethanol enthalpy, the results show 

positive excess energies. However, they do capture the nontrivial composition dependence of 

experimental excess enthalpy, with the changes in slope at x = 0.15, x = 0.40 and x = 0.60–0.70. 

It suggests that these models are able to capture energy changes in the mixture at proper 

concentrations and just the absolute value of excess enthalpy is affected by the inaccurate result 

for pure ethanol enthalpy.  

 

Figure 5.7: Enthalpies (top panel) and excess enthalpies (bottom panel) for ethanol–water 
mixture. Colour and line conventions: fitted experimental results [5] (lines), simulation results 
from Ref. [145] (blue dots), simulation results from Ref. [131] (red dots), calculations (green 
dots). The results of Wensink et al. [131] have been recalculated using their Eq. 9 in conjunction 
with the results given in their Table II. 
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Left panel of Fig. 5.8 shows that the experimental excess enthalpy shape from Ref. [5] is very 

similar to the shape of the negative excess ultrasonic and hypersonic speeds [10]. Since the 

minimum of these curves is at about the same position at x ≈ 0.18, one can conclude that the 

microscopic mechanism behind the changes of these macroscopic values is in fact the same. 

Right panel of Fig. 5.8 shows the experimental heat capacity from experimental studies [5, 147, 

148] and the maximum is again about the value x ≈ 0.18. The second change of the heat capacity 

slope is at x ≈ 0.70, which is the same point were one observes the change of the excess enthalpy 

slope. The analysis of the oxygen–oxygen correlations of water (Fig. 5.2) over the entire 

concentration range shows that there is a decrease of the correlations in the second neighbour 

shell at x ≈ 0.60–0.70. This re–structuring of the mixture is due to the breaking of the water 

network into smaller water clusters. 

   

Figure 5.8: Experimental excess enthalpy [5] in units J/mol (green circles) and negative excess 
sound speed [10] (blue squares for ultrasonic speed and red squares for hypersonic speed in units 
m/s) in the left panel. Excess heat capacity in the right panel (line from Ref. [5], red squares from 
Ref. [147] and blue circles from Ref. [148]).  

 

In Chapter 3 of this thesis, the importance of the LP correction, which consists of shifting the tail 

part of )(rg  to unity, is discussed. This behaviour of the long–range correlations was noticed 

also in aqueous ethanol, but the LP correction did not lead to the correct KBI values, due to the 

fact that the duration of the simulation runs was inadequate. The results suggest that the 

simulations should be longer than 2 ns so that the configurational space is properly sampled and 

the structure one obtains after 2 ns is only a transient one. Figs. 5.9 and 5.10 show examples of 

the LP correction for mixtures at x = 0.10 and x = 0.90 mole fraction of ethanol. One observes in 
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these figures that the tail part of )(rgij (top panels) does not go to the correct asymptote, which 

leads to wrong KBI values (bottom panels). This is particularly seen for the minority component 

(upper left panel of Fig. 5.9 and upper right panel of Fig. 5.10), were the tail fluctuates around 

some asymptote and one cannot tell where it exactly stabilizes. The corresponding KBI values 

also do not stabilize. On the other hand, )(rgij that belong to other pairs (the cross and the 

majority pair) seem to show a clear asymptote and the LP shift allows the running KBI to reach a 

horizontal asymptote.  

 

Figure 5.9: Example of the LP correction for aqueous ethanol mixture x = 0.10. Colour 
convention: ethanol–ethanol (green), ethanol–water (magenta), water–water (red). Panel 
convention:  )(rgij (top), )(rGij (bottom). Thin lines are the uncorrected data and thick lines are 
the corrected data. Thin black lines in the lower panels are the estimated values of the corrected 
KBI.    
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Figure 5.10: Example of the LP correction for aqueous ethanol mixture x = 0.90. Colour, line 
and panel convention is the same as in Fig. 5.8. Thin black lines in the lower panels are the 
estimated values of the corrected KBI.    

 

5.4 Conclusion 
 

The mixture of ethanol–water was studied over the whole concentration range by using 

Molecular Dynamics simulations. This mixture is different from the mixture of simple liquids, 

since one observes changes in the slopes of thermodynamic quantities which indicate structural 

re–organization. This cannot be a local effect, since local rearrangements also happen in 

mixtures of simple liquids and they do not lead to changes of global variables. There are two 

such changes for aqueous ethanol: one at low mole fraction of ethanol, at x ≈ 0.18 and another at 

x ≈ 0.70. First one corresponds to the differences in solute clustering and the other to the 

breaking of water network. Analysis of the tail of )(rgij showed that the current simulation 

statistics are not adapted to the study of this mixture, since the tails do not stabilize in the 

thermodynamic limit. As a consequence, the KBI does not have the corresponding asymptotic 

value. The application of the LP correction did not solve this problem which suggests that a more 

extensive simulation study is required. The short–range structure of the mixture is however 

successfully described within the current study.  
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CHAPTER 6 

Concept of molecular–emulsion  
 

6.1 Introduction 
 

Micro–emulsion is a well defined term in soft matter physics. It corresponds to a 

thermodynamically stable ternary solution made of water, oil and surfactant [149]. If mixed 

together, oil and water would phase separate by creating a horizontal interface between them. 

Addition of a surfactant, which is an amphiphilic molecule, leads to the creation of oil–water 

domains or micelles. These objects are on a nanometer scale and their structure depends on 

temperature and the composition of a mixture, as shown in Fig. 6.1 from Ref. [150]. Oil droplets 

can be dispersed in water forming micelles with the surfactant molecules (Fig. 6.1a). In Fig. 

6.1b, we see a two phase coexistence of oil and water domains with surfactant sitting at the 

borders. Inverse micelles can form when water is dispersed in oil, as shown in Fig. 6.1c. There 

are several approaches describing the microscopic structure of micro–emulsions [151-154]. In 

this chapter, I study the Teubner and Strey (TS) model based on the Ginzburg–Landau theory 

[155]. Using neutron scattering technique, Teubner and Strey [156] fitted the scattering intensity 

of a micro–emulsion to the following form: 

2
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 ,                                                      (6.1) 

where k  is the modulus of the wave vector and 2a , 1c and 2c  are phenomenological parameters. 

Since the objects in these solutions are far bigger than the molecules they consist of, they can be 

described by continuous fields. Therefore, Teubner and Strey used the Ginzburg–Landau field 

theory where free energy, F  of a system in an ordered state can be expressed in the terms of an 

order parameter )(r  as [155] 
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The point where the term under integration stops depends on the considered problem and the 

accuracy one wishes to achieve. The order parameter )(r  describes the spatial distribution of 

matter by neglecting molecular details. 

 As seen from Eq. (6.2) only even terms of i , where i = 1, 2, ...  are kept. This ensures the free 

energy invariance under the transformation   . 

 

Figure 6.1: (from Ref. [150]) The structure of micro–emulsion. a) Oil–in–water (O/W) droplet 
phase coexisting with excess oil (O) phase, b) Middle phase (M) coexisting with excess oil (O) 
and excess water phase (W) with surfactant molecules at the interfaces, c)  Water–in–oil droplet 
phase coexisting with an excess water (W) phase.  

 

Teubner and Strey chose the order parameter )(r  to be the difference in the local volume 

fractions of oil and water. They neglect higher orders than the second in )(r because of the 

small fluctuations in a homogeneous isotropic phase and keep only 02 a  in Eq. (6.2). The term 

1c is also kept and taking all the other c–terms to be zero, would lead to the Ornstein–Zernike 

expression for the scattering intensity near the critical point [157] 
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where the correlation length   is defined as 21 / ac . Teubner and Strey obtained the 

correlation function )(rg  by taking the inverse Fourier transform of Eq. (1.36) as 







 

d
re

r
drg r 


 2sin
2

)( / ,                                                    (6.4) 

where they introduced two characteristic length scales, d  and  . d  is the size of the domains 

and it is defined as 
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while   is the correlation length of the form 
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The TS approach established a direct connection between an experimental quantity )(kI  and the 

microscopic parameters d and  for a broad spectrum of micro–emulsions only by varying three 

fitting values. It is possible to derive the TS form of the structure factor from the MOZ equation 

for molecular fluids that consist of linear molecules. The exact derivation is given in Appendix 

B. 

6.2 Methodology of the TS extension 
 

Strongly micro–heterogeneous systems, such as aqueous TBA, need large scale simulations with 

several thousands of particles so that the structure can be correctly sampled over the 

configurational space [158-160]. Simulation of the TBA–water mixture [121] in this work has 

been conducted in a box with N = 2048 particles, which was enough to conclude that there are 

oscillations in the pair correlation function over the half–width of the simulation box, indicating 

a nontrivial long–range behaviour. The structure and thermodynamics of this mixture will be 

discussed in details in Chater 6 of this thesis. I chose to test the TS fit on a mixture of TBA and 
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water by prolongating the incomplete ending in the long–range part of the correlations between 

(i,j) pair of sites which belong to two distinct molecules 

  
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d
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,                                 (6.7) 

where L is the half–width of the simulation box and the place at which the fit starts. The 

parameters ),( ijij RA are adjusted to match the value from the simulation at the point )( Lrg ij  , 

as well as to keep the derivative continuous at the merging point. The reduced domain size 

parameter 2/dd  corresponds to the size of the oscillations, while the correlation length   is 

the parameter that damps these oscillations. Parameters ),( ijij RA are different for each site–site 

correlation function, but ),( d  are not, as demonstrated from the exact derivation in Appendix 

B. 

Figure 6.2 shows the TS extension of the function )()( rg W
oo at x = 0.20 mole fraction of OPLS 

[96] TBA in SPC/E [97] water, the corresponding running KBI (RKBI) )()( rG W
oo and )()( kS W

oo . 

The same is shown in Figure 6.3 but for O–O correlations of TBA. The top panel of each figure 

shows a zoom on the tail of )()( rg W
oo  from simulations and the first peak is given in the inset. The 

simulation RKBI, as seen in the middle panel of both figures, goes towards a value far greater 

that the experimental one and the TS correction brings the RKBI closer to the expected value. 

Structure factors )(kSab  are given in the bottom panels of the two figures and they are plotted 

against the structure factor of neat liquids whose correlation is analyzed. What is particularly 

interesting is the k = 0 behaviour of the structure factor, because it reflects the long–range 

structure of the liquid. In neat water and TBA, )(kSab vanishes in the 0k limit, contrary to 

what is observed in the corrected )(kSab for TBA–water mixture. The structure factor of water 

)()( kS W
oo (bottom panel of Fig.6.2) in this mixture shows a peak at small–k, indicating the 

formation of water–water domains. The oxygen–oxygen TBA structure factor )()( kS A
oo , grows in 

the small–k limit and reaches a non–zero value (bottom panel of Fig.6.3), which means that there 

are fluctuations of concentration in the mixture.  
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Figure 6.2: Details of TS extension procedure for the OPLS TBA oxygen–oxygen correlations 
for the TBA mole fraction x = 0.20. Top panel, tail part of )()( rg W

oo  (the short range part shown 
in the inset): red dashed line for the uncorrected data, blue line after TS correction. Middle panel, 
RKBI )()( rG W

oo with same line conventions as in top panel. Black line is the experimental data 
from Ref. [4]. Lower panel, structure factor )()( kS W

oo with same line conventions as in top panel. 
The gold curve is the inset is the structure factor of neat water.  
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Figure 6.3: The same as Fig. 6.2 but for SPC/E water oxygen–oxygen correlations )()( rg A
oo for x 

= 0.20. Black line in the middle panel is the experimental data from Ref. [4].The green curve in 
the lower panel is the structure factor of neat OPLS TBA.  

. 
 
TS extension is also presented at x = 0.80 mole fraction of TBA in Figs. 6.4 and 6.5, so one can 

see what happens with the correlations when water is the minority species. It is seen from the 

middle panel of Fig. 6.4 that the uncorrected RKBI have a slanted asymptote. Therefore, it is 

essential to perform an LP correction that consists of shifting the tail of )(rgab  before applying 

the TS extension. Another important point refers to the corrected structure factors )(kSab . The 

corrected water–water structure factor, )()( kS W
oo as seen in the bottom panel of Fig. 6.4, shows a 

noisy pre–peak at a small–k value due to the noise in the tail of )(rgab from simulations. As seen 

from this panel, )()( kS W
oo from mixture differs significantly from the neat water )()( kS W

oo . 
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In the bottom panel of Fig. 6.5, the corrected TBA structure factor )()( kS A
oo is compared with the 

neat TBA )(kSoo from simulations to visualize the difference in the structure between the neat 

liquid and the majority component in the mixture.  

 

Figure 6.4: The same as Fig. 6.2, but for x = 0.80. The green slanted line in the middle panel 
shows the wrong slope of the uncorrected data before the LP correction. Black line in the middle 
panel is the experimental data from Ref. [4]. The gold curve in the lower panel is the structure 
factor of neat SPC/E water. 
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Figure 6.5: The same as Fig. 6.3, but for x = 0.80. The green slanted line has the same meaning 
as in Fig. 6.4. Black line in the middle panel is the experimental data from Ref. [4]. The green 
curve in the lower panel is the structure factor of neat OPLS TBA. 

 

As seen from each of these four figures, the tail of the correlation function from simulations 

stops somewhere below 1, with a clear tendency to extend beyond 23 Å. I found that these is no 

large margin of choice for parameters ),( d . As a matter of fact, the size of oscillations 

controlled by the d –parameter, is already hinted by the tail of the function itself. However, this 

is not the case for the –parameter, since one can chose when the oscillations will stop. We 

empirically found 30d Å and 12 Å for nearly all concentrations in the range x = 0.20–

0.80. These mixtures exhibit strong micro–heterogeneity which has the same topology, as it is 

implied the fitting parameters. 
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6.3 Conclusion 
 

In this Chapter, I introduce the concept of molecular–emulsion, which is based on the analogy 

with real emulsions were domains form at a micrometer scale. Real emulsions consist of oil, 

water and surfactant, while in molecular–emulsions domains are being formed from water and 

small amphiphilic molecules, such as TBA, for example. The concept of molecular–emulsion 

can be applied to systems with strong micro–heterogeneous structure and it allows recovering the 

experimental value of the KBI. In the simulation of such systems, it is important to have large 

enough statistics so that one can clearly see the asymptotical decay of the radial distribution 

functions and the oscillatory structure they assume in the long–range part. Only then one can 

apply the TS extension procedure.  

If the correlations in these systems are not captured correctly in the thermodynamic limit, this 

affects the KBI value by making it far too large compared to the experimental value. The TS 

extension involves two parameters, the domain size d which is a measure for micro–

heterogeneity and the correlation length   which corresponds to concentration fluctuations. If 

these two parameters approach the same value, it means that micro–heterogeneity starts to 

compete with the concentration fluctuations and this competition affects the small–k behaviour 

of the structure factor )(kS . The formation of a new object that appears from concentration 

fluctuations is observed in the pre–peak of )(kS and this is exactly the result of the TS extension, 

since the small–k behaviour of the correlations in k–space corresponds to the long–range 

oscillations in the real space. The TS extension is tested against simulation results also for a 

mixture of water and modified water and for water–acetone mixture. The results will be 

discussed in Chapters 7 (for acetone–water mixture) and 8 (water –“weak water” mixture).  

 

 

 

 

 

 

 



101 
 

 
 
 
CHAPTER 7 

Structure and thermodynamics of 
molecular–emulsions 
 

7.1 Introduction 
 

TBA is considered to be the most hydrophobic of all lower alcohols and it is the largest alcohol 

that is fully miscible with water in all proportions [161]. This mixture has received attention of 

both experimentalists [161-165] and simulators [160, 166, 167]. Nishikawa [165] used small 

angle X–ray scattering technique to study TBA–water mixture and confirmed the existence of 

clathrate–like structures of TBA surrounded by water molecules for dilute solutions of TBA. 

Bowron and Diaz–Moreno [168] analyzed the structure of 0.86 mole fraction of TBA in water by 

neutron diffraction with hydrogen/deuterium isotope substitution. They found that water 

molecules form pockets of about two or three molecules on average in this particular mixture. 

The same technique was used by Bowron et al. [161] for the study of aqueous TBA mixtures at x 

= 0.06, 0.11 and 0.16 mole fraction of TBA, which demonstrated that alcohol molecules 

associate between themselves through their non–polar methyl regions, rather than via polar 

interactions of their hydroxyl groups. Lee and van der Vegt [160] performed molecular dynamics 

simulations which revealed strong solute self–aggregation in the low TBA region and water–

water aggregation over the whole concentration range. Simulation studies on aqueous TBA 

revealed that this system needs large scale simulations, mostly beyond N = 1000 particles, as 

well as run lengths of the order of several nanoseconds, in order to sample correctly both the 

molecular scale and the domain scale dynamics. It was also noticed that most of the existing 

force fields, the OPLS force field in particular, is not adapted to describe the micro–

heterogeneity in aqueous TBA [121]. This is seen in the excessively large KBI values, which 

indicate that the distribution function has a pathological behaviour in the thermodynamic limit. 

This behaviour persists even in the simulations of N = 2000–3000 particles, and some authors 
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proposed the modifications of the solute force field in order to match the experimental KBI 

values [160]. This was also suggested for aqueous acetone. Many combinations of acetone and 

water models, namely, OPLS [93], FHMK (Ferrario, Haughney, McDonald and Klein) [169] for 

acetone and SPC/E [97] and TIP4P (Transferable Intermolecular Potential 4–Point Charge) [113] 

produced KBI 6–7 times higher than the experimental values [170]. Perera and Sokolić [170] 

found that strong–clustering in a system with N = 864 molecules becomes a clear phase 

separation for N = 2048 molecules, for OPLS acetone mole fraction of 0.30 in SPC/E water. 

Weerasinghe and Smith [159] developed a new force field model for acetone (WS) that is 

miscible with SPC water and produces the KBI near the experimental vales. However, when 

plotted against the mole fraction of acetone x, these KBI have a wrong shape. They increase 

monotonously until x = 1, while they should have a maximum around x = 0.60. The importance 

of this model lies in the fact that it was able to reduce micro–heterogeneity in this system, as it 

was also observed in snapshots [170], hence providing KBI on an acceptable scale. In this 

Chapter, another acetone force field is used, the TraPPE–UA (Transferable Potential for Phase 

Equilibria–United Atoms) model, that was built to reproduce accurately the liquid–gas 

coexistence of acetone mixtures [171]. This model mixes with SPC/E water at all mole fractions, 

but the KBI reach high values. 

Instead of performing large–scale simulations, the concept of molecular–emulsion is used to 

study these mixtures. In micro–emulsions, oil and water domains modulate the long–range part 

of the correlation functions, which leads to a peak in the scattering intensity at small wave 

vector. Micro–heterogeneity in aqueous mixtures can be considered as domain formation, 

although at a much smaller scale than in micro–emulsions. Based on the Teubner and Strey (TS) 

approach to micro–emulsions, which is described in Chapter 6, the long–range part of the radial 

distribution function is extended in order to account for these domain oscillations that are 

currently unavailable from computer simulations. As a result, the KBI values are brought to 

reasonable size, which shows the importance of the long–range structure in the calculation of the 

KBI. 

7.2 Models and simulation details 
 

OPLS [93] and TraPPE–UA [171] force field models were used for TBA and SPC/E [97] water 

was used to model water.  TraPPE–UA force field was used for acetone. Tables 7.1 and 7.2 show 

TBA force fields and acetone force fields, respectively. The differences one observes between 
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force field parameters for the same solute lead to large differences in the description of micro–

heterogeneity. All the simulations were conducted using the DLPOLY–2 simulation package 

[92] for a constant NPT ensemble with a total of N = 2048 particles at ambient conditions of 

temperature (T = 300 K) and pressure (p = 1 atm). The condition of pressure and temperature 

were maintained through Berendsen thermostat and barostat with relaxation times of 0.1 ps and 

0.5 ps, respectively. Ewald summation was used to account for the partial charges in periodic 

conditions. The integration time step was set to 2 fs. The TBA–water mixtures were studied over 

the whole concentration range from x = 0.05 to 1, with a step of 0.1. Each concentration was 

initially randomly generated in a box whose volume corresponds to the experimental one. It was 

then equilibrated for 100 ps in a constant NVT ensemble with all partial charges set to zero to 

ensure a homogeneous mixture. Next, the charges are turned on and the system is first 

equilibrated for 200 ps in an NVT ensemble and then in an NPT ensemble for time varying from 

1–1.5 ns, depending of the concentration. Longer equilibration times were needed around x = 0.1 

to 0.3 mole fraction of TBA, were the maximum of concentration fluctuations occur. 

 

Table 7.1: TBA force field models. 

σ (Å) CH3 C O H 

OPLS 3.91 3.8 3.07 0 

TraPPE–UA 3.75 5.8 3.02 0 

Ref. [160] 3.75 6.64 2.95 0 

ε (kJ/mol)     

OPLS 0.6699 0.2094 0.7117 0 

TraPPE–UA 0.814 0.0415 0.7730 0 

Ref. [160] 0.8671 0.0070 0.8496 0 

q (e)     

OPLS 0 0.265 –0.7 0.435 

TraPPE–UA 0 0.265 –0.7 0.435 

Ref. [160] 0 0.337 –0.76 0.423 
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Table 7.2: Acetone force field models. 

σ (Å) O C CH3 

OPLS 2.96 3.75 3.91 

TraPPE–UA 3.05 3.82 3.75 

WS 3.10 3.36 3.75 

ε (kJ/mol)    

OPLS 0.879 0.440 0.67 

TraPPE–UA 0.656 0.224 0.814 

WS 0.56 0.33 0.867 

q (e)    

OPLS –0.424 0.3 0.062 

TraPPE–UA –0.564 0.662 –0.049 

WS –0.565 0.565 0 

 

7.3 Molecular Dynamics results 

7.3.1 Structure of neat liquids 
 

The site–site structure factors )(kSab  between O–O, C–C and CH3–CH3 sites of pure TBA and 

between O–O, C–C and CH3–CH3 sites of pure acetone are computed and shown in the left and 

right panel of Fig. 7.1, respectively. The site–site structure factors between methyl and 

methylene sites show a typical Lennard–Jones type structure, which is also observed in neat 

ethanol. The peak of the O–O structure factor in TBA indicates clustering and the existence of 

O–O clusters that appear as closed loops or micelles in TBA was reported previously in Ref. 

[141]. Each of the structure factors shown for neat acetone (right panel of Fig. 7.1) has a 

Lennard–Jones type behaviour. There are no pre–peaks for the selected pairs and this suggests 

that these are no clusters in neat acetone. The height of the peak at k ≈ 1.5 Å–1 is the biggest for 

the C–C pair, meaning that these correlations are the strongest ones. 
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Figure 7.1: Site–site structure factors, )(kSab of pure TBA (left panel) and acetone (right panel). 
Blue is for O–O, magenta is for CH2–CH2 and green is for CH3–CH3 of TBA. Blue is for C–C, 
green is for CH3–CH3 and magenta is for O–O of acetone.  

 

7.3.2 Structure and thermodynamics of aqueous TBA mixture 
 

The analysis of the site–site radial distribution functions for the TBA–water mixture is presented. 

Results on Figs. 7.2–7.4 are calculated for the OPLS force field of TBA. Fig. 7.2 shows the 

water oxygen–oxygen distribution functions for different concentrations of TBA. As seen on this 

plot, the first peak of the )(rgWW increases as water becomes more rarefied, like in aqueous 

ethanol. However, the maximum of the water–water correlations is not at x = 0.90, but rather at x 

= 0.80, which is an indication of strong H–bond clustering at that particular concentration. 

Correlations in the second coordination shell also increase and become sharper as one adds more 

TBA, but only up to x = 0.50 where they start to decrease. Another important feature 

of )(rgWW is the fact that it reaches the highest value after r ≈ 6 Å for the x = 0.20 mixture, 

indicating that water molecules are very strongly correlated even beyond the second coordination 

shell. 
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Figure 7.2: Water O–O site distribution functions for OPLS TBA mole fractions from x = 0 (red 
curve) to x = 0.90 (black curve). Inset shows the zoom on the first peak of the )(rgWW . Colour 
convention: x = 0.90 (black), x = 0.80 (brown), x = 0.70 (gray), x = 0.60 (cyan), x = 0.50 
(purple), x = 0.40 (yellow), x = 0.30 (green), x = 0.20 (blue) and x = 0.10 (magenta). 

 

 

Top panel of Fig. 7.3 shows the O–O correlations between the two TBA molecules. At x = 0.90, 

the first peak has the highest value, but there is depletion in the second and the third coordination 

shell, as TBA becomes more correlated with water than with its own kind beyond the first 

neighbours. C–C and CH3–CH3 correlations are shown in the middle and the bottom panel of the 

same figure. As seen on both panels, there are two first neighbour distances where the height of 

)(rg depends on the concentration. Interestingly, these correlations are the strongest for x = 0.20, 

after which they start to become smaller and smaller. This is an indication of cluster formation of 

TBA in water where clusters are formed by turning the methyl and carbon sites towards each 

other. Further addition of TBA molecules in the mixture causes these correlations to decrease 

and favours O–O correlations instead.    
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Figure 7.3: Selected OPLS TBA site–site distribution functions for various concentrations. Top 
panel (O–O), middle panel (C–C) and bottom panel (CH3–CH3). Top panel (O–O), middle panel 
(CH2–CH2) and bottom panel (CH3–CH3). Colour convention: x = 0.90 (black), x = 0.80 
(brown), x = 0.70 (gray), x = 0.60 (cyan), x = 0.50 (purple), x = 0.40 (yellow), x = 0.30 (green), x 
= 0.20 (blue) and x = 0.10 (magenta). 

 

The O–Ow, C–Ow and CH3–Ow correlations are reported in Fig. 7.4. These correlation smoothly 

grow from x = 0.10 to x = 0.90, as cross correlations become more enhanced when going to the 

TBA–rich side of the mixture. The middle and bottom panel of this figure may be regarded as 

complement panels of the Fig. 7.3. Indeed, at x = 0.20 the C–Ow and CH3–Ow correlations are 

very low which supports the picture of carbon and methyl sites that are shielded from the 

surrounding water. In Fig. 7.5, the short range features of )(rg from the two mixture models 

studied here is compared to that from Ref. [160] where force field was altered to reproduce the 

proper KBI within the system size. Various site–site correlations are examined and it is clearly 

seen that all model combinations reproduce similar features. Model from Ref. [160] reproduces 
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results that are closer to OPLS than to TraPPE–UA results. Differences are observed in the 

short–range part of )(rgCC (top panel) and )(rg AW
OH (bottom panel) and in the long–range part of 

water–water correlations )(rg W
OO (bottom panel). For OPLS model and model from Ref. [160], 

the water O–O correlations drop below 1 after 8 Å, while for TraPPE–UA model it extends 

above 1, which makes the corresponding KBI value quite large. In conclusion, the TraPPE–UA 

model overestimates the domain correlations. 

 

Figure 7.4: Selected cross site–site distribution functions for various concentrations. Top panel 
(O–Ow), middle panel (C–Ow) and bottom panel (CH3–Ow). Colour convention is the same as in 
Fig 7.3. 

Snapshots of mixtures at x = 0.20, 0.50 and 0.80 mole fraction of TBA are shown in Fig. 7.6. At 

x = 0.20 mole fraction of TBA, alcohol molecules form tight pockets inside the water network. A 
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bi–continuous structure of TBA and water is formed at x = 0.50 and at x = 0.80, water molecules 

appear as dimers and monomers.  

 

Figure 7.5: Selected site–site distribution functions for mixture x = 0.50. Top panel: TBA C–C 
correlations, middle panel: cross correlations O–Hw and bottom panel: water Ow–Ow correlations. 
Red is for OPLS model, blue is for TraPPE–UA and green is for the mixture model from Ref. 
[160]. 
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Figure 7.6: Snapshots for x = 0.20 (left), x = 0.50 (middle) and x = 0.80 (right) mole fraction of 
TBA. Colour convention: oxygen atom (red), hydrogen atom (white) and methyl group (cyan). 
TBA is shown as semi–transparent molecule in all snapshots. 

. 

Volumes, enthalpies and excess quantities for the TBA–water mixture are shown in Fig. 7.7. 

Data from two different TBA force fields (TraPPE–UA and OPLS) with SPC/E water are 

compared with experimental [11, 163] and simulation [160] results. Due to the disagreement of 

E 10 kJ/mol between TraPPE–UA energy and the experimental data for pure TBA, I added 

the correction of 10x kJ/mol to the calculated data for the mixture, similar to the correction for 

pure SPC/E water. It is seen that all the models capture quite well the thermodynamics of the real 

aqueous TBA mixture. However, there are noticeable differences in the excess quantities, 

especially the excess enthalpies, where none of the models captures the experimental S–shaped 

curve. This suggests that these models do not capture various energy changes at the proper 

concentrations in the TBA–water mixture.  
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Figure 7.7: Enthalpies (top panel), excess enthalpies (inset on the top panel) volumes (bottom 
panel) and excess volumes (inset on the bottom panel) for the TBA–water mixture. Line and 
colour convention: experimental data from Ref. [163](top panel) (red lines) and Ref. [11] 
(bottom panel) (red lines), simulation results from Ref. [160] (green dots), OPLS TBA model 
(blue dots), TraPPE–UA TBA model (purple dots). Lines connecting dots are guidelines. 

 

Fig. 7.8 shows the KBI as obtained from the TS correction procedure, by using both OPLS and 

TraPPE–UA TBA models, and data from SAXS [165], SANS [172] and calorimetric 

experiments [4, 172]. In view of the large dispersion of the various experimental results, the KBI 

data agree quite well with the experimental trends.  
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Figure 7.8: Corrected KBI for the two TBA models. Symbol convention: OPLS TBA model 
(filled dots), TraPPE–UA TBA model (filled squares). Colour convention: WWG (blue), AWG  

(green), AAG (red). Line convention: experimental results from Ref. [172] (continuous lines), 
experimental data from Ref. [4] (dashed lines), SAXS data from Ref. [165] (magenta lines), 
SANS data from Ref. [172] (yellow lines). 

 

7.3.3 The structure and thermodynamics of aqueous acetone 
mixture 
 

Analysis of the radial distribution functions for aqueous acetone is presented over the whole 

concentration range. Fig. 7.9 shows the radial distribution function between the two oxygen sites 

on water molecules. It is seen that the first peak of )(rgWW gradually increases as water becomes 

mole dilute and reaches its maximum height for the mole fraction of acetone x = 0.80. Water 

molecules become more correlated as water network rarefies, as it is expected. Water 

correlations also increase in the second and the third neighbour shell, but decay when reaching 

the concentration x = 0.90. Fig. 7.10 shows O–O, C–C and CH3– CH3 correlations between the 

two acetone molecules. One observes that all the acetone–acetone correlations grow as acetone 

becomes the minority species in the mixture. This suggest the clustering of acetone molecules 
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occurs in the same way as of water molecules, although the rate of increase of the correlations is 

slower and the maximum of the correlations is observed for the mole fraction of acetone x = 

0.10.    

 

Figure 7.9: Water O–O site distribution functions for acetone mole fractions from x = 0 (red 
curve) to x = 0.90 (black curve). Inset shows the zoom on the first peak of the )(rgWW . Colour 
convention is the same as in Fig. 7.2. 

 

Oxygen–oxygen acetone correlations (top panel of Fig. 7.10) increase with decreasing x, while 

the position of the split first peak remains the same. The behaviour of the carbon–carbon and 

methyl–methyl correlations with respect to mole fraction x (middle and bottom panel of Fig. 

7.10) is similar to that of the O–O correlations. Because of the increasing acetone content, the 

number of H–bonds that acetone forms with water increases, resulting with decreasing 

correlations of acetone molecules with its own kind. Fig. 7.11 shows the O–OW, C–OW and CH3–

OW cross correlations. Oxygen–oxygen cross correlations (top panel) grow as acetone mole 

fraction x increases, which is consistent with the fact that O–O acetone correlations decrease 

with the same trend. The C–OW and CH3–OW correlations increase with increasing x, reaching 

their maximum height at x = 0.90. 
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Figure 7.10: Selected acetone site–site distribution functions for various concentrations. Top 
panel (O–O), middle panel (C–C) and bottom panel (CH3–CH3). Colour convention: x = 0.90 
(black), x = 0.80 (brown), x = 0.70 (gray), x = 0.60 (cyan), x = 0.50 (purple), x = 0.40 (yellow), x 
= 0.30 (green), x = 0.20 (blue) and x = 0.10 (magenta). 

 

Figure 7.11: Selected cross site–site distribution functions for various concentrations. Top panel 
(O–OW), middle panel (C–OW) and bottom panel (CH3–Ow). Colour convention is the same as in 
Fig 7.10. 
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Fig. 7.12 shows shapshots of mixtures at x = 0.20, 0.50 and 0.80, where micro–heterogeneity is 

seen. For mixture with x = 0.20 in the left panel, one observes that there are holes inside water 

network where water segregates acetone molecules. This type of Swiss–cheese structure is kept 

for all mixtures until x > 0.50, when water becomes minority and makes closely packed linear 

and globular clusters. 

 

Figure 7.12: Snapshots of acetone–water mixtures for acetone mole fractions x = 0.20 (left), x = 
0.50 (middle) and x = 0.80 (right). Oxygen is shown in red, hydrogen in white and carbon and 
methyl groups in cyan. Acetone molecules are shown as semi–transparent in all shapshots. 

 

Enthalpies, volumes, and their excess quantities were studied for acetone–water mixture over the 

whole concentration range. These data are shown in Fig. 7.13 where the results of TraPPE–UA 

acetone and SPC/E water model mixture are compared with the experimental results [173, 174], 

OPLS–SPC/E and WS–SPC/E model mixtures from Ref. [170]. As seen in the inset of the top 

panel in Fig. 7.13, TraPPE–UA model agrees in an excellent way with the experimental 

enthalpy, while this is not true for other models. It also captures well the shape of experimental 

excess volume, although slightly worse than the WS model. TraPPE–UA model was initially 

designed to reproduce the entire phase behaviour of acetone [171] so it is not surprising that it 

gives good results for the thermodynamic parameters of acetone aqueous mixtures. 
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Figure 7.13: Top panel: enthalpy. Bottom panel: volume. Excess quantities are shown in insets. 
Symbols: TraPPE–UA–SPC/E (dots), experimental results from Ref. [173] in top panel and from 
Ref. [174] in bottom panel (blue line), OPLS–SPC/E [170] (magenta line), WS–SPC/E [170] 
(magenta dashed line). 

 

7.4 TS extension for aqueous acetone mixture 
 

The TS extension procedure was described in details in Chapters 6 for aqueous TBA mixture. I 

have demonstrated that in the case of aqueous TBA mixtures, the tail of the site–site correlation 

functions can be modulated by an exponentially decaying sine function. The function has the 

following form: 
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
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



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d
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r
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rg ij
ij sinexp)(


,                                            (7.1) 

where d is the mean domain size, with 2/dd  ,   is the correlation length, and ijA is a factor 

that depends on each of the site–site functions. Each of the radial distribution functions )(rg ij is 
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extrapolated from 2/Lr  , where L is the box size. Factors ijA are chosen to match the value of 

)(rg ij  at end point and keep it a smooth function, 

Figs. 7.14 and 7.15 show two examples of the TS extension procedure applied to the pair 

correlation functions in TraPPE–UA acetone and SPC/E water mixture. Fig. 7.14 shows the 

water–water correlations at x = 0.20 mole fraction of acetone and Fig. 7.15 shows acetone–

acetone correlations at x = 0.30. Both correlations are between oxygen sites. Top panels of both 

figures show that the TS extension of )(rg ij needs to be a smooth continuation of the simulation 

result which brings the KBI shown in the middle panels, to a value much closer to the 

experimental KBI. Structure factors are shown in the bottom panels and it is seen that the TS 

procedure leads to a pre–peak at small–k. This is typical for micro–emulsions and the formation 

of domains. It is found empirically that the parameter d varies from 10 Å to 20 Å for different 

concentrations, with no particular trend and 10 Å. The behaviour of d may be explained by 

the inappropriate box size which could not accommodate the micro–heterogeneous structure. 

Larger box size may alter both parameters, but I conjecture that  will remain close to the 

present value and d might change in a smoother way with x. Before applying the TS extension 

procedure, in some cases the asymptote of the radial distribution function had to be shifted to the 

correct value. As discussed in Chapter 3, the correlation functions from simulations do not 

always tend to unity, but they are slightly shifted due to the finite size box. Lebowitz and Percus 

[100] demonstrated that the shift depends both on the system size N and the partial 

compressibility. Therefore, the tail of the radial distribution functions has to be shifted to unity 

through the procedure described in Chapter 3. Without this correction, the corresponding KBI 

does not reach the proper horizontal asymptote but curves downwards. In practice, the LP 

correction is used for the correlations of the majority component. This is the x < 0.20 region for 

water and x > 0.70 for acetone. 

Fig. 7.16 shows the KBI for TraPPE–UA–SPC/E model mixture with the TS procedure, two sets 

of experimental [4, 175] KBI and the simulation results [170] for the TIP4P/FMKH model 

mixture at x = 0.30. It is found that the TS extension brings the KBI close to their experimental 

values. The TIP4P/FMKH model mixture for one single concentration produces KBI that agrees 

well with the other data for the same concentration. As seen from Fig. 7.16, the water–water KBI 

are not in such good agreement with experiments as the two other sets of KBI, but the 

experimental data themselves differ for this particular set of KBI. 
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Figure 7.14: Illustration of the TS extension procedure for water–water correlation function 
)()( rg W

oo  at acetone mole fraction x = 0.20. Top panel: tail of the )()( rg W
oo . Inset shows full 

correlation function. Colour convention: simulation data (dashed red line), TS extension (blue 
line) with parameters 20d Å and 10 Å. Middle: the RKBI corresponding to top panel. 
Horizontal line is the experimental KBI from Ref. [4]. Bottom: site–site structure factor. The 
yellow line is the structure factor of neat SPC/E water. 
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Figure 7.15: Illustration of the TS extension procedure for acetone–acetone correlation function 
)()( rg A

oo  at acetone mole fraction x = 0.30. The TS parameters are 40d Å and 10 Å. Colour 
and line conventions are the same as in Fig. 7.14. Horizontal line is the experimental KBI from 
Ref. [4].  Bottom panel shows the site–site structure factor of neat TraPPE–UA acetone. 
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Figure 7.16: KBI of aqueous acetone mixtures. Symbol convention: present results with TS 
extension (filled symbols), experimental results from Ref. [4] (lines), experimental results from 
Ref. [175] (open symbols), TIP4P/FMKH model mixture from Ref. [170] at x = 0.30 (stars). 
Colour convention: blue circles for WWG , magenta squares for AWG , green triangles for AAG . 

 

7.5 Conclusion 
 

Structural and thermodynamic properties of aqueous TBA and aqueous acetone were studied by 

using computer simulations. In particular, the concept of molecular–emulsion was used to 

describe the micro–heterogeneous structure of these mixtures. This concept allows one to extend 

the long range part of the correlations, by taking into account its oscillatory behaviour. Due to 

micro–heterogeneity, it is required to simulate these systems for a size that allows one to see how 

domain correlations start to develop from the short range molecular correlations. If the system 

size is too small, these correlations could be distorted by the periodic boundary conditions and 

the results in the long range might not correspond to the real correlations. Large scale 

simulations were not performed, but with the system size of N = 2048 particles, the results are 

good enough to show the short range structure of the mixture and the long range part was fitted 

through the TS extension. I conjecture that the results for a larger system would not differ 

significantly from the current ones, knowing that the values associated to the long range 

correlations are quite small. The analogy between these aqueous mixtures and micro–emulsions 
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is a legitimate one. Micro–emulsions are ternary mixtures of water, oil–type solute and a 

surfactant and a simplified micro–emulsion consists just of water and a surfactant with a large 

oily tail [149].  In the limit of a very small surfactant molecule, one can consider acetone or TBA 

molecule. Both molecules have CH3 groups that repel water. Acetone has a CO group and TBA 

has an OH group that attracts it. Due to the amphiphilic structure of acetone and TBA molecules, 

these aqueous mixtures are micro–heterogeneous. This type of structure differs from the one in 

micro–emulsions because the oil–water domains are quite small so they become 

indistinguishable from concentration fluctuations that exist in any mixture. Information about 

micro–segregation is contained in the short range part of the correlation functions, while the long 

range part accounts for concentration fluctuations. If the integration of the pair correlation 

function includes only the short range part, the KBI reach excessively high values, indicating 

strong self–aggregation. Therefore, it is essential to sample enough domain statistics to obtain 

information about concentration fluctuations. The methodology used in this Chapter allows 

extending the correlations in the long range part which brings the corresponding KBI close to 

their experimental values. During the simulation of these aqueous mixtures and more generally, 

of all aqueous mixtures that exhibit micro–heterogeneity, clusters of water molecules coarsen 

very slowly, leading to domain formation which requires large simulation times.  

Some authors have modified the TBA force fields in order to scale the micro–heterogeneity and  

bring the KBI to the proper values [160]. These modifications did not affect the thermodynamic 

properties, such as enthalpy for example, because the major contribution to these quantities 

comes from the short range correlations. In order to decide between the two different 

approaches, clear experimental criterion is required. For example, if the experiments show a pre–

peak in the structure factor )(kS , this will confirm the presence of domains inside the mixture 

and validate the present approach. If this is not the case, then reducing the micro–segregation by 

altering the solute force field is the proper way of treating these systems. There are two sets of 

experimental data available; first set is from SANS experiments [161, 162, 168] and the second 

is from SAXS experiments [165, 176]. In the first data set, it is very hard to tell from the scale of 

the plots weather there is a pre–peak in the small–k range of )(kS or not. In Ref. [176] the SAXS 

results are displayed in log–scale and it seems like there could be a pre–peak at k 0.0015 Å–1 

for x = 0.085 mole fraction of TBA. It is unfortunate that the available experimental data are not 

solid enough to support our conjecture. Therefore, experimental revisiting of these systems is 

required and a search for any evidence of domain formation akin to the one found in micro–

emulsions. 
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CHAPTER 8 

Fluctuations and micro–heterogeneity in 
aqueous mixtures of modified water models 
 

8.1 Introduction 
 

Water is considered to be a complex disordered liquid with a local tetrahedral order [177]. The 

nature of that order is still not well understood and there are two main approaches to this subject. 

The first one is inspired by the earlier work of Franks [178] where water is considered to be 

made of hydrogen–bonded domains mixed with disordered molecules. It might even be that 

water itself is a mixture of an ordered and disordered form of the same liquid and the 

corresponding liquid–liquid critical point is hidden somewhere in the phase diagram [144]. 

Alternative way of interpreting the particularity of the water structure is by emphasizing its 

smallness in such manner that size effects play a leading role. Angell and co–workers [179] have 

examined the importance of geometry and tetrahedral interactions in substances such as water 

and silica. The effects of geometry were further studied by Linden–Bell and co–workers [180-

182] as they varied the geometry of charges on a water molecule, while keeping the charge 

magnitudes the same.     

Similar to this latter approach, I studied a mixture of real water and a water model which has 

been modified in such a way that the molecule’s geometry is the same as water, but the charges 

are multiplied by a factor  [183, 184]. Three different models have been examined, with 

 1/3, 2/3 and 4/5, which offered a clear insight in the importance of electrostatic interactions, 

namely the hydrogen bond, in the structural and thermodynamic properties of aqueous mixtures. 

For the first value of  1/3, it was found that the model does not mix with water, except at 

solute mole fractions of x = 0.1 and x = 0.9. The second model,  2/3, mixes well with water at 

all concentrations and shows a strong micro–segregation of the like species. In the mixture of 
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water and  4/5 model, moderate micro–heterogeneity has been observed over the entire 

concentration range.  

This study has demonstrated that one does not have to necessarily have hydrophobic groups to 

produce a hydrophobic effect, as observed in many alcohol–water mixtures [126, 138, 161], but 

it can also occur as a consequence of solely interactions (electrostatic ones being more important 

than the Lennard–Jones) and without invoking any size difference between the two types of 

molecules.    

8.2 Models and simulation details 
 

The SPC/E model was used to model the water interactions. The simplest solute miscible with 

water is a molecule of the same geometry as SPC/E water, but with partial charges scaled down 

by a factor  . The oxygen site in SPC/E water has the parameters ),( 00   (0.65 kJ/mol, 

3.165 Å), where 0  is the energy parameter in the OO LJ interaction and 0  is the diameter of 

oxygen. Partial charge on site H is Hq 0.4238e and on site O is Oq –0.8476e, where e  is the 

charge of the electron. Each H site is distant d 1 Å from the central O site, with the angle 

47.109HOH °. In what follows, I will denote by a subscript “W” all quantities related to 

ordinary water and with “w”, those related to “weak water”. “Weak water” models have the 

same geometry as water, but the charges on sites are HY qq   for site Y which corresponds to 

H site in real water and OX qq  for site X which corresponds to O site. Three different values 

of have been studied,  1/3, 2/3 and 4/5. Table 7.1 gives the model parameters for all liquids 

in the study. 

Since all these “waters” have smaller charges than real water, the LJ parameters had to be larger 

than in real water in order to keep them in the liquid state at ambient conditions. Water being in 

the liquid state is a result of the H–bond interaction which is an electrostatic effect. If one 

removes the charges on SPC/E water by setting   = 0 under ambient conditions, it would 

become a gas like nitrogen. Therefore, the LJ values for “weak waters” were set in order to keep 

their molar volumes somewhere between 28 cm3/mol and 18 cm3/mol. The first value is the 

molar volume of many liquids close to their triple point and the second value is the molar 

volume of neat water. 
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For “water” with 3/1  , 0 was set to 2.269 kJ/mol, which is 3.5 times that of the SPC/E 

water, for “water” with 3/2 , 0 was set to 1.292 kJ/mol, double the value for the SPC/E 

water and for “water” with 5/4 , 0 was set to 0.972 kJ/mol, which is 1.5 times that of the 

SPC/E water. In the third case, the molar volume was closer to the one for real water and in the 

first two cases the value was closer to 28 cm3/mol. It was found that it is quite hard to keep these 

model solutes in the dense liquid region at T 300 K and p = 1 atm while keeping their molar 

volumes close to that of water.  

This is due to the fact that anisotropic (tetrahedral) interactions play a key role in the structural 

organization of water and if one changes them, it is not simply by increasing the isotropic LJ 

interaction that one can always keep the system in the liquid state.  

Table 8.1: Model parameters 

λ σ (Å) εo (kJ/mol) q (H) θ (°) 

0 3.165 2.601 0 109.47 

1/3 3.165 2.269 0.1413 109.47 

2/3 3.165 1.292 0.2825 109.47 

4/5 3.165 0.972 0.3390 109.47 

1 

(SPC/E) 

3.165 0.65 0.4238 109.47 

 

All the simulations were conducted in the NPT ensemble under ambient conditions with N = 

2048 particles. The DLPOLY–2 simulation package [92] was used. The integration time step 

was set to 2 fs and Ewald summation part technique was used to handle the electrostatic part of 

the interactions. Mixtures of “weak water” and SPC/E water were studied over the whole 

concentration range of “weak water”, from x = 0.1 to 1, with step size Δx = 0.1, where x is the 

mole fraction of the solute. In a few cases, intermediate points were studied. Each mixture was 

first allowed to reach equilibrium for 0.5 ns and the production runs were ranging from 1 to 3 ns. 

Mixtures with x = 0.2, 0.5 and 0.8 were studied in details, since they represent equimolar mixture 

and mixtures rich with one of the two components.  The values of excess energy and volume for 

these systems did not fluctuate much over the number of runs, which is in contrast with the 

previous simulations of realistic models [10]. This can be attributed to the fact that smaller 

molecules of “weak water” can easily explore the phase space and find the proper arrangement 
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much faster than bigger molecules. Indeed, it is necessary to wait exceedingly long times until 

the system that contains many–site molecules gains smooth thermodynamic values.  

Model with λ = 1/3 was found to de–mix already during the equilibration runs, except for x = 0.1. 

The λ = 2/3 and 4/5 models were studied over the whole concentration range. The monitored 

quantities were the molar volumes, the configurational energies and the LJ and the Coulomb 

contributions to them, as well as the site–site radial distributional functions. Different micro–

states of the system were also monitored by looking at snapshots. This way it was possible to 

immediately tell that the system with λ = 1/3 was phase separating. The other two models exhibit 

micro–segregation, so it was insightful to look at snapshots.  

8.3 Molecular Dynamics results 

8.3.1 Structure of neat liquids 
 

The upper panel of Fig. 8.1 shows the oxygen–oxygen radial distribution functions, )(rgOO  for 3 

different “weak water” models, SPC/E water and the λ = 0 case. All the )(rgOO functions for 

“weak water” show a typical Lennard–Jones–like oscillatory behaviour. The first peak of the 

)(rgOO in SPC/E water is narrower than the others, because of the specific H–bond interaction 

which results with 4, rather than 12 first neighbours around a molecule. The second peak is 

stretched and out of phase compared to the others. This comparison proves the uniqueness of the 

water structure, as reflected through the )(rgab .The 4/5 model shows an interesting behaviour, as 

it is closer to 2/3 model than to SPC/E water, which is surprising given the fact that it differs 

from water by the factor of just 1/5.  

The inset in the top panel of Fig. 7.1 shows the corresponding coordination numbers, defined as: 


r

drrrgrC
0

2 '')'(4)(  ,                                                    (8.1) 

where ρ is the number density of the liquid. Coordination number is the number of neighbours 

within the first shell around a molecule, represented by the first peak of the )(rg .Thus, the 

integration is taken up to the first minimum of the )(rg . This gives 4 for water, but for λ = 4/5 

and λ = 2/3, it becomes 8–9. For λ = 1/3 and λ = 0, one has 10–11 and 12, respectively. Specific 

structure of water can be spot out also by looking at the Fourier transform of the )(rg , which is 
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the structure factor, )(kS  (bottom panel of Fig. 8.1). It is seen that only real water has the split 

peak in the small–k region, while all the others show a behaviour very close to that of the LJ 

liquid. 

 

Figure 8.1: Oxygen–oxygen radial distribution function, )(rgOO  (top panel) and oxygen–
oxygen structure factor, )(kSOO  (bottom panel) for 4 models and SPC/E water. Color 
convention: SPC/E water (blue), λ = 4/5 (cyan), λ = 2/3 (green), λ =1/3 (magenta), λ =0 (black). 
The inset in the top panel shows the coordination numbers. 

 

8.3.2 Structure of mixtures 
 

Structural properties of water–“weak water” mixtures were studied through the analysis of the 

site–site radial distribution functions and the Kirkwood–Buff integrals. Thermodynamic analysis 

was also conducted through the study of volumes, energies, their excess quantities and the 

diffusion coefficients.  
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Fig. 8.2 shows )(rgWW , )(rgWw and )(rgww between two oxygen sites for different mole fractions 

of λ = 1/3 model in water, x = 0.20, 0.50 and 0.80. Snapshots of these mixtures can be seen on 

Fig. 8.3. Although, this model shows de–mixing for concentrations above x = 0.10, it is 

meaningful to examine the differences between )(rgij of a micro–segregated and a phase 

separated system. It is seen that the tails of )(rgWW and )(rgww develop a long range behaviour, 

which is a signature of concentration fluctuations at large distances. Perera and Sokolić [170] 

demonstrated that the competing attractive and repulsive interaction will result with cluster 

formation if the competition is high enough, but leads to phase separation if attraction prevails. 

In the present case, it is the attraction of water molecules trying to maintain their H–bond 

connectivity that completely segregates the “weak water” molecules. In consequence, 

)(rgWw shows depletion, which is typical in simulation of a de–mixed system. One can also see 

on snapshots how the system phase separates.  

 

Figure 8.2: Oxygen–oxygen radial distribution functions )(rgij  for λ = 1/3 model at three mole 
fractions of “weak water”. x = 0.20 (blue lines), x = 0.50 (green dotted lines), x = 0.80 (magenta 
dashed lines). 
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Figure 8.3: Snapshots of the λ = 1/3 model. Left panel: x = 0.20, middle panel: x = 0.50, right 
panel: x = 0.80. The oxygen atoms are in red, hydrogen in white and “weak water” oxygen in 
cyan. On the left and right panels the majority species is shown as semi–transparent. 

 

 

Figure 8.4: Running Kirkwood–Buff integrals, )(rGij corresponding to the )(rg ij in Fig. 8.3. 
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Fig. 8.4 shows the corresponding running Kirkwood–Buff integrals, )(rGij . It is seen that the 

asymptotes are not reached which is another indication of the system phase separation. The same 

quantities were examined for λ = 4/5 model in water, which is the model that seems to mix the 

best with water. Fig. 8.5 shows three different )(rg ij for mole fractions x = 0.20, 0.50, 0.80 

between two oxygen sites and Fig. 8.6 shows the corresponding )(rGij . As seen in Fig. 8.6, all 

the functions reach an asymptote. However, this asymptote is not reached in the simulations, 

since it has been shown by Lebowitz and Percus [100] that the radial distribution function in the 

finite size system does not go to 1, but rather to    babaa NN   //11 . Just by looking 

at the simulation )(rgij , one can conclude that they need a correction factor. For this purpose, the 

following expression was used: 
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where )(rg MD
ij is the uncorrected site–site radial distribution function from Molecular Dynamics 

simulation, the coefficients ij , ij  and ij depend on the species pairs (i, j). ij  is defined as 

1)2/(/1  LgMD
ijij , where L is the simulation box size. In practice, 1ij Å and ijij d5.2 , 

where ijd  is the distance under the first peak of )(rg MD
ij . This assures that the correction applies 

only past the first two layers around the molecule. The parameter ij was set to 10–3 which is 

small enough to bring the asymptote to the proper value, as seen previously in these works [10, 

101].  

Without this correction, one would get the wrong KBI that show a maximum and then they 

decay, instead of showing a clear asymptote. This method has been applied to all the mixtures 

and the values are presented in Fig. 8.7. Other than statistically, one can also compute the KBI 

using the following three equations [3]: 
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where iV is the partial molar volume of species i, defined as jji xVxVV  / , with jj xx 1 , 

V is the volume of the mixture, D is defined as PTw xxxD )/()(   , where w is the chemical 

potential of “weak water” and TkB/1 . 

 

Figure 8.5: Oxygen–oxygen radial distribution functions )(rg ij for λ = 4/5 model at three mole 
fractions of “weak water”. x = 0.20 (blue lines), x = 0.50 (green dotted lines), x = 0.80 (magenta 
dashed lines). 
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Figure 8.6: Running Kirkwood–Buff integrals )(rGij corresponding to )(rg ij in Fig. 8.5. Dashed 
red lines correspond to the corrected asymptote (see text). 

 

The first equation contains the isothermal compressibility term T , but it is usually neglected 

since the liquids are incompressible. Combining the other two terms, one can write these 

expressions for )(xD :  
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These two equations give the same result for )(xD , given the properly converged )(rGij values. 

The molar volumes were fitted and the partial molar volumes were derived from it. The resulting 

KBI are shown in Fig. 8.7. Two sets of KBI were compared and it is seen that they match in the 

case of λ = 4/5. 
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Figure 8.7: KBI of the λ = 4/5 mixture. Colour and line convention: WWG  in blue, WwG in black, 

wwG in magenta. Dots are from direct integration of )(rg ij and lines from the thermodynamic 
route. The inset shows )(xD  as obtained from the procedure described in the text. 

 

As seen from the snapshots in Fig. 8.8, this model shows moderate micro–heterogeneity when mixed with 

water. It seems that the two species behave symmetrically.  

As seen in Fig. 8.9, oxygen–oxygen radial distribution functions, )(rg ij in the λ = 2/3 model are 

not so different from the 4/5 model, except for low water content where the function )(rgWW  

does not seem to go to unity, which indicates de–mixing behaviour. This is further confirmed in 

the Fig. 8.11 where KBI are shown. Fig. 8.10 shows the corresponding running KBI for three 

different mole fractions of the solute. One can see from Fig. 8.11 that in the rich “weak water” 

region, )(rGWW  are very high, which is typical for realistic mixtures, where water–water 

correlations are exaggerated. 

The KBI for the 2/3 model were computed by using two different routes, as in the 4/5 case. 

There is a pronounced discrepancy in the x > 0.50 region between the two sets of data for the 

KBI, as shown in Fig. 8.11. However, for mixtures with x < 0.50, the data match nicely, which 
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confirms the good quality of the integrated KBI and also the accuracy of the thermodynamic 

procedure for computing the KBI. The following empirical expression was used for )(xD : 

  












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561.05.0)1(85.31)(
xx

xxxD .                                 (8.7) 

Similar expression was used in the works of Perera et al. [172, 175], where the authors showed 

that the experimental functions for )(xD could well be approximated by a simple deviation from 

the theory of regular solution, of the generic form )1(1)( xxxD   . This expression ensures 

)(xD = 1 for x = 0 and x = 1, as it should be. The α–parameter is determined from the 

experimental fit. 

 

Figure 8.8: Snapshots of the 4/5 model. The colour convention is the same as in Fig.8.3. Top left 
panel: x = 0.20, top right: x = 0.80, two bottom panels: x = 0.50, the water and “weak water” 
molecules are shown in separate shots taken under the same angle. 

The inset of Fig. 8.11 shows the fitted )(xD and the one obtained from the integrated KBI. As 

one can clearly see on the inset, the data from the KBI calculation deteriorate seriously for x > 

0.50, which is due to the fact that the integrals did not reach the proper asymptotic value. The 
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third set of the KBI data in Fig. 8.11 (shown in filled shapes) is obtained from the procedure that 

is developed in analogy with micro–emulsions, where it is observed that the tails of )(rgij are 

modulated by oil–water domains. This is the so called TS behaviour which is explained in details 

in Chapter 6 of this thesis. It predicts the following expression for the decay of the water–water 

distribution function: 


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
,                                                 (8.8) 

where  is the correlation length and 2/dd  , d being the domain mean size. The exact 

derivation of Eq. (8.8) from the MOZ equation is given in Appendix B.  

 

 

Figure 8.9: Oxygen–oxygen radial distribution functions )(rgij  for λ = 2/3 model at three mole 
fractions of “weak water”. x = 0.20 (blue lines), x = 0.50 (green dotted lines), x = 0.80 (magenta 
dashed lines). 

Following Eq. (8.8), all )(rg ij  from simulations were extrapolated with this expression: 
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where ijA , dR ,  and d are fitting parameters that allow a smooth extrapolation of the current 

)(rg ij , from CRr  , with CR  as the half box size. All the parameters are the same for 

each )(rg ij , except for the parameter ijA which depends on the pair of species.  

 

Figure 8.10: Running Kirkwood–Buff integrals, )(rGij corresponding to the )(rg ij  in Fig. 8.9. 
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Figure 8.11: KBI of the λ = 2/3 mixture model. Colour and line convention: WWG in blue, WwG  
in black, wwG in magenta. Open triangles are from direct integration of )(rgij , thick lines from the 
thermodynamic route and filled dots are from the TS procedure (see text). The inset shows )(xD  
as obtained from the integration of the KBI (dots) and from the fit (line). 

 

Fig. 8.12 shows the TS extrapolation of water–water distribution function between two oxygen 

sites )(rgWW , as well as the corresponding KBI and the structure factor )(kSWW . One sees in the 

top panel of Fig. 8.12 that )(rgWW does not go to 1. If one just sets the function to 1, this will 

result with an exceedingly high KBI value, while with the TS extension, it is not the case, as seen 

in the middle panel of Fig. 8.12. Moreover, the TS extension leads the KBI value to a reasonably 

lower value and this happens after the transient regime which is about half of the box size. It 

should be noted that the TS extension has to be performed also for )(rgWw and )(rgww with the 

same parameters d  and   in order to get consistent KBI values. In this particular case, it was 

set d = 16 Å and  = 5 Å. The value of ijA is adapted for a particular i–j correlation and dR is 

adjusted to match the sine function near dRr  . The entire procedure has to be performed for 

mixtures with x > 0.50 and the LP correction is not applied in these cases, since the asymptote of 

)(rgij is not well defined. This is due to the small box size which cannot accomodate systems 
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micro–heterogeneous behaviour. In the bottom panel of Fig. 8.12 , two forms of structure factor 

)(kSWW are shown.  

)(kSWW which corresponds to the TS extension does not have the Ornstein–Zernike (OZ) form of 

the structure factor. Instead, there is a pre–peak in the small–k region, which is a proof of domain 

formation and the position of the pre–peak corresponds to the average size of the domains. 

 

Figure 8.12: Detail of the TS procedure (see text) applied to water–water radial distribution 
function between two oxygen sites )(rgWW  for the λ = 2/3 mixture at x = 0.80. Top panel: zoom 
on the tail extension with damped domain oscillations. The red dashes are the original 

)(rgWW from simulations, the cyan dashes are the trivial extension setting )(rgWW to 1 and the 
blue line is the TS extension (with d = 16 Å and   = 5 Å). Middle panel: the RKBI 
corresponding to )(rgWW shown in the top panel. The horizontal dashed line is the KBI expected 
from the thermodynamical route. Bottom panel: structure factors )(kSWW corresponding to 

)(rgWW shown in the upper panel, with the same color conventions. The inset shows the details 
near the main peak at 3/2  Wmk  Å–1. 
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Looking at snapshots of this model, shown in Fig. 8.13, one does not notice clear domains, just 

compact water clusters. This suggests that this structure, whose signature is given by the form 

of )(kSij , could be seen if we simulate larger systems. The present results clearly show that the 

number of a few thousands of particles, generally considered to give meaningful results in the 

study of aqueous mixtures, is very limited as far as the long range correlations are concerned. 

The RKBI shown in Fig. 8.10 seem to have a transient form for at least 3 times the given box 

size, which gives the factor 33 and an overall number of 50 000 particles to unambiguously 

describe the long range structure of these mixtures, particularly aqueous mixtures [185, 186].   

 

 

Figure 8.13: Snapshots of the 2/3 model. The colour convention is the same as in Fig. 8.3. Top 
left panel: x = 0.20, top right: x = 0.80, two bottom panels: x = 0.50, the water and “weak water” 
molecules are shown in separate shots taken under the same angle. 

 

In order to confirm the validity of the TS extension, an MD simulation has been conducted for 

the 2/3 mixture model at x = 0.80 mole fraction of “weak water” where the system had twice the 
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number of particles of the previous simulations, N = 16 384. As observed in the inset of Fig. 

8.14, there is a large number of small water domains in the larger box and these domains do not 

differ greatly from the ones in the smaller box. It was noticed that water molecules first form 

string–like aggregates which during simulation coarsen and become domains. This process takes 

a lot of time and after 1 ns, the domains still appear to be coarsening which affects the long range 

part of the correlation functions. This is the reason why small discrepancies are observed in the 

long range part of )(rgWW . However, it is quite clear that the function indeed has the long range 

oscillatory structure, as suggested by the TS extension and that the parameters d = 16 Å and  = 

5 Å are chosen properly. 

 

 

Figure 8.14: Comparison of the structure between the N = 2048 and N = 16 384 molecule 
systems, for λ = 2/3 at x = 0.8 mole fraction of “weak water”. The main panel: )(rgWW between 
two oxygen sites. Colour convention: red dashed line for the small system, blue line for the large 
system and green line for the TS extension. The lower inset shows the corresponding KBI and 
the upper inset shows the snapshots of both systems (colour convention is the same as in 
Fig.8.3). 
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8.3.3 Thermodynamic analysis of mixtures 
 

Volumes, energies, their excess quantities and diffusion coefficients were studied for all three 

types of mixtures. Excess quantity (volume or energy) is defined 

as xAxAxAxA wW
ex  )1()()( , where WA  and wA are values of this quantity for the pure 

substance, water and “weak water”, respectively. First, the volumes and excess volumes are 

presented for mixtures with λ = 1/3, shown in Fig. 8.15. One sees at once how the volumes 

coming from two opposite sides of the concentration range do not converge to the same value at 

equimolar concentration. This could be due to the fact that this mixture is biphasic, which is also 

demonstrated by snapshots at Fig.8.3. Because of that, this mixture was not studied for 

concentrations other than for x = 0.10. The other two cases show negative excess volumes, as 

any mixture of hard spheres [8]. In hard sphere mixtures, negative excess volumes are driven by 

excluded volume effects, but in this example, both species have the same volume. It is the 

electrostatic property of the solute, namely the value of λ parameter, which has the leading role 

in the spatial organization of the mixture, leading to negative excess volumes. As seen in the 

bottom panel of Fig. 8.15, the 2/3 model has excess volumes that are more negative than the ones 

of the 4/5 model. The pure 2/3 model has a larger molar volume than the pure 4/5 model. Hence, 

molecules of the 2/3 model occupy more space and if mixed with water, they will have more free 

volume than the 4/5 molecules.  

Total configurational energy, its van der Waals and Coulomb contribution, as well as their 

excess values for the 2/3 and the 4/5 model are shown in Figs. 8.16 and 8.17, respectively. These 

figures reveal a similar energetic portrait between the two models, showing positive total excess 

energies and the domination of the Coulomb part both in energy and in excess energy.  
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Figure 8.15: Volumetric properties of the 3 mixtures. Top panel: volumes, lower panel: excess 
volumes. Symbols: 1/3 model (stars), 2/3 model (dots), 4/5 model (triangles). 

 
 

However, a considerable difference occurs in the position of the maximum of excess Coulomb 

energy, which is placed in the low concentration region for the 2/3 model (Fig. 8.16, lower 

panel) and in the high concentration region for the 4/5 model (Fig. 8.17, lower panel). The 

position of the extrema and generally, inflection points in the excess properties such as energy 

and heat capacity is related to the morphological changes in the mixtures [10]. As seen in the 

bottom panel of Fig. 8.16, there are two inflection points in the excess Coulomb energy of the 

2/3 model. The first inflection point is around x = 0.40 and it would correspond to the clustering 

of the solute molecules. The second one is around x = 0.90, where the water clusters start to 

form. 
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Figure 8.16: Energetic properties of the 2/3 model. Top panel: energy, lower panel: excess 
energy. Symbols: van der Waals part (triangles), Coulomb part (squares) and total 
configurational energy (dots). 

 

Figure 8.17: Energetic properties of the 4/5 model. Top panel: energy, lower panel: excess 
energy. Symbol convention is the same as in Fig. 8.16. 
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In the 4/5 model, as shown in the bottom panel of Fig.8.17, the maximum of the excess Coulomb 

energy is around x = 0.70, indicating that at this particular concentration water molecules start to 

aggregate themselves. Having in mind that there is no size difference between the solute and 

water, as well as between the two kinds of solute, one has to attribute these changes solely to the 

electrostatic properties of the solute.  

The self diffusion coefficients for water and the three models are shown in Fig. 8.18. The self 

diffusion coefficient iD  is defined by the Green–Kubo relation (velocity autocorrelation 

function) [187] 
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1 dtttvtvD iii                                                    (8.10) 

and the Einstein relation (mean square displacement) [187] 
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 where )(tvi is the velocity of the centre of mass of molecule i at time t and )(tri is the position 

of the centre of mass of molecule i at time t. 

Diffusion of the oxygen site, which is the central site of the water molecule, corresponds to the 

transport of the water molecule itself. On the other hand, diffusion of the hydrogen site 

corresponds to the degree of rotation of the molecule. If one considers a water molecule that is 

rotating around a fixed axis which passes through the central site, then the displacement of the 

hydrogen site would give a measure of the molecule’s rotation. As seen in the top panel of Fig. 

8.17, the diffusion of hydrogen and oxygen of real water stays about the same through the 

concentration range of the 1/3 model. It means that water molecules are not sensitive in terms of 

motion to the presence of the solute, as they are segregated from the solute species. 

When it comes to the mixtures of the other two models, the trend of the two curves is very 

similar, indicating higher diffusion of hydrogen and oxygen in the low water region. The sharp 

increase in the graphs is more pronounced for the 2/3 model with an inflection point around x = 

0.70, while for the 4/5 model, the values grow in a linear fashion. In the pure solute region, the 

values of hydrogen and oxygen diffusion constants become closer to each other, corresponding 

to the translational–rotational coupling as water becomes more monomeric. 

 



144 
 

 

Figure 8.18: Oxygen and hydrogen site diffusion coefficients (in cm2/s ∙ 10–5) for water (top 
panel) and “weak water” (bottom panel). Symbols:  hydrogen (open dots and dashed lines), 
oxygen (filled dots and full lines). Lines serve as guidelines. Colour convention: 1/3 model 
(gold), 2/3 model (blue), 4/5 model (green). 

 

Looking at the bottom panel of Fig. 8.18, one concludes that the diffusion coefficients for the 4/5 

model are closer to the ones of water, shown in the top panel. This is not surprising given the fact 

that the 4/5 model is the most similar to water of all three models. The differences in water 

diffusion between the two models can be explained in terms of micro–heterogeneity. In a 

strongly micro–segregated system, such as the mixture of the 2/3 model with water, the 

clustering of water molecules in the low solute region reflects in their enhanced translational and 

rotational motion and in the mixture of the 4/5 model with water, the system is more 

homogenous and this effect is not observed.                    

 

8.4 Conclusion 
 

Different types of aqueous mixtures of modified water models were studied using Molecular 

Dynamics simulations. It was discovered that these mixtures exhibit many features of real 

aqueous mixtures. The water models differ between themselves in the amount of the partial 

charge on a molecule, ranging from 0 to 4/5 of the partial charge on water sites. Based on 
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statistical and thermodynamic results, a correspondence was found between each water model in 

study and a realistic solute, regarding their behaviour in water. In particular, a model with no 

charges behaves like a Lennard–Jones particle. The 1/3 model does not mix with water and it 

would represent solutes such as benzene. Strong micro–heterogeneity is observed in the 2/3 

model mixture, corresponding to aqueous mixtures of alcohols [10, 101] or acetone [170]. 

Solutes such as formamide [107] or dimethyl sulphoroxide [188] (DMSO) form a moderately 

micro–segregated mixture with water, similar to what was found in aqueous mixtures of the 4/5 

model. The modelling used in this study allowed us to eliminate effects rising from the size 

difference between the solvent and the solute. In other words, there is only one length scale and 

that is the diameter of water, W  3Å. It was demonstrated as well that hydrophobic effect can 

appear even if there are no hydrophobic groups. This comes as a consequence of water self–

aggregation in a mixture due to electrostatic interactions. KBI have been extensively explored 

for the 3 mixtures in study, both by direct integration of )(rg ij  and by thermodynamic route. For 

the model that exhibits moderate micro–heterogeneity, simulation gave KBI far higher than the 

ones obtained thermodynamically. This is not a simulation artefact, but rather a genuine feature 

these systems have, because of their specific morphology.  

The domain formation in the system causes a transient behaviour in the running KBI function, so 

in order to recover the correct value of the KBI, one has to extend )(rgij past the domain size 

through the procedure described in this Chapter 5. This approach is inspired by the analogy with 

micro–emulsions where there are domains of oil and water on a micro–meter scale, which is 

1000 greater than the structures in our systems. Despite that, there is a difference between the 

natures of micro–heterogeneity of these two systems. Micro–emulsions are dominated by their 

coarse–grained heterogeneous structure, while concentration fluctuations play the leading role in 

aqueous mixtures. However, these two systems may not be that different, given the fact that 

there is a point in the phase diagram of micro–emulsions, called the Lifshitz point, where 

domains arise from concentration fluctuations [189]. This effect is exactly what is observed in 

the studied systems.  
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CHAPTER 9 

Application of the Ornstein Zernike 
Equation to core–soft mixtures 
 

9.1 Introduction 
 

The core–softened interaction potential was first introduced by Hemmer and Stell [190, 191] 

who discovered that the addition of the repulsive ramp to the hard core potential (or core–

softening) can lead to the appearance of a second liquid–liquid critical point if there is a liquid–

vapour critical point. Subsequent studies of phase transitions of fluids with core–softened 

interactions include the study of fluids in dimension 1 [192, 193], dimension 2 [194-198] and 

dimension 3 [199-201]. Malescio and Pellicane [195] observed rich pattern formation in a 2D 

fluid were particles interact through a radially symmetric pair potential which consists of an 

impenetrable hard core plus a repulsive square shoulder. Camp [196-198] discovered a variety of 

structures in a 2D system were particles interact through the Lennard–Jones potential plus a 

)/1( 3r –term. Core–softened model fluids were studied also by Integral Equation Theory [201, 

202]. Choudhury and Ghosh [202] extracted the bridge functions from the simulation data for a 

core–softened fluid. Phase behaviour and thermodynamic anomalies of such fluids were studied 

by Lomba et al. [201] using both simulations and the integral equation approach. The main 

reason why the core–softened fluid attracts so much attention is the possible relation between the 

core–softening of the potential interaction and the anomalous properties of realistic liquids, such 

as water for example. Jagla [203, 204] has shown that a core–softened potential can be used to 

reproduce water–like properties. The structure of liquid water was successfully reproduced by a 

soft–core )/1( 12r repulsive interaction together with a Gaussian repulsive core by both Monte 

Carlo simulations and integral equation theories [205]. It was found that the HNC closure was 

able to reproduce very accurately the experimental features of water at room temperature. 
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In this Chapter, the OZ equation complemented by the HNC equation is solved for two different 

binary mixtures where the solvent particles are water-like and they interact by a core-softened 

potential with the same parameters as in Ref. [205]. Despite the fact that all the interactions in 

these mixtures are repulsive, they produce Kirkwood–Buff integrals similar to real mixtures that 

show moderate micro–heterogeneity, such as DMSO–water [4]. Both Monte Carlo simulations 

and integral equations confirm that there is local micro-segregation, but there are no significant 

concentration fluctuations.  

9.2 Mixtures of core–softened particles 
 

The solvent–solvent interaction is modelled as 
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where the gaussian part serves to soften the soft–core part )/1( 12r . The parameters W  and   

are both set to 1. This pair potential introduces two interaction length scales: the diameter of the 

solvent W , and WCS   which would correspond to the half-width of the gaussian part (blue 

dashed curve in the upper and bottom panels of Fig. 9.1). The solute–solute interactions are 

defined as 
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where the energy parameter  is taken the be the same as that of the water model and 

WS  2.1 is the solute diameter. For the first mixture, the solute–solvent interaction is defined 

according to the Lorentz-Berthelot rules: 
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where 2/)( SWSW    and the energy parameter is the same as in Eqs. (9.1) and (9.2). In the 

following text, we refer to the mixture with the solute–solvent interaction defined by Eq. (9.3) as 

the Core–Soft/Soft–Core mixture. For the second mixture, the solute–solvent interaction is 

defined by  



148 
 

   2
12

/85.07.3exp5.104)( SW
SW

SW r
r

rU 


 






 ,                                  (9.4) 

with the same energy parameter as in Eqs. (9.1)–(9.3). We refer to this mixture as the Core–

Soft/Core–Soft mixture. Fig. 9.1 shows the potentials )(rUij for the Core–Soft/Soft–Core mixture 

on the upper panel and for the Core–Soft/Core–Soft mixture in the lower panel. 

Both binary mixtures are defined by the total reduced density 3)/( WVN   , where 

SW NNN  is the total number of particles ( WN and SN  is the numbers of water and solute 

molecules, respectively) and V is the volume of the system. Mixtures are studied for solute mole fraction 

NNx S /  varying from x = 0.1 to x = 0.9 by steps of 0.1. The total packing fraction   is fixed at 

42.0 , which is typical for a dense liquid. It is defined as ))(/( SSWW vNvNVN  , where 

3)6/( WWv  is the volume of one water molecule and 3)6/( SSv  is the volume of one solute 

molecule. The reduced temperature is defined by /* TkT B , where T is the absolute temperature 

and kB is the Boltzmann constant. The reduced density is defined by 

))1(1/()/6(* 33   xW , where WS  / .  

The mixtures were studied by constant NVT Monte Carlo (MC) simulations with N = 4000 

particles, which is sufficient to capture the long–range correlations in the system. The radial 

distribution functions were obtained by sampling every 20 global moves on a total of 50 000 

steps. More statistics was needed for the solute–rich and the solvent–rich regions. The OZ 

equation was solved in conjunction with the HNC closure on a grid of N = 1024 points with an r-

step of 02.0r .  



149 
 

 

Figure 9.1: Pair potentials )(rU AB  of the core–softened mixtures. Top panel: cross potential 
(green line), solvent–solvent potential (blue full line), Gaussian part of the solvent–solvent 
potential (blue dashed line) for the Core–Soft/Soft–Core mixture. Bottom panel: cross potential 
(red line), Gaussian part of the cross potential (red dashed line), solvent–solvent potential (blue 
full line) and Gaussian part of the solvent–solvent potential (blue dashed line) for the Core–
Soft/Core–Soft mixture. 

 

9.2.1 Radial distribution functions from the OZ/HNC theory and 
MC simulations 
 

Fig. 9.2 presents the radial distribution functions )(rg ij  from the OZ/HNC equation compared 

with Monte Carlo simulations at x = 0.10 mole fractions of the solute. Left side of this figure 

corresponds to the Core–Soft/Soft–Core mixture and right side corresponds to the Core–

Soft/Core–Soft mixture. The same functions are presented in k–space in Fig. 9.3. Results for 

mixtures with x = 0.50 and 0.90 mole fractions of the solute are given in Figs. 9.4, 9.5, 9.6 and 

9.7 both in real and in k–space.  
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Figure 9.2: The radial distribution functions )(rg ij for mixture with x = 0.10 mole fraction of the 

solute. Blue is for solvent–solvent correlation )(11 rg , green is for cross correlation )(12 rg and 
magenta is for solute–solute correlation )(22 rg .Left column: Core–Soft/Soft–Core mixture. Right 
column: Core–Soft/Core–Soft mixture. Full line is for OZ/HNC data and dotted line is for MC 
simulations. 

 

Figure 9.3: The same functions as in Fig. 9.2 given in k–space. Colour, line and panel 
convention is the same as in Fig.9.1. 

. 
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Figure 9.4: The radial distribution functions )(11 rg , )(12 rg and )(12 rg for the x = 0.50 mixture. 
Colour, line and panel convention is the same as in Fig.9.1. 

 

Figure 9.5: The same functions as in Fig. 9.3 given in k–space. Colour, line and panel 
convention is the same as in Fig.9.1. 
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Figure 9.6: The radial distribution functions )(11 rg , )(12 rg and )(12 rg for the x = 0.90 mixture. 
Colour, line and panel convention is the same as in Fig.9.1. 

 

Figure 9.7: The same functions as in Fig.9.5 given in k–space. Colour, line and panel convention 
is the same as in Fig. 9.1. 

 

As seen in Figs. 9.1–9.7, the OZ/HNC results show qualitatively good agreement with the 

simulations, especially in the real space. For the x = 0.10 mixture, as seen in Fig. 9.3, the match 

between the two sets of data is almost perfect. Some discrepancies are seen in the small–k 
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behaviour of the structure factors )(12 kS , as shown in Fig. 9.4. This indicates that there are 

differences in the long–range part of the correlations, which is not surprising given the fact that 

the theory misses a certain set of cluster diagrams [1]. Correlations of the equimolar mixture are 

presented in Figs. 9.3 and 9.4. It is seen that the oscillatory structure of the solvent–solvent 

correlation functions )(11 rg from theory does not match the simulations. In k–space, the theory 

underestimates the second peak of )(11 kS which is positioned at the contact distance of the two 

particles, meaning that the correlations at Wkr  1/2  are underestimated.  

I present correlations in real and k–space for the solute–rich mixture, x = 0.90, in Figs 9.6 and 

9.7, respectively. It is seen that the theory captures well the cross and the solute–solute 

correlations in both mixtures, but underestimates the height of the first peak of solvent–solvent 

correlations )(11 rg  in the Core–Soft/Core–Soft mixture. However, both simulation and theory 

show the same position of this peak, at 7.1/ Wr  . Another striking difference is in the pre–

peak of )(11 kS from simulations (upper right panel of Fig. 9.7) at the position were the theory 

shows a raise. This suggests that there are water–water clusters which are not seen by the theory.  

 9.2.2 Concentration fluctuations and micro–heterogeneity in core–
soft mixtures 
 

Deeper insight into the structure of these mixtures is assured if one considers the concentration–

concentration structure factor )(kSCC defined as [206] 

 )(2)()()( 122122211121 kSxxkSxkSxxxkSCC                                   (9.2) 

This quantity is a measure of the concentration fluctuations inside the mixture and its divergence 

at )0( kSCC  indicates demixing. It was found previously by other authors [124, 207] that the 

HNC equation overestimates the concentration fluctuations and looses solution as one 

approaches to the spinodal line, which bounds the mechanically unstable region in the phase 

diagram. Fig. 9.8 shows )(kSCC  for mixtures at x = 0.10, 0.50 and 0.90 mole fraction of the 

solute. It is seen that both OZ/HNC results and simulations agree well on the small–k part 

of )(kSCC , showing no particular raise at )0( kSCC  and therefore no concentration fluctuations. 

However, the theory does not describe correctly the double–peak structure of )(kSCC , as seen on 
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the top panels of Fig.9.8. The theory also underestimates the height of the peaks of )(kSCC  at 

5.5Wk , as observed in the middle and bottom panels of Fig.9.8. 

 

Figure 9.8: The concentration–concentration structure factors )(kSCC for mixtures at at x = 0.10 
(top panels), 0.50 (middle panels) and 0.90 (bottom panels). On the left: Core–Soft/Soft–Core 
mixture. On the right: Core–Soft/Core–Soft mixture. Purple line is for OZ/HNC data and orange 
line is for MC simulations. 

 

Another observable that probes the concentration fluctuations is the KBI. Figs 9.9, 9.10 and 9.11 

show running KBI for x = 0.10, 0.50 and 0.90 mole fraction of the solute, respectively. As seen 

in the bottom panels of Fig. 9.9, there is a large discrepancy between theory and simulations in 

the long–range part of the solute–solute running KBI. This implies that the many–body 

correlations, which are missing from the theory, are essential if we are considering the behaviour 

of the solute molecules in the solvent–rich region. Contrary to the x = 0.10 mixture, the running 

KBI are fairly well reproduced by the theory for the equimolar mixture, as seen in Fig. 9.10., 

which indicates that these concentration fluctuations are more trivial and do not require the 

inclusion of higher order correlations. In other words, the equimolar mixture exhibits no 

particular structure. Fig. 9.11 presents the running KBI for the x = 90 mixture and it is seen, 

similar to the case of x = 0.10, that the theoretical running KBI for the minority species show a 

flat asymptote. Running solvent–solvent KBI for the Core–Soft/Core–Soft mixture do not 
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stabilize in the simulations, which is an effect that has been observed previously in aqueous 

mixtures [10, 125].    

 

Figure 9.9: The running KBI for solute–solute pair, cross pair and solvent–solvent pair 
correlations for x = 0.10 mixture. Colour, line and panel convention is the same as in Fig. 9.3. 

 

 

Figure 9.10: The running KBI for solute–solute pair, cross pair and solvent–solvent pair 
correlations for x = 0.50 mixture. Colour, line and panel convention is the same as in Fig. 9.3. 
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Figure 9.11: The running KBI for solute–solute pair, cross pair and solvent–solvent pair 
correlations for x = 0.90 mixture. Colour, line and panel convention is the same as in Fig. 9.3.  

 

Fig. 9.11 shows the Kirkwood–Buff integrals ijG plotted versus the mole fraction of the solute, x. 

As seen on both panels of Fig. 9.11, the theoretical KBI match those from simulations over the 

range x = 0.20–0.80. Some discrepancies are seen in the solvent–rich and solute–rich regions for 

the minority component, where the HNC theory underestimates the KBI values. This indicates 

that the HNC equation diminishes the segregation of particles. 
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Figure 9.12: The Kirkwood–Buff integrals ijG  for the Core–Soft/Soft–Core mixture (upper 
panel) and the Core–Soft/Core–Soft mixture (lower panel). Open symbols: MC simulations. 
Filled symbols: OZ/HNC theory. Blue circles are 11G , green triangles are 12G  and magenta 
squares are 22G . 

 

Snapshots of all three concentrations for both mixtures are presented in Fig. 9.13. Left column 

corresponds to the Core–Soft/Soft–Core mixture and right column to the Core–Soft/Core–Soft 

mixture. For x = 0.10 mixtures in the top panels of Fig. 9.12, it is very difficult to see any 

particular structure and the particles seem randomly positioned. Middle panels show x = 0.50 

mixtures where the water-like particles appear to form clusters. For x = 90 mixtures in the 

bottom panels, there are certainly solvent clusters, especially for the Core–Soft/Core–Soft 

mixture where one can see a few chain–like clusters. 
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Figure 9.13: Snapshots of three concentrations: x = 0.10 (top panels), x = 0.50 (middle panels) 
and x = 90 (bottom panels). Left side: Core–Soft/Soft–Core mixtures. Right side: Core–
Soft/Core–Soft mixtures. In x = 0.10 and x = 0.90 mixtures, the majority species is shown as 
semi–transparent. Blue particle is the solvent and red particle is the solute. In x = 0.50 mixtures, 
solute species is shown as semi–transparent. 

 

9.3 Conclusion 
 

An integral equation and Monte Carlo simulation study were performed for two types of binary 

systems containing spheres which interact by a core–soft potential. It was found that the HNC 

closure successfully describes the structure of mixtures in the intermediate region of 

concentrations, from x = 0.20 to x = 0.80 mole fraction of the solute. However, for 

concentrations of x = 0.10 and x = 0.90, the HNC theory does not show a good agreement with 

the simulations, which is seen particularly in the case of Core–Soft/Core–Soft mixture for the 

solvent–solvent correlations at x = 0.90. The fact that HNC underestimates these correlations, as 

seen from the short–range structure of the pair correlation function and the small–k behaviour of 
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structure factor )(11 kS  , shows that the absence of the many–body contribution effects in this 

model mixture does not lead to the growth of these correlations, contrary to the case of realistic 

mixtures that exhibit micro–segregation [121]. In other words, the enhancement of the 

correlations or clustering that we observe from the short–range structure of the simulation 

)(11 rg and confirm by snapshots is of a different nature compared to the clusters of micro–

heterogeneous mixtures, whose structure is often described through the behaviour of the KBI. 

These integrals are seen to exhibit large values in micro–heterogeneous mixtures in the range of 

intermediate solute concentrations so one cannot clearly distinguish between concentration 

fluctuations and micro–heterogeneity only by looking at the KBI values [125, 170]. Since the 

KBI for our studied systems show a rather flat behaviour, these structural effects are not present 

here. High value of 11G  in the solvent-rich region of the Core–Soft/Core–Soft mixture comes 

from the fact that the water-like particles are strongly micro-segregated, but there are minimal 

concentration fluctuations, as confirmed also by the small-k behaviour of the concentration-

concentration structure factor )(kSCC .  
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CHAPTER 10 

Conclusion 
 

 

In this thesis work, I have tried to show how the micro–heterogeneous nature of complex liquids 

and their mixtures is difficult to handle through usual statistical approach of liquids. The key 

feature I have tried to assert is the difference between concentration fluctuations and micro–

heterogeneity, which is a form of local order. The principal difficulty both simulation and 

theories meet is the precisely the fact that they do not distinguish these manifestations as being 

distinct. 

In the Introduction, I have mentioned how intriguing local order is, as opposed to global order, 

for which we have robust theories from Physics, based on the concept of order parameter. Phase 

transitions have been described by Thermodynamics even before the concept of atom was 

accepted among physicists. The statistical mechanics invented by Maxwell and Boltzmann have 

provided a new insight into these transitions, greatly helped by the microscopic picture provided 

by molecules. The modern key concept to phase transitions is the idea of fluctuations and 

associated response functions. It is noteworthy that the concept of fluctuation is also contained in 

classical thermodynamics, as for example in the isothermal compressibility, a quantity known 

prior to the work of Boltzmann. It is however the microscopic picture that provides a new insight 

into the true meaning of response functions. 

The concept of local transitions is not clear in modern statistical physics: we do not know which 

response function to associate to such changes. If such concept exists, it remains to be invented 

and appropriate observable are required in order to track such transitions in experiments. With 

that respect, the new idea of topological phase transitions that occurs in quantum liquids and 

other related systems in condensed matter are quite appealing, since they are precisely not 

described by the standard Landau phase transition formalism, where there is a order parameter 
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and a symmetry to break [208]. Topological order is richer since it allows to have phase 

transitions that do not break any symmetry and allows to explain phenomenon occurring at very 

low temperatures such as fractionalization, for example [209, 210]. In particular, it explains 

several forms of quantum collective phenomena. However, its physics is also very remote from 

what I examined in this thesis. 

In the present work, I have tried to track down local order through various systems, some 

realistic and some models. The system that is the closest to the form of local order we are talking 

about is the micro–emulsion. Micro–emulsions are considered to be homogeneous [211] 

although the segregated oil–water domains are in the range of 0.1 μm. This is because there is no 

global order to these systems, and global order is synonymous of heterogeneous. However, these 

systems can exhibit rich form of orders, such as a variety of lamellar and sponge phases. They 

also exhibit micelle phase, which is not a true phase transition. In contrast to these systems, most 

of the simple aqueous mixtures stay in the homogeneous phase. The only “transition” they can 

have is when a pre–peak emerges in the scattering function when domains become well defined. 

This is analogous to what happens in micro–emulsions, with the difference that the pre–peak 

corresponds to ordered domains such as lamellas. The pre–peak witnesses the fact that a new 

length scale has emerged into the system, for example the distance between lamella. This is an 

important insight that is very helpful to get further understanding into describing local order. 

Generally, liquids are characterized by the length scale set by the size of the molecules. An 

additional length scale comes from the fluctuations, as can be deduced from the OZ equation. 

There is only one such length, regardless of the number of components, since this length is 

deduced from the small–k expansion of the OZ (under matrix form for a multi–component and 

angular dependent system) at order 2k . If we go to order 4k we can have an additional length, 

which corresponds to domain formation. So, the OZ equation contains all the information to 

explain local order from the point of view of local domains. This is what we have used by 

invoking the concept of molecular emulsion. 

Pre–peaks in structure factors are not always associated to positional order such as in lamella. 

For example, cluster forming systems have a pre–peak. Such types of systems are found in 

reality with colloids coated with polymers [212] which have a short–range attractive interaction 

and a long range repulsive interaction. This type of system can be modelled by a 2–Yukawa 

representation with one attractive and the other repulsive [213]. The pre–peak of these systems is 

built in, as it can be shown by the direct Fourier transform of the interaction itself [189]. Other 

systems include those with two repulsive cores [214, 215]. Both of these systems are pseudo 
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one–component systems, with two length scale interactions. 

Both simulations and integral equations can deal with these systems without any of the problems 

mentioned for micro–heterogeneous systems. It probably helps that the cause for domain 

formation is embedded within the interaction itself with the two length scales. So, it looks like 

the problems linked with micro–heterogeneity come from the fact that the domain length scale is 

left free to emerge from the system itself. This is a matter of pseudo–potentials, just like the 

Yukawa is a screened version of the direct Coulomb interaction, and it is difficult to obtain a 

Yukawa screened interaction from the correlations measured in a simulation. 

By imposing the TS extension, we help the system producing the domain modulation in the 

correlation functions. This works well for molecules that produce well defined domains such as 

acetone or TBA, but not for smaller molecules such as methanol or ethanol, when domains are 

fuzzy (compare snapshots in Chapters 5 and 7). The high scattering in )0( kS is due to micro–

heterogeneity and not concentration fluctuations, but it seems difficult to tell them apart without 

an accurate small–k dependence of )(kS . Indeed, if )(kS has the OZ Lorentzian form 

)/( 22 kA  then the high scattering is entirely due to concentration fluctuations. But if there is 

a non–negligible 4k dependence, then despite the absence of a pre–peak, there is domain 

dependence. The simulation data is not accurate enough to tell unambiguously what the exact 

status of )(kS is. The KH based integral equation theory always predicts an OZ form, while if we 

insert the pure water bridge, we predict a non–OZ behaviour. The problem is that this insertion 

also diminishes dramatically the k = 0 contribution. It is clear that important physics of this 

simple system is captured by neither the simulations nor the integral equations. 

How can we progress beyond this point? We cannot invert the simulation data without having a 

clear small–k behaviour, like we did for pure liquids with good success. This imposes simulating 

systems of more than 10 000 particles. Here again, it is not clear that the tail of the correlations 

will stabilize in order to produce the proper KBI. It seems that the inter–domain correlations are 

quite large, even in a system as simple as water–methanol. 

To conclude, I would like to put my work in perspective with the more general approach in 

Physics. Classical physics has made important progress when dealing with well–defined 

“objects” like planets, balls or atoms. It has also dealt successfully with continuum type media 

such as fluids, when described macroscopically (for example the Navier–Stokes or Boltzmann 

equations). This is because one can write equations that capture the generic behaviour of such 

systems. When dealing with systems where one has to encompass both levels of description, we 

have only the statistical approach, and we are missing relations involving the moments of the 
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statistical distribution that would be in par with the generic descriptions we have obtained in the 

cases mentioned above. In consequence, we are forced to deal with the details of fluctuations and 

emergent forms –such as micro–heterogeneity – without having generic equations to solve. Field 

theory provides such an approach through the Landau–deGennes–Ginzburg Lagrangian. But this 

type of approach is better suited to describe phase transitions, and not local transitions as those 

that encountered in aqueous mixtures. It is not obvious that such equations exist for the type of 

system we considered. 

On the other hand, the fact that biological systems are so well–organized, using only fluctuations 

and molecules of various size, indicate the possible existence of generic equations –yet to be 

discovered– that would allow one to predict the paths of organization of such complex systems, 

just like we can predict the motion of planets despite the hidden generic chaos of the many body 

system. It is indeed like Albert Einstein said at the beginning of his Science paper in 1940 [216]: 

“Science is the attempt to make the chaotic diversity of our sense–experience correspond to a 

logically uniform system of thought”. 
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Résumé 
 
Ce travail de thèse porte sur l'analyse et la compréhension, au travers des outils de la théorie des 

liquides, de la nature de l'ordre local des mélanges liquides, et en particulier aqueux. En effet, les 

mélanges aqueux diffèrent des mélanges de liquides simples, du fait que les molécules d'eau 

tendent à s'associer préférentiellement entre elles au travers de la liaison hydrogène, de ce fait 

ségréguant les molécules de soluté sans pour autant entraîner une démixtion totale des mélanges. 

Même des mélanges aussi simple que l'eau et le méthanol exhibent ce type d'ordre [138]. La 

micro–hétérogénéité résultante apparaît comme étant distincte des fluctuations de concentration, 

qui jouent un rôle important dans la stabilité des mélanges. La micro–hétérogénéité est au cœur 

des processus microscopiques dans les milieux de type biologique, dans lesquels l'eau joue un 

rôle important ; comme par exemple l'auto–assemblage de membranes à partir de molécules de 

lipides [217]. Les simulations numériques seraient l'outil par excellence pour aborder le détail 

des structures moléculaires micro–hétérogènes. Elles ne sont cependant pas exemptes de diverses 

contraintes, telles que la taille de la boîte ainsi que le temps d’échantillonnage [121]. Ces 

problèmes deviennent des obstacles sérieux à l'étude des mélanges aqueux, car les corrélations à 

moyenne portée –précisément celles limitées par les tailles habituelles de boites– ne sont pas 

bien décrites. Nous illustrons cette difficulté dans  notre étude au travers d'exemples spécifiques. 

Nous introduisons le concept d' »émulsion moléculaire » afin de décrire les mélanges aqueux. 

Les équations intégrales représentent une alternative à l 'étude de ces systèmes, mais elles 

souffrent également d'autres types de contraintes. Le problème principal provient de leur 

inadéquation à décrire les corrélations à N–corps, et par conséquent les fluctuations complexes 

[1, 13].La description des corrélations est au centre de ces théories. Il y a deux types d'approches 

concurrentes. La première consiste à décrire toutes les corrélations angulaires explicitement en 

développant ces fonctions sur une base d'invariants rotationnels [35]. Elle se base sur l'équation 

exacte de Ornstein–Zernike (MOZ). La seconde consiste à calculer les corrélations entre sites 

atomiques des molécules, et se base sur une version approchée de MOZ appelée SSOZ. Nous 

décrivons ces deux approches ainsi que leurs mérites respectifs au chapitre 2.Dans le chapitre 3, 
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l'approche basée sur l'équation SSOZ est utilisée pour l'étude des corrélations dans plusieurs 

liquides  moléculaires purs (acétone, tétrachlorure de carbone, amides et alcools). L'utilisation 

des relations de clôture HNC et PY montre qu'il est nécessaire d'introduire les contributions à N–

corps en inversant la relation SSOZ en partant des corrélations obtenues par les simulations 

numériques. Les propriétés thermodynamiques sont comparées avec celles des simulations et des 

expériences.Au chapitre 4, l'équation SSOZ est utilisée pour l'étude des mélanges aqueux. On 

trouve des différences plus marquées entre les différentes relations de clôture telles que HNC et 

KH que dans le cas des corps purs pour lesquels ces deux clôtures donnent des résultats quasi–

identiques. La clôture HNC n'a souvent aucune solution, du fait qu'elle ne distingue pas la 

micro–hétérogénéité des fluctuations de concentrations et conduit la plupart du temps à la 

démixtion des mélange. L'introduction des corrélations à N–corps des corps purs permet 

d'obtenir des solutions, et en particulier à bien décrire les corrélations à courte portée. Cependant 

la structure à moyenne portée est très mal décrite . La relation de clôture KH donne des solutions 

dans la plupart des cas, mais elle décrit très mal toutes les corrélations. Cette étude montre le rôle 

prépondérant joué par la différence entre les fluctuations de concentration et la micro–

hétérogénéité. Dans le chapitre 5 nous étudions tout particulièrement le mélange eau–éthanol par 

dynamique moléculaire, pour plusieurs concentrations allant de x = 0(eau pure) à x = 1(éthanol 

pur), par pas de x = 0,1, où x est la fraction molaire d'éthanol. Nous abordons en particulier les 

soucis causés par les modèles de champs de force et les techniques de simulation, notamment en 

regard de la micro–hétérogénéité. Nous détaillons comment ces problèmes se reflètent dans le 

calcul des intégrales de Kirkwood–Buff (KBI). 

Le concept d'émulsion moléculaire est introduit au chapitre 6, afin de décrire l'hétérogénéité en 

domaines, par analogie avec les micro–émulsions. Ces dernières sont des mélanges aqueux au 

moins ternaires, composé d'eau, d'huile et de surfactant. Ces systèmes font apparaître de 

nouvelles entités, telles que les micelles et les lamelles [208]. Les corrélations dans ces systèmes 

ont une description mathématique qui fait intervenir 2 échelles de longueurs [157], la longueur 

de corrélation et la taille de domaine. En établissant une analogie formelle avec les micro–

émulsions, nous dérivons la forme de décroissance asymptotique des fonctions de corrélations à 

partir de l' équation MOZ et retrouvons ainsi la forme Teubner–Strey (TS). En utilisant cette 

forme asymptotique, nous montrons que l'on peut étendre les fonctions de corrélation calculées 

pour une taille finie en simulation, et de cette manière nous retrouvons un bon accord avec les 

résultats expérimentaux des KBIs. Au chapitre 7, nous illustrons le concept d'émulsion 

moléculaire et de l'extension TS, au travers de l' étude par dynamique moléculaire des mélanges 
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eau+acétone et eau+tbutanol. En effet, les simulations de ces mélanges prédisent une grosse 

micro–hétérogénéité et donc des KBI bien plus grand que ceux expérimentaux, de facteurs 3 ou 

plus.  L'extension module les corrélations et permet de ramener ces valeurs très proches de celles 

expérimentales.Au chapitre 8 nous étudions des modèles d'eau « faible », obtenues en diminuant 

les charges partielles du modèle SPC/E par des facteurs 1/3 , 2/3 et 4/5. En les mélangeant avec 

l'eau SPC/E, nous montrons que les diverses structures micro–hétérogènes ne sont pas dues aux 

tailles plus grandes des solutés réalistes, mais bien à des interactions faibles de liaison 

hydrogènes. Dans le cas 2/3 nous montrons la pertinence de l'extension TS appliquée à ce cas de 

mélange modèle. Au chapitre 9, nous étudions des mélanges modèles avec un modèle d'eau 

purement répulsive à 2 cœurs, mais qui reproduit les particularités des corrélations de l'eau 

réelle. Et éliminant ainsi les effets de charges, et ne retenant que les effets d'organisation spatiale 

proche de l'eau réelle, nous montrons les différences structurales dues aux fluctuations de 

concentration et à la micro–hétérogénéité. Nous comparons notamment les corrélations entre les 

simulations et la clôture HNC, qui est remarquablement bonne, sauf quand à la prédiction de la 

différence entre  fluctuations de concentration et micro–hétérogénéité, c'est à dire dans le 

domaine des petits k des facteurs de structure. Dans notre conclusion au chapitre 10, nous 

récapitulons les points essentiels qui émergent de notre étude, à savoir que les simulations et la 

théorie ont du mal à décrire la différence entre fluctuations de concentration et micro–

hétérogénéité, et que la modulation en domaines introduite par la micro–hétérogénéité conduit à 

la présence d'un pré–pic dans le facteur de structure eau–eau. Ce pré–pic existe dans les micro–

émulsions [208]. On retrouve également ce type de manifestation dans les systèmes de colloïdes 

enduits de polymères adsorbés à leurs surface, et qui contribuent à donner à l'interaction entre 

colloïde une attraction à très courte portée mais également une répulsion à longue portée. La 

modulation de domaine se présente comme une répulsion à longue portée des molécules de 

même espèces, provoquant ainsi la micro–ségrégation. L'introduction de la modulation au travers 

de l'extension TS nous a permis de décrire correctement la micro–ségrégation des systèmes 

aqueux réels, en dépit des limitations imposées par les simulations numériques. 
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Sažetak 
 

Tema ovog doktorata je ispitivanje strukture čistih tekućina i njihovih mješavina s vodom. U 

vodenim otopinama određenih tvari, kao što su primjerice alkoholi, zapažena je mikro–

segregacija molekula. Drugim riječima, molekule alkohola i vode zauzimaju različite dijelove 

prostora unutar otopine. Ta organiziranost karakterizira čak i vodenu otopinu metanola [138], 

koji je najjednostavniji od svih alkohola. Glavno pitanje je kako razlikovati koncentracijske 

fluktuacije, koje postoje u svim mješavinama, od mikro–heterogenosti, unutar okvira Teorije 

tekućina. Analiza mikro–heterogenosti u vodenim otopinama je neophodna za potpuno 

razumijevanje uloge vode u biološki važnim procesima, kao što je primjerice formiranje 

membrane agregacijom lipidnih molekula u vodenom mediju [217]. Računalne simulacije su 

općenito prihvaćen alat za analizu mikro–strukture sustava. Međutim, simulacije imaju određena 

ograničenja, kao što su ograničenja veličine simulacijske kutije i ograničeno simulacijsko 

vrijeme [121]. Zbog tih problema, simulacijski rezultati su često netočni u opisu dugodosežne 

strukture mikro–heterogenih sustava, primjerice vodene otopine t–butanola. Za takve sustave u 

ovome radu uveden je pojam molekularne emulzije. Integralne jednadžbe predstavljaju 

alternativu računalnim simulacijama, no ni one nisu savršen alat. Njihov glavni problem je to što 

sadrže brojne aproksimacije korelacija višeg reda pa ne mogu ispravno opisati fluktuacije [1, 13].  

Jednadžba koja povezuje par korelacijsku funkciju )2,1(h i totalnu korelacijsku funkciju 

)2,1(c naziva se Ornstein–Zernike (OZ) jednadžba [1] 

  3)2,3(3,1)2,1()2,1( dhcch   ,                                                      (1) 

gdje se integracija provodi po položaju i orjentaciji čestice označene brojem 3. 

Sama OZ jednadžba nije dovoljna za opis korelacija pa se koristiti i tzv. jednadžba „zatvaranja“ 

(eng. closure) koja je definirana kao 
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))2,1()2,1()2,1()2,1(exp()2,1( bchUg   ,                                               (2) 

gdje je )2,1(b tzv. funkcija „most“ (eng. bridge) koja uključuje korelacije višeg reda. Budući da je 

tu funkciju gotovo nemoguće direktno izračunati, koriste se brojne aproximacije izraza, kao što 

su Percus–Yewick jednadžba (PY) i Hypernetted–chain jednadžba (HNC), kao najpoznatije. 

Postoje dva različita pristupa unutar teorije integralnih jednadžbi. Prvi pristup je preko 

Molekularne Ornstein–Zernike jednadžbe (MOZ) koja računa molekularnu distribucijsku 

funkciju. Drugi pristup je preko Ornstein–Zernike jednadžbe za parove atoma (site–site Ornstein 

Zernike, SSOZ) koja uključuje korelacijske funkcije za parove atoma. Teorijski uvod sadržan je 

u drugom poglavlju. 

U trećem poglavlju, SSOZ jednadžba korištena je u analizi nekoliko jednokomponentnih sustava 

tekućina, a to su: aceton, tetraklorugljik, formamid, metanol, etanol, 1–propanol i voda. 

Korištene su PY i HNC jednadžba, kao i jednadžba koja sadrži korelacije višeg reda iz 

simulacija. Struktura jednokomponentnih tekućina dobro je opisana rezultatima SSOZ jednadžbe 

sa svim jednadžbama zatvaranja, no najbolji rezultat je postignut s jednadžbom koja sadrži 

korelacije višeg reda.  

U četvrtom poglavlju, SSOZ jednadžba korištena je u analizi dvokomponentnih sustava: voda i 

metanol, te voda i modificirana voda. Pokazalo se da SSOZ jednadžba ne predviđa ispravno 

strukturu vodenih mješavina. To znači da aproksimacije unutar integralnih jednadžbi ozbiljno 

štete točnosti rezultata strukture mikro–heterogenih sustava.  

U petom poglavlju, korištena je metoda Molekularne Dinamike za proučavanje vodenih otopina 

etanola. Analizirana je struktura i termodinamika za svaku koncentraciju etanola od x = 0 do x = 

1, s prirastom od 0.10. Primijećeno je 2048 molekula u simulacijskoj kutiji te 2–3 ns 

simulacijskog vremena nisu dovoljni za ispravan opis dugodosežnih korelacija, budući da 

radijalna distribucijska funkcija ne konvergira u jednu jedinstvenu vrijednost. Zbog toga je teško 

izračunati vrijednosti integrala radijalne distribucijske funkcije (KBI). 

U šestom poglavlju, uveden je pojam molekularne emulzije za sustav kojeg karakterizira 

stvaranje domena molekula. Taj pojam razvijen je u analogiji s mikro–emulzijama koje su 

definirane kao mješavine ulja, vode i emulgatora. U mikro–emulzijama se stvaraju objekti poput 

domena i micela. Radijalna distribucijska funkcija u mikro–emulzijama ima poseban 

matematički zapis u termodinamičkom limitu koji uključuje dvije relevantne duljine [156]. Taj 

zapis je iskorišten za nastavak radijalne distribucijske funkcije preko veličine simulacijske kutije. 
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U sedmom poglavlju, proučavane su struktura i termodinamička svojstva vodena otopine t–

butanola i vodene otopine acetona metodom Molekularne Dinamike. U analizi tih otopina 

također je korišten koncept molekulane emulzije. Pomoću nastavka radijalne distribucijske 

funkcije u područje dugog dosega, izračunate su KBI vrijednosti koje su u blizini 

eksperimentalnih vrijednosti. Analizirane su termodinamičke veličine, kao što su volumeni, 

entalpije i njihove „excess“ vrijednosti za obje vodene otopine te su uspoređene s vrijednostima 

iz literature.  

U osmom poglavlju, proučavane su vodene otopine tri različita modela modificirane vode 

metodom Molekularne Dinamike. Zbog mikro–heterogenosti tih sustava, primijenjen je koncept 

molekularne emulzije, a strukturalni rezultati se dobro slažu s rezultatima većih simulacija. KBI 

vrijednosti izračunate preko koncepta molekularne emulzije slažu se s vrijednostima izračunatim 

termodinamičkim putem. 

U devetom poglavlju proučena je mještavina tekućina sastavljenih od sfernih čestica koje 

međudjeluju preko „soft–core“ potencijala. Korištena je Monte Carlo metoda te OZ jednadžba u 

paru s HNC jednadžbom. Rezultati obje metode se slažu za sve koncentracije, no odstupanja u 

opisu strukture se javljaju kod onih koncentracija gdje postoji najizraženija mikro–heterogenost. 

U desetom poglavlju predstavljen je zaključak. Simulacije i teorija imaju poteškoća u opisu 

mikro–heterogenosti. U strukturnom faktoru )(kS mikro–heterogenih sustava zapažen je 

maksimum između valnog vektora k = 0 i položaja glavnog maksimuma. Mikro–emulzije su 

primjer takvih sustava [211], te neki koloidni sustavi [212]. Nastavak radijalne distribucijske 

funkcije )(rg , koji je predstavljen u ovome radu, pomaže da se u korelacijskim funkcijama 

vodenih otopina pojave oscilacije koje upućuju na stvaranje domena. Taj postupak se može 

uspješno primijeniti na vodene otopine kod kojih postoje dobro definirane domene, kao što su 

vodene otopine t–butanola ili acetona, no ne i na vodene otopine metanola i etanola gdje su 

domene slabije definiranog oblika. Mikro–heterogenost je vrsta lokalnog reda te nije dobro 

definirana unutar Statističke Fizike, za razliku od globalnog reda za kojeg postoje teorije 

utemeljene na parametru reda. 
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Appendix A 

The derivation of the SSOZ equation 
 

A.1 Introduction 
 

The SSOZ equation can be derived formally from the MOZ equation. We follow the derivation 

of Gray and Gubbins from „Theory of molecular fluids“ [23]. The site–site pair correlation 

function 1)()(   rgrh  is defined in r–space by Eq. (1.11), and is given in k–space as 

 ))()((exp)2,1(~1)(~
1122212 


   rrkihddkh 

.                         (A.1) 

We define )(  rc in  r–space analogously to Eq. (1.11) and in k–space as  

 ))()((exp)2,1(~1)(~
1122212 


   rrkicddkc 

  .                      (A.2) 

We will use a shorthand notation for easier manipulation later by writing one of these equations 

as 

)2,1(~)(~
21 hPPkh   ,                                                     (A.3) 

where the bar indicates a complex conjugate and the generic projector notation is defined as 

  


 ))((exp1
1111  rkidP 

.                                               (A.4) 

Next, we assume that the direct molecular correlation function )2,1(c can be written as a sum of 

partial site–site direct correlation functions, just like one does for the pair interaction in Eq. (1.7). 

We write an approximate equation for )2,1(c as 
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


 )()2,1( rcc ,                                                        (A.5) 

where we expect that  cc  in general. The Fourier transform of Eq. (A.5) is given by 

)exp()()2,1(~ krircrdc
 




.                                           (A.6) 

The integral on the right–hand side is for fixed orientations, so we have fixed 1r


and 2r . 

Transforming the integration variable to r using  12 rrrr 
 and substituting abrdrd 

 , 

we get 

  
 .)(exp)(~

)(exp)exp()()2,1(~

21

21



 










rrkikc

rrkikrircrdc





                         (A.5) 

We now work out the relation between the two types of site–site direct correlation functions, 

c and c~ . Substituting Eq. (A.5) in Eq. (A.2) we get 

   





 








 


  )(exp1)(exp1)(~)(~
'2221'11

''
'' 


 rrkidrrkidkckc 

.         (A.6) 

We define the real and symmetric matrix  )(~~
' kwW  by 

   


 )(exp1)(~
1'11'  rrkidkw 

,                                         (A.7) 

which for rigid molecules becomes 






'

'
'

sin
)(~

kl
klkw  ,                                                         (A.8) 

where  1'1' rrl 
 is the intramolecular ' separation. Thus, from Eqs. (A.6) and (A.8), we 

have 


''

'''' )(~)(~)(~)(~


 kwkckwkc ,                                        (A.9) 

or, in matrix notation: 
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WCWC ~~~~
 .                                                            (A.10) 

This equation therefore relates the true site–site direct correlation functions to the approximate 

version assumed from the additivity assumption of the direct correlation functions. 

 

A.2 Derivation: one–component system 
 

We start from the MOZ equation written in k–space:  

)2,3(~)3,1(~)2,1(~)2,1(~
3 hcdch  



 .                                       (A.11) 

One can project this equation on a pair of sites following Eq. (A.1) and using the projector 
notation: 

)2,3(~)3,1(~)(~)(~
213 hPcPdkckh  


 
 ,                                 (A.12) 

where we can replace )3,1(~c by the approximate expression using Eq.(A.5): 

   


 ))()((exp)(~)3,1(~
3311 rrkikcc 

.                                  (A.13) 

Inserting Eq. (A.13) into Eq. (A.12), we get 

  )2,3(~)(exp)(~)(~)(~
2

''
'3'1''13 hPrrkikcPdkckh 





  





.              (A.14) 

We can integrate the two exponential terms over 1 to get 

   


 )()(exp1)(~
111'11'  rrkidkw 

                                 (A.15) 

and inserting it into Eq. (A.14),  we have 

  )2,3(~)(exp1)(~)(~)(~)(~
2'33''

''
' hPrkidkckwkckh 


 





  .           (A.16) 

Writing the last integral as 

  )(~))()((exp)2,3(~1
'3'322322 khrrkihdd  

 


,                    (A.17) 

we rewrite Eq. (A.16) as 
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)(~)(~)(~)(~)(~
'''

''
' khkckwkckh 


  .                                (A.18) 

Finally, from Eqs.(A.9) and (A.18), we get 

)(~)(~)(~)(~)(~)(~)(~
'''

''
''''

''
' khkckwkwkckwkh 





                    (A.20) 

or in matrix notation: 

HCWWCWH ~~~~~~~  .                                                   (A.21) 

This is the well known SSOZ equation. 

 

A.3 Derivation: n–component system 
 

We consider a mixture of n different species. The projector technique allows projecting each of 

the correlation functions over sites ),(  belonging to species ),( ba respectively, so we get 

)2,1(~)(~
21 hPPkh ba

ab 
                                                      (A.23) 

where the projector notation is given by 

  


 ))((exp1
1111

aa rkidP 


 , 

            


 ))((exp1
2222

bb rkidP 


,                                          (A.24) 

where ar 1
 and br 2

  denote the position of site   and  on molecule of species a and b, 

respectively.  We apply this projector to the MOZ equation and we get 

  



c

cb
b

ac
ac

abab hPcPdch )2,3(~)3,1(~)2,1(~)2,1(~
213 

  .                         (A.25) 

As for the one–component system, we write the direct correlation function in terms of pairs of 

sites: 

)()2,1( 


 rcc abab  .                                                   (A.26) 

The Fourier transform of Eq. (A.26) is given by 
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  )()(exp)(~)2,1(~
2211   ba

abab rrkikcc 


  .                                  (A.27) 

The site–site direct correlation function )(~ kcab
 can be written applying Eq.(A.2) as 

 ))()((exp)2,1(~1)(~
1122212 


  ab

abab rrkicddkc 
 

                     (A.28) 

Using Eqs. (A.27) and (A.28), we get 

)(~~)(~)2,1(~
'

''

''
' kwckwc b

ab
a

ab 





  ,                                           (A.29) 

where the function aw '
~
  is defined as 

   a

a
aaa

kr
kr

rrkidkw
'

'
111'11'

)sin(
)()(exp1)(~




 


 


.                        (A.30) 

Since the integration in Eq. (A.29) includes only the sites belonging to the same species, the 

matrix  )(~~
' kwW ab

  is defined as 

ab
aab kwkw  )(~)(~

''  ,                                                     (A.31) 

The angular integral over 2 and 3 from Eq. (A.25) can be written as 

  )(~))()((exp)2,3(~1
'3'322322 khrrkihdd cbb

cb  
 


                      (A.32) 

and we rewrite Eq. (A.25) as 

)(~)(~)(~)(~~)(~)2,1(~
'

''

''
''

''

''
' khkckwkwckwh cb

ac
a

c
c

b
ab

a
ab 











    .              (A.33) 

If we define the species sub–matrices as  )(~~ khH abab
 ,  )(~~

kcC abab
 and  )(~~

' kwW a
a   , then 

Eq. (A.33) becomes 


c

cbacacbabaab HCWWCWH ~~~~~~~  ,                                          (A.34) 

Inserting the full matrix notation,  abHH ~~  ,  abCC
~~

 ,  aWW ~~   and  cR  reduces Eq. 

(A.34) to the following expression: 
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HRCWWCWH ~~~~~~~  ,                                                 (A.35) 

which is the SSOZ equation for the multicomponent mixture. To make Eq. (A.35) even simpler, 

we can define the generalized site–site structure factor matrix S as 

HRWS ~~                                                               (A.36) 

and the matrix M as 

 CWM ~~ .                                                            (A.37) 

Inserting Eqs. (A.36) and (A.37) into Eq. (A.35), we get 

MSHRWCWH  )~~(
~~~ .                                                (A.38) 
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Appendix B 

The derivation of TS functional form of the 
correlations from the MOZ equation  
 

For a one component fluid, the MOZ matrix equation in k–space is given by the expression 

(1.31). Now we define )(~)(~)(~ kCkHkN   , insert into Eq. (1.31) and after a few 

rearrangements, we have 

  ,)(~)()(~)(~ 1* 
 kCIkCkH 


                                               (B.1) 

where  is the number density, the matrices  )(~)(~ khkH mn
   and  )(~)(~ kckC mn

   contain 

χ–transformations of the total and the direct pair correlation functions, respectively. Here we use 

the notation )()( * kCkPC   because the matrix P which is defined by Eq. (1.30) changes the 

sign of the elements of in )(kC . We want to examine the small–k behaviour of the 

function )(, kh mnij  . Any function )(, kh mnij  will necessarily have the determinant of the matrix 

 )()()(~ * kCIkD 
  in the denominator. This determinant can be written in short 

as )(~1 k , where the function )(~ k contains all of the )(~
, kc mnij  functions and their various 

products. Therefore, )(~
, kh mnij   will be of the form:  

)(~1
)(~

)(~ ,
, k

kt
kh mnij

mnij



 

 ,                                                         (B.2) 

where functions )(~
, kt mnij  are elements of a matrix which is a product of )(~ kC and the adjugate 

matrix of )(~ kD . The direct correlation function in the k–space )2,1(~C can be written as the sum of 
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products of functions )(~
, kc mnij  and the rotational invariants, as given in Eq. (1.22). Since the 

function )2,1(~C is short–ranged, any function )(~
, kc mnij  in the sum is also short–ranged. 

Therefore, we can expand the function )(~ k , which contains only short–ranged functions and 

their products as Taylor series around 0k : 

2 4 6
;0 ;2 ;4 ;6( 0)k k k k                   ,                               (B.3) 

where coefficients are determined through the expansion of the Fourier–Hankel transform. Since 

it is quite difficult to express each of the )(~
; kn terms as an integral over )(~ k , which is an 

infinite sum  of all Fourier–Hankel transforms )(~
, kc mnij  defined in Eq. (1.24) and their products, 

we will keep these terms are they are. We note that there are only even powers of k in Eq. (B.3) 

because of the symmetry of all correlation functions where )()( rara  . If we retain in Eq. (B.3) 

up to the k2–term and insert into Eq. (B.2), we will get the Ornstein–Zernike expression: 

22
;

2;
2

0;

,
, )(~)(~1

)0(~
)0(~

k
A

kkk
kt

kh mnijmnij
mnij 





 






 ,                             (B.4) 

where ξ is the correlation length expressed as 
0;

2;
~1

~












 . 

The inverse Fourier transform of the above function is 

r
rArh mnijmnijr

)/(exp)(lim ;,








.                                             (B.5) 

The correlation length in Eq. (B.5) is the same for all projections and it is related to the density 

fluctuations in a pure liquid or to the concentration fluctuations in a mixture [1]. 

What happens if we retain more terms than the k2–term in Eq. (B.3)? Since the k4 –expansion has 

been successfully used both in micro–emulsions and in aqueous mixtures of relatively short 

chain molecules [218, 219], we have a good reason to try this approximation first. The TS 

approximation of the MOZ equation follows from Eqs. (B.2) and (B.3): 
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where we have adopted the original TS notation [156] in the denominator of the second equality. 

The correlation function )()(
, rh TS
mnij  has the following form [156] 

                                                

















d
rr

r
drh TS

mnij sinexp)()(
,  ,                                               (B.7) 

where ξ is the correlation length, d is the domain size and  2/dd  .Taking the Fourier 

transform of the function above leads to the following: 





0

2)(
,

)(
,

)(
, )()sin(4)()exp()(~ drrrh
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krrdrhrkikh TS

mnij
TS
mnij

TS
mnij  


.                     (B.8) 

Next, we insert Eq. (B.7) into Eq. (B.8) and calculate )(~ )(
, kh TS
mnij  as 

442222222

3
)(

, )()()(2)(
)(24)(~

kdkddd
ddkh TS

mnij 
 

                             (B.9) 

Comparing Eqs. (B.6) and (B.9), we can define the TS coefficients in the following manner 

(REF): 
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                                       (B.10)                   

We can now write the TS correlation function with two length scales ( ,d ) as the inverse 

Fourier transform of the form: 
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)(
)0(~

)(~)exp()( 32
,)(

,
)(

, dr
r
r

d
t

kdkhrkirh mnijTS
mnij

TS
mnij








 


.                (B.11) 
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Appendix C 

The derivation of the LP correction 
 

C.1 The one component system 
 

We give a simple derivation of the Lebowitz–Percus (LP) correction [100] of the long–range 

behaviour of the radial distribution function )(rg in the NVT ensemble. While this derivation 

stands exactly for this ensemble, it is not obvious how it can be derived in the NPT ensemble. 

Isothermal compressibility TT P)/)(/1(   is related to the integral of the )(rg by the 

expression [1]: 

*)0(~1)1)((1)0( ThrgrdS   
 ,                                       (C.1) 

where 0* / TTT   is the reduced compressibility and )/(10 TkBT   is the compressibility of 

the ideal gas. One can write the exact )(rg as the sum of the )(rgMD evaluated in the NVT 

ensemble simulations and a function )(r which is a step function that is zero inside the core and 

raises to the LP correction value LP around the first peaks: 

)()()( rrgrg MD   or                                                          (C.2) 

LPMDr
rg 


1)(lim .                                                             (C.3) 

Combining Eqs. (C.1) and (C.2), we have: 

Dh T
MD 


 1)0(~ *

,                                                         (C.4) 
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where   LPVrrdD  )( . Here, V is the volume of the entire system and the approximation is 

obtained by neglecting the small contribution due to core integration. Using VN / , we 

rewrite the MD contribution as 





 LPT

MD
Nh 

1)0(~ *

.                                                  (C.5) 

The definition of the n–body correlation function  nn nn )()( ),,2,1(   in a N–constant 

ensemble is 

  


 )(exp)1(1
)!(

!)()( NUdNnd
ZnN

Nn
N

n   ,                           (C.6) 

where    )(exp1 NUdNdZ N  is the canonical ensemble configurational integral and 

),,2,1()( NUNU  is the total interaction energy in the system. The n–body distribution 

function )()( ng n is defined from the n–body correlation function as: 


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 n
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n
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1

)1(

)(
)(

)(

)()(


  .                                                          (C.7) 

The integral of )()( nn over the positions of all n particles is given by:  

)!(
!)(1

)(

nN
Nndnd

n


  .                                                   (C.8) 

For the pair correlation function )2,1()2(  one obtains: 

  )1()2,1(21 )2( NNdd  .                                                  (C.9) 

If the system is homogeneous, then  )1()1(  and the pair correlation function depends only on 

the radial distance between the two particles, )()2,1()2( rgg  , where 21 rrr 
  is the 

interparticle distance. From Eq. (C.7) the pair correlation function is given by 

)()2,1( 2)2( rg  and the normalisation condition (C.8) is given by 

    )1()()(21 22 NNrgrdVrgdd 
 ,                                     (C.10) 
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which is simply  

  )11()(
N

Vrgrd .                                                     (C.11) 

Using 1)()(  rhrg , we obtain 


1)()0(~

  rhrdh  .                                                    (C.12) 

 From the condition )0(~)0(~
MDhh  , Eq. (C.12) and Eq. (C.5), we get the value LP  of the LP 

correction in the NVT ensemble as 

TTLP PNN
)(11 *







 ,                                                   (C.13) 

which can also be written as 

TLP N
)(1






 ,                                                         (C.14) 

where we used the exact thermodynamical relation involving the chemical potential : 















Pc )0(~1  .                                                      (C.15) 

Inserting Eq. (C.14) into Eq. (C.3), we obtain the asymptotic form of the LP correction 

for )(rgMD : 

TTMDr NPN
rg )(11)(11)(lim












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


.                                   (C.16) 

C.2 The n–component system 
 

We follow a procedure similar to that in the one component system and derive the LP correction 

for a n–component system. In the μVT ensemble one has [3] 

)0()0())0(~( ij
ji

ijjiijjiijjiij S
V

NN
ShB   .            (C.17) 
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Matrix  ijBB   is the inverse matrix of  ijAA  : 

jiji
ij

ij NNNN
A

Acof
B 

det
.                                         (C.18) 

Combining Eqs. (C.17) and (C.18), we get 

ji

jiji
ij

NN

NNNN
VS


)0( ,                                               (C.19) 

where we have used VNii / . We note that there is a factor V in Eq. (C.19) which should 

not be there. Indeed, since A is dimensless, B is also and it cannot be defined by the equation 

that has a factor 1/V precisely. So we redefine ijB as 

)0())0(~( ijjiijjiijjiij SVhVB                                  (C.20) 

and we now get 
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jiji
ij

NN

NNNN
S


)0( .                                                (C.21) 

From Ref. [3] we also have 
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                                      (C.22) 

and the inverse matrix is given by 

kTVN
j

i
ij VB )(







 .                                                      (C.23) 

From Eqs. (C.20) and (C.23), we get the relation equivalent to Eq. (C.1): 

kTVN
j

i

jiji
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NN

B
S )(1)0(




 
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 .                                   (C.24) 

From Eqs. (C.20) and (C.24), we have 
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
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 )(1)0(~
.                                             (C.25) 

If we now express the exact )(rhij in terms of the MD results as 

)()()( ; rrhrh ijMDijij                                                    (C.26) 

this leads to                                            

                                                         ijMDijij Vhh  )0(~)0(~
; ,                                                  (C.27)  

where ij is the LP correction. Eq. (C.27) was obtained with the same assumption as in the one 

component case where the core part contribution to the integral over the )(rij function is 

negligible.  Next, we demonstrate the exact limit of )0(~
;MDijh for the NVT ensemble. For a 

mixture of n–species, the configurational integral NZ is defined as 

   ),,(exp),,( 1211 nnnNN NNUdNdNdNNNZZ    ,                (C.28) 

where kkkk dNdddN 21 is the short hand notation for the differential elements running over 

all the coordinates ki of molecules of species k . The pair correlation function )2,1()2(
ij is 

defined as 

 ),(exp1)()2,1( 1
)1()1(

1
)2(

nnji
N

ijjiij NNUdNdNdNdN
Z

NN      ,    (C.29) 

where the integration is taken over all variables except those that are selected in the correlation 

function. 

The radial distribution function )2,1()2(
ijg is defined as 

)2()1(
)2,1(

)2,1( )1()1(

)2(
)2(

ji

ij
ijg




 .                                                    (C.30) 
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For a homogeneous mixture, one has VNkk / which is the bulk density of species k and the 

)2,1()2(
ijg is a function of the distance r  between the two particles, )()2,1()2( rgg ijij  . Integration 

of )2,1()2(
ij leads to 

)()()2,1(21 )2(
ijjiijjiij NNrgrdVdd   

 .                              (C.31) 

Using 1)()(  rhrg ijij , the condition )0(~)0(~
; ijMDij hh  and Eq. (C.31), we get 

ijijjiMDijji rhrdh    )()0(~
;

 .                                        (C.32) 

Combining Eqs. (C.25), (C.27) and (C.32) and using the mole fractions ix  defined 

as NNx ii / , we obtain the result for the LP correction as 
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LP xxN

)(11
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 .                                                  (C.33) 

Finally, from Eqs. (C.33) and (C.26), we have 
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Appendix D 

A tentative derivation of the CSL equations 
from the MOZ equation 
 

The CSL (Chandler-Silbey-Ladanyi) [119] equations are thought to be exact equations. As such, 

one should be able to derive them from the MOZ equation. This is an attempt of such derivation.  

As we know, the pair correlation function in k–space )2,1(~h in the laboratory frame can be 

written as [1, 23] 

 





,
,,

21 )ˆ,,()(~)2,1(~
lnm

mnlmnl kkhh ,                                             (D.1) 

which can be rewritten in the intermolecular frame (where k is parallel to z ) as 

)()()(~)2,1(~
21

,
,,

  nm

nm

mn RRkhh 





 ,                                             (D.2) 

where )( 1mR is a Wigner generalized spherical harmonic [34] and   . 

The Raleigh expansion is given by [23]  

)ˆ()ˆ()()exp( 00 LRkRkLjiLki l

l

l
l

l



 


.                                          (D.3) 

Since 00 )ˆ(  kRl in the intermolecular frame, Eq. (D.3) becomes 

            )ˆ()()exp( 00 LRkLjiLki l

l
l

l


  .                                               (D.4) 
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The site–site function )(rh between site  on molecule 1 and site  on molecule 2 can be 

written as [1] 

 rLLRhddRdrh 



   )()()2,1(1)( 11221221122   ,                     (D.5) 

where iL


is the vector displacement of site   on molecule i from the molecular centre iR


, 

iii RrL


  , for i = 1, 2. 

The Fourier transform of Eq. (D.5) is given by 
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
   LkiLkihddkh


.                      (D.6) 

When we insert Eqs. (D.1) and (D.4) into Eq. (D.6), we get 
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Eq. (D.7) involves two angular integrals of type: 

)ˆ()( 00  LRRdI lm                                                       (D.8) 

and in order to evaluate this, we have to relate L̂ to  . Typically, all sites correspond to a fixed 

rotation ),,(    of the molecular axis. If this molecular axis is rotated by angle , we 

have the general composition rule: 

  

'
'

1
' )()()ˆ(


  lll RRLR .                                      (D.9) 

Eq. (D.9) in our particular case assumes the form of 

  

'
'0

1
0'00 )()()ˆ(


  lll RRLR   ,                                    (D.10) 

so that the angular integral given by the Eq. (D.8) now becomes: 
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where we used the formula [23] 
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We insert Eq. (D.11) into Eq. (D.7) and obtain the following expression: 
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nmmn RRkLjkLjikhkh ,                       (D.13) 

where we incorporated the term 2/1  in the terms )(~ 0 kh mn
 . Eq. (D.13) can be written in terms of 

matrices as 

 201
~~ JHJH  ,                                                         (D.14) 

where the matrix  )ˆ(~~ khH  , the matrix 1J has for elements )()( 1
01


 m

m
m RkLji and the 

elements of matrix 0
~H  are given by the χ–transformation [37] for χ = 0: 
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000
)(~ 0 .                                               (D.15) 

The matrix 0
~H  is the same matrix from the MOZ matrix equation (B.1): 

)(~)(~)(~)(~ * kCkHkCkH   .                                         (D.16) 

We will start from the CSL equations and try to derive the corresponding site–site equations by 

using Eq. (D.14). The CSL decomposition assumes that one can write the site–site functions 

)(rh  as a sum of four terms: 





3

0

)( )()(
i

i rhrh  ,                                                   (D.17) 

where each term has a diagrammatic significance [119]. The idea is to write the molecular 

function given by Eq. (D.2) as a sum of four terms that correspond to those from the CSL 

equations. We split the molecular function in the following way: 
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,   (D.18) 

with the definitions 
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With this convention, any matrix A in the MOZ equation (D.16) becomes a non–square bloc 

matrix 

.1

2

0










dA
A

A
a

A                                                           (D.20) 

We can rewrite the MOZ equation as a set of four block matrix equations 
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                                             (D.21) 

In order to go from Eqs. (D.21) to the site–site equations, we have to multiply each of the terms 

with the  vectors 1J and 2J . For the first term in the first expression of (D.21), we get 

 201
0 ~)(~ JhJkh  ,                                                     (D.22) 

However, for the term *
00

~~ ch , we do not get the splitting of the terms that appears in the CSL 

equations, since we have  

)~()~(~~
2

*
012012

*
001 


 JcJJhJJchJ  .                                    (D.23) 

The result of Eq.(D.23) suggests that approximations are needed to go from the MOZ equation to 

the set of CSL equations.  
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