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Applying Machine Learning Techniques to Enhance the
Performance of Internet of Things Stack Services

DOCTORAL THESIS



The research reported in this thesis was carried out at the Department of
COMMUNICATION AND INFORMATION SYSTEMS, University of Split, Faculty of
Electrical Engineering, Mechanical Engineering, and Naval Architecture, within the
framework of a scientific research project "Internet of Things: Research and Applications",
UIP-2017-05-4206, funded by the Croatian Science Foundation.

Supervisors:
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1. Associate professor Ljiljana Šerić, PhD, University of Split, Faculty of Electrical
Engineering, Mechanical Engineering and Naval Architecture, Split
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Applying Machine Learning Techniques to Enhance the Performance of
Internet of Things Stack Services

Abstract:

This research focuses on the exploration and enhancement within the three-

layer IoT architecture - Perception, Network, and Application layers - through

the implementation of Machine Learning algorithms. The research objective

is to improve the delivery and performance of IoT services by harnessing data

to gain hidden insights about the environment and devices in operation. For

the Perception layer, Machine Learning models have been developed, using the

Received Signal Strength Indicator from IoT devices to accurately interpret en-

vironmental conditions. The Network Layer sees the optimization of through-

put of RFID Gen2 systems via leveraging Machine Learning models for frame

size and tag count estimation. Finally, the Application Layer’s advancements

are demonstrated in an innovative plush Smart Toy that integrates IoT sensing

technology and ML algorithms for educational purposes. The research con-

cludes with results presenting the improved efficiencies and the vast potential

for Machine Learning in shaping the future evolution of IoT services.

Keywords:
Internet of Things, RFID, Machine Learning, Smart toy, human-computer inter-

action, LoRaWAN, parking occupancy, Neural Network, Soil humidity, RSSI
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Primjena strojnog učenja za unapred̄enje performansi usluga stoga Inter-
neta stvari

Sažetak:

Ovo istraživanje se usmjerno je na proučavanje i unapred̄enje performansi us-

luga stoga Interneta stvari - usluge sloja Percepcije, Mreže i Aplikacija - prim-

jenom algoritama strojnog učenja. Cilj istraživanja je unaprijediti isporuku i

performanse IoT usluga putem analize podataka kako bi se stekli skriveni uvidi

o okolini i aktivnim ured̄ajima. Za sloj Percepcije, razvijeni su modeli strojnog

učenja koji iz jačine primljenog signala s IoT ured̄aja detektiraju stanja i prom-

jene u okolišu. Na Mrežnom sloju postiže se optimizacija propusnosti RFID

Gen2 sustava putem implementiranjem modela strojnog učenja za procjenu

veličine okvira i broja odzivnika. Postignuća na sloju Aplikacije demonstri-

rana su kroz inovativnu plišanu pametnu igračku koja integrira IoT senzorsku

tehnologiju i algoritme strojnog učenja u edukatince svrhe. Istraživanje za-

vršava rezultatima koji predstavljaju unaprijed̄enje učinkovitosti i ogroman po-

tencijal strojnog učenja u oblikovanju budućeg razvoja IoT usluga.

Ključne riječi:
Internet stvari, RFID, strojno učenje, pametna igračka, interakcija čovjeka i

računala, LoRaWAN, zazuzeće parkinga, neuronska mreža, vlažnost tla, RSSI
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1 INTRODUCTION

The introductory chapter of this dissertation explores the potential and perspective of the
Internet of Things (IoT) for all three layers of the technology stack, investigating the spe-
cific challenges and opportunities posed by the IoT for various applications. Moreover, the
section examines the utilization of modern Machine Learning (ML) techniques to address
these issues. Within this context, the objectives and hypotheses are presented, focused on
improving the performance of services in the Internet of Things stack through ML tech-
niques. Furthermore, the remainder of the Introduction section expounds upon the scientific
methodologies utilized to corroborate these hypotheses and showcases the primary scientific
contributions made within the field.

1.1 Motivation

The technologies of the 21st century, particularly wireless technologies, have strongly influ-
enced the development of various Internet-connected devices in recent years, shaping a new
paradigm - the Internet of Things (IoT). IoT represents a concept of ubiquitous computing
technology that enables the reception of information from the physical world that was previ-
ously unavailable and interconnects it for exchange and use in the digital world [1]. The IoT
landscape is characterized by a complex interplay of four major components: "things", data,
people, and processes as depicted in Figure 1.1 [2].

Figure 1.1. The IoT landscape [2].

1



Chapter 1: INTRODUCTION

At the center of the IoT are physical devices and objects that are embedded with sensors,
processors, and network connectivity, so called "things. In the IoT context, the "things" in-
clude sensors, actuators, mobile devices, and other connected devices that enable data collec-
tion, analysis, and control [3]. The second component is data - the vast amounts of informa-
tion generated by the things themselves, as well as by the people and processes that interact
with them. The third component of the IoT is people - the individuals who design, operate,
and interact with IoT systems. This includes end-users who interact with IoT-enabled de-
vices, as well as the engineers, developers, and other professionals who design and deploy
IoT systems. Finally, the fourth component are processes - the set of procedures, workflows,
and protocols that enable IoT systems to function effectively. This includes everything from
data collection and analysis to system monitoring and management, as well as the various
interactions and transactions that occur between the other three components of the IoT.

Today, IoT technologies are considered one of the key pillars of the Fourth Industrial Rev-
olution because of their significant potential for innovation and beneficial effects for society.
These technologies have influenced many areas of daily life, particularly in the domains of
automation, industrial production, logistics, healthcare, agriculture, business/process man-
agement, household appliances, and buildings [4, 5].

The 3-layer architecture of IoT systems (depicted in Figure1.2), comprised of the Appli-
cation, Network, and Perception Layers, has gained widespread recognition as a primary and
essential framework.

Perception Layer

Network Layer

Application Layer

Figure 1.2. The Three-layer Architecture of IoT.

2



Chapter 1: INTRODUCTION

This architecture delineates the essential layers involved in various critical IoT opera-
tions, including data acquisition, processing, and deployment of applications. Its adoption
and refinement have been widespread in the IoT research community, reflecting its signif-
icance and utility as a springboard for the development and realization of IoT solutions
[6, 7, 8].

The Perception Layer in IoT architecture is the initial layer that captures data from the
physical environment through sensors and other types of input devices [9]. This layer is anal-
ogous to the skin and sensory organs of the human body, as it serves as the interface between
IoT devices and their surrounding environment [6]. The perception layer includes a range
of sensors and actuators that can measure parameters such as temperature, pressure, motion,
and humidity. Sensors serve as the fundamental components of the perception layer, respon-
sible for identifying and collecting real-time data by recognizing changes in the environment.
[10].

The Network Layer is responsible for transporting the data provided by the perception
layer to the application layer. This layer includes all the technologies and protocols that
make this connection possible and operates by using some of the latest technologies to pro-
vide heterogeneous network services [8]. The protocols used in IoT vary in terms of their
advantages and disadvantages, and the selection of a particular protocol depends on the spe-
cific application requirements. One critical component of the network layer is the network
gateway, which serves as the mediator between different IoT nodes by aggregating, filtering,
and transmitting data to and from different sensors ensuring better interoperability between
different systems [11]. Moreover, they perform initial, local preprocessing of the sensor
data by filtering and organizing them into packages, thus reducing the amount of transmitted
data, which results in a reduction of network communication costs. Wireless protocols are
particularly important in this layer, as they allow sensors to be installed in hard-to-reach en-
vironments, require less material and human resources for installation, and can easily add or
remove various nodes without reconsidering the entire network’s structure. The choice of a
protocol to use depends on the network’s size, the power consumption of each node, and the
transmission speed needed in a given application [8].

Generally, there are two types of network protocols in IoT solutions: Low Power
Wide Area Networks (LPWANs) and short-range wireless networks. Short-range wireless
networks include Radio Frequency Identification (RFID), Zigbee, IEEE 802.15.4, Blue-
tooth/BLE, and Wi-Fi, while LPWANs include SigFox, LoRa, and NB-IoT [12, 13, 14, 15].
The characteristics that differentiate these protocols are data transfer speed, cost, energy con-
sumption, distance coverage, and security as depicted in Figure1.3. LPWANs are generally
considered a better-adapted protocol for IoT applications [16] since short-range technologies
have high power consumption. It is important to note that network gateways also have the
task of ensuring data security since they manage the flow of information in both directions.
By applying appropriate encryption and security tools, they can prevent the leakage of IoT
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data stored in the cloud and reduce the risk of malicious external attacks on IoT devices [17].

Figure 1.3. Data rate and power consumption vs distance for the most diffused wireless
communication technologies for IoT [18].

The Application Layer within the context of IoT serves as a repository where data previ-
ously gathered from lower layers are stored, processed, aggregated, and filtered with the aim
of providing bespoke services [8]. It includes all the necessary software required to deliver
these services, with databases, analysis software, and middleware being commonly used to
manage the vast amount of data provided by devices. Overall, the Application Layer is criti-
cal in offering the desired smart services and meeting the requirements of the end-users [6].
It covers numerous vertical markets such as smart homes, transportation, industrial automa-
tion, smart healthcare, and more [7]. Cloud computing and edge computing are two widely
used software technologies to process data in the Application Layer, enabling services such
as storage or data processing from a set of pre-existing resources in a distributed architecture.

The data collected by IoT devices is stored, analyzed, and processed in the cloud, using
resources such as servers, advanced data analytic engines, and Machine Learning (ML) al-
gorithms. In the IoT paradigm, there are many requirements for smart connected devices,
including high data transmission speeds, very low latency, reliability, resilience, wide cover-
age, long battery life, security, and the ability to operate a network with a large number of
users [19]. Therefore, efficient big data analysis that can extract significant information and
correlations from the huge amounts of data generated by sensor devices is a key factor for
success in many IoT domains [20]. Cloud computing provides an efficient way to perform
advanced data processing on large amounts of data without significant costs [21]. Machine
Learning algorithms are of immense potential in the aforementioned context for data analysis
and precise predictions based on past observations for new sensor measurements. Moreover,
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ML can enable users to gain deeper insights into the correlations among data, mine data,
and discover hidden connections among data [22]. Deep learning (DL) is one of the leading
Machine Learning technologies today, which is more effective in solving complex problems
that were previously impossible to solve using traditional Machine Learning algorithms [23].
DL has been recognized as one of the top ten breakthrough technologies in 2013 and is the
fastest-growing trend for big data analysis [24], as it enables the understanding of more
complex patterns in data, classification, and prediction [25]. DL applications achieve excep-
tional accuracy and popularity in various fields, especially those related to image and sound
processing [23].

The successful implementation of IoT as a ubiquitous technology is impeded by various
challenges that need to be overcome. Key issues that must be addressed to enable efficient
implementation of IoT include the absence of standardized architectures and protocols, as
well as security and privacy concerns. Other obstacles include device heterogeneity, scala-
bility, energy efficiency, interoperability, and effective data management [26, 2].

Although IoT technologies have given a new perspective for further advancement in var-
ious fields such as engineering or medicine, some potential areas of application of these
technologies are still unknown or it is unclear how to approach them, which is an evident
indicator that more intensive research activity is needed in this challenging domain [27].
Scientists point out that to overcome key technological challenges necessary for the adapta-
tion of IoT systems, special attention needs to be directed towards overcoming energy and
computational requirements [28]. Namely, the powering of sensor devices needs to be more
efficient, data processing units and their algorithms more effective for extending battery life,
and research needs to be focused on all layers of the IoT three-layer architecture to achieve
adequate infrastructure [29]. To achieve this, diverse technologies are needed, from those
for object identification to those for understanding the semantics of generated data. While
in the dawn of IoT, most research and development efforts were dedicated to realizing effi-
cient communication solutions for connecting with any object, today attention is focused on
processing and analyzing data collected from the environment [30]. Research in this context
particularly emphasizes the need to achieve the main goals of IoT, which are creating smart
environments/spaces in the domains of energy, smart cities, transportation, smart homes,
environment, supply chains, and healthcare [27, 28, 29].

In light of the aforementioned context, the following sections will consider several of the
above-mentioned areas in line with each layer of the IoT three-layer architecture, addressing
specific segments of application using Machine Learning models. Although ML has sig-
nificant potential in various IoT applications, such as smart homes, industrial automation,
transportation, and healthcare, there are still some challenges that need to be addressed in
the application of Machine Learning to IoT.
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1.1.1 Perception layer: Challenges and Opportunities

Sustainable global growth depends on several factors such as economic efficiency, quality
of education, industry, and the environment, with agriculture being one of the most impor-
tant factors in this growth [31]. In this context, the agricultural industry and environmental
protection areas are ideal candidates for IoT solutions integration, as they require continuous
monitoring and control, especially at the Perception Layer [32].

Implementing IoT devices within the agriculture sector could be an effective way to
improve productivity by addressing some of the main issues faced by farmers [33]. It is
predicted that in the next thirty years, the global population will reach 9.7 billion people, and
approximately 70% of the world’s population is expected to live in urban areas, resulting
in increased demand for food [34]. Agricultural production must, therefore, significantly
increase to keep up with market demands while also dealing with "traditional" problems such
as unpredictable weather conditions. One of the crucial parameters for production efficiency
is the proper use of water resources in irrigation, as the agricultural sector consumes 85%
of the world’s available freshwater resources [35]. Moreover, it is estimated that developing
countries lose up to 40% of the water they use for irrigation [36]. Thus, there is a real need to
improve the irrigation system, and irrigation implementation could be effectively addressed
with new sensor technologies, namely the application of appropriate IoT infrastructure for
soil moisture assessment, achieving financial and energy savings [37, 38]. A study by the
California Department of Water Resources shows that with "smart" irrigation techniques,
water consumption can be reduced by 6% to 41%, depending on the location of the research
[39].

Most existing solutions are based on measuring the electrical properties of the soil, and
the data is delivered through some wireless interface. Data is collected from energy-intensive
and expensive sensors. Over time, such systems are difficult to maintain, especially if it is
necessary to replace the batteries of a large number of devices in remote areas. Therefore,
new solutions must produce an alternative, cost-effective and energy-efficient device that has
a unique advantage over existing solutions [38]. A new, cost-effective concept of measur-
ing soil moisture could be based on LPWA technology and appropriate machine and deep
learning models to ensure optimal water use.

Another effect of accelerated population growth is the increase in the number of vehicles
in urban areas. The European Commission and most developed countries emphasize that
smart and sustainable mobility is one of the central concepts in the vision of a smart city
[40], in which IoT plays a central role [41]. Parking, as a result of personal vehicle use,
is becoming a major problem in terms of rational use of urban space. Available parking
capacities on traffic surfaces in the centers of larger cities are almost completely used up and
limited, and existing parking systems are inadequate [42]. Studies have shown that due to
traffic congestion in urban areas, 30-50% of drivers search for free parking, while an IBM
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study indicates that drivers in metropolitan cities such as Beijing or Madrid spend an average
of 30 to 40 minutes searching for a free parking spot [43, 44]. One of the main problems that
arises from this is the increase in fuel consumption and air pollution [45]. Moreover, due to
traffic congestion, drivers are frustrated and the likelihood of accidents is higher[43].

Finally, dense traffic also incurs costs, for example, in a city of 50,000 inhabitants, which
on average has 250 parking spaces, an annual cost of $216,000 is generated [46]. To solve
this problem, it is necessary to work on optimizing urban parking capacities, with one of the
key aspects being the application of smart parking systems. In this context, the detection
of vehicle presence with an adequate IoT system would represent an efficient solution to
the aforementioned problem. Current technological solutions for smart parking vary, from
image recognition to detection nodes that are most commonly based on one of the sensor
technologies (usually infrared or magnetic sensors). The latter usually give the obtained data
on the presence of a vehicle in a parking space for processing by microcontrollers (MCUs),
which then transmit them via a radio interface. Therefore, such solutions require appropriate
software support for sensor activation and reading, decision-making on parking status, as
well as radio communication after the parking status changes. In addition, such devices
are usually implemented with the possibility of receiving communication via radio from
centralized systems/network access points for updating (e.g. for time synchronization), but
also perform online firmware updates. All of the above has an extremely negative impact on
the lifespan of battery-powered sensor devices. If we also take into account the additional
requirement that the end-user must calibrate the sensor before installation, it is clear that
there is a need for a more alternative solution.

A new approach to detecting parking space occupancy could be achieved by adequate
implementation of Machine Learning algorithms that could achieve high detection accuracy
while providing an economically and energy-efficient solution.

1.1.2 Network Layer: Challenges and Opportunities

Among the technologies enabling IoT, RFID is considered one of the main drivers with
applications including access control, parking management, logistics, object localization,
people tracking, and retail [47]. In large infrastructures, such as commercial warehouses,
reading RFID tags, particularly those of ultra-high frequency (UHF), is expensive and can
involve a large amount of data [48]. A classic RFID system consists of an RFID reader,
connected to a computer that controls its functions, and RFID antennas that are connected to
the outputs of the RFID reader and used for communication with RFID tags. In RFID, tags
are inexpensive devices consisting of a printed antenna and an integrated circuit (IC) that can
be powered by batteries or by the principle of backscattering, using energy from the carrier
signal sent by the reader [49].

Among existing technologies, passive Gen2 technology at UHF frequencies is consid-
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ered the most attractive for use in IoT systems due to its simple design, flexibility, cost, and
performance [50, 51]. Gen2 uses a standard physical layer, medium access control (MAC)
layer, and network and application layer of the ISO/OSI architecture to establish reliable
communication between the reader and the tag [52]. Since passive tags do not have a battery,
it is necessary for the reader to provide enough energy to power the tags and enable them
to respond with the requested information. The amounts of energy that tags can collect are
small, so they cannot afford energy-inefficient MAC schemes. Passive RFID systems use
Dynamic Framed Slotted ALOHA (DFSA) media access control protocol as an improved
version of pure ALOHA protocol, and Binary Search Tree (BST) algorithm can also be used
[53]. DFSA belongs to the group of time-division multiple access (TDMA) protocols, where
communication between the reader and the tag is divided into time frames, which are, in
turn, divided into time slots. MAC layer limitations in RFID reader communication require
the correct selection of the frame size in order to achieve maximum throughput. To set the
optimal frame length, it is necessary to estimate the number of tags in the reading area.
Choosing the optimal frame length results in shortening the time for identifying a large num-
ber of RFID tags, and increasing system throughput. A new way to achieve better throughput
compared to the latest scientific achievements could be achieved by the appropriate applica-
tion of Machine Learning and deep learning models in RFID readers themselves.

1.1.3 Application Layer: Challenges and Opportunities

In recent years, the integration of IoT in education has been a growing trend, offering inno-
vative solutions for teaching and learning [54]. IoT technology has the potential to create
interactive and immersive learning experiences that can improve student engagement, mo-
tivation, and learning outcomes, due to the low-cost functionalities of smart devices [55].
These devices can collect and analyze data to improve educational quality and help educators
make informed decisions [56]. As a consequence, this promotes creativity, critical thinking,
communication, and collaboration, leading to the development of higher-order thinking skills
among learners [57]. Furthermore, the IoT can help bridge the digital divide by providing
students with equal access to education regardless of their location or socioeconomic status
[58].

As such, the application of IoT technology in children’s education is an area of particular
interest, as "Things" play an important role in children’s lives, given that their typical daily
activities focus on manipulating physical materials, such as toys [59].

Modern-day children are commonly referred to as digital natives, as they have grown up
with current technology being ubiquitous and seamlessly integrated into their daily lives [60].
They are known for their natural and intuitive ability to interact with technology and use dig-
ital devices effectively. This proficiency has revolutionized the way they learn, resulting in
new methods and modalities of knowledge acquisition [61]. One major area that has been
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impacted by the rise of digital natives is Science, Technology, Engineering, and Mathemat-
ics (STEM) education [62]. With the growing importance of technology in almost every
aspect of our lives, including IoT applications, the demand for skilled professionals in the
STEM field has increased significantly. In response, countries around the world, such as the
European Union, are placing a renewed focus on STEM education and revising their school
curricula to make it more engaging and relevant for young learners [63, 64]. These curricula
emphasize the importance of lifelong learning, particularly emphasizing the acquisition of
mathematical and digital skills that promote children’s cognitive development. Therefore,
to facilitate meaningful and deeper learning in these areas, future IoT educational applica-
tions should be specifically designed to promote the development of abstract mathematical
concepts [61, 65]. In this regard, both scientific research and commercial applications have
focused on toys with IoT features such as software and sensors, commonly referred to as
Smart toys [66]. These toys are characterized by their ability to facilitate two-way inter-
actions between children and toys, using both tangible objects and electronic components.
Smart toys offer a unique play experience that differs from traditional toys by providing an
interactive environment that promotes general child development [67]. Moreover, as such,
they have the potential to aid in the development of thinking and problem-solving skills,
particularly in relation to abstract mathematical concepts such as geometry [68]. Although
geometry is an essential subject in mathematics, many students struggle to visualize its con-
cepts, which can impede their ability to learn and apply geometric principles effectively in
the future [65].

Recent studies emphasize that there are currently limited empirical studies on STEM
education in young children [69]. According to a rather novel study, there is little research
on how children interact with IoT-based geometry learning systems and how these systems
can be effectively integrated into educational settings [70]. In general, additional research is
required to evaluate the effectiveness of smart toys in facilitating the learning process [67],
while the authors in [71] suggest that the incorporation of such technology has the potential
to revolutionize education. Further scientific research is needed to examine how Machine
Learning can be effectively incorporated into smart educational toys, and to investigate the
different interaction modalities that can be used to optimize their educational potential.

1.1.4 Hypothesis

The primary objective of this scientific research is to methodically develop a novel principle
for detecting, processing, and assessing the state of IoT environments using Machine Learn-
ing techniques. The specific application of these methods is demonstrated across all three
layers of the three-layer IoT architecture, evaluating various aspects of the performance and
applicability of IoT systems. The fundamental aim of this research is to improve the perfor-
mance of Internet of Things services by uncovering hidden information from the environ-
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ment using available data and presenting new solution models based on Machine Learning
algorithms.

Hypotheses:
H1. Through the modeling, development, and testing of Machine Learning algorithms

that leverage the Received Signal Strength Indicator (RSSI) data from LoRaWAN devices, it

becomes feasible to estimate the conditions of the IoT environment from the Perception Layer

of the three-layer IoT architecture with high precision.

H2. By leveraging Machine Learning models to estimate frame size and tag count, it is

feasible to enhance the throughput of RIFD Gen2 systems that employ the ALOHA protocol

on the Network Layer of the three-layer IoT architecture.

H3. It is possible to achieve highly accurate detection and interpretation of complex

human gestures for interaction on the Application Layer of the three-layer IoT architecture

by employing Machine Learning algorithms based on the sensor data output.

The first hypothesis (H1) is based on the complex analysis of data from the Percep-
tion l Layer of the three-layer IoT architecture, which establishes a correlation between the
received signal strength indicator (RSSI) of LoRaWAN devices and changes in IoT environ-
ments, implying the possibility of estimating changes in IoT environments through software.
By modeling, developing, and testing Machine Learning algorithms with high accuracy from
the signal strength, it is possible to classify parking space occupancy and estimate soil mois-
ture levels. Through complex statistical tests, the performance and efficiency of these Ma-
chine Learning models will be demonstrated. Based on the results obtained, it is possible to
redesign the sensor device, extending its lifespan and simplifying its hardware, thereby mini-
mizing the overall cost of the sensor device. Moreover, the results suggest that the privacy of
parking space users may potentially be compromised, as signal strength data can be collected
from a great distance and can be misused by using machine and deep learning models.

The second hypothesis (H2) assumes that it is possible to increase the throughput in RIFD
Gen2 systems that use ALOHA protocol at the MAC layer by using machine and deep learn-
ing models to estimate frame size and tag number. Modeling and feasibility analysis of ap-
plying Machine Learning models to select the optimal frame length should result in a shorter
time to identify a large number of RFID tags and increase the system’s throughput. The
performance of the Machine Learning model is comparable to state-of-the-art algorithms,
demonstrating the possibility of achieving better throughput with Machine Learning models.
Moreover, experimental results will show that these models can be implemented on modern
microcontrollers with limited resources to maximize tag identification and throughput, while
achieving adequate execution time to meet protocol requirements.

The third hypothesis (H3) is based on the assumption that complex human gestures can
be recognized with high accuracy using machine and deep learning algorithms based on out-
put sensor data. In order to design an educational smart interactive toy for learning geometric
shapes and improving motor skills in preschool and elementary school children, the perfor-
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mance of two sensor technologies will be tested and compared. This interactive toy, as an
advanced interface, will include components for detecting and correctly interpreting com-
plex gestures that form geometric shapes using sensor technology and Machine Learning
models. Modeling, developing, and testing Machine Learning algorithms for recognizing
complex human gestures will be based on output sensor data from capacitive and infrared
sensors with different ranges. It will be shown that it is possible to recognize three complex
human gestures that form geometric shapes with high detection accuracy.

1.2 Scientific methodology and contributions

In accordance with the objectives of the study stated earlier, the research is divided into a
Theoretical and Empirical part.

The Theoretical part of the research involved a review of relevant scientific literature in
the field with the aim of identifying existing models and approaches to detection, process-
ing, and assessment of conditions in IoT environments across all layers of the three-layered
IoT architecture. The aim was also to identify any unexplored aspects of these approaches.
Existing problems and guidelines from the scientific literature will be identified, and a more
detailed analysis of research that has described technologies and the types of collected data,
their specific processing, and the development, testing, and evaluation of individual Machine
Learning models will be conducted.

The Empirical part of the research involved testing the hypotheses that were developed
based on the findings of the Theoretical part. The research involved collecting data from
various sources, such as IoT devices and sensors, and processing the data using Machine
Learning algorithms to detect and evaluate the state of the IoT environment. The collected
data was analyzed to identify patterns and trends, and to develop models for predicting and
improving the performance of IoT services. The performance of the developed models was
evaluated using various metrics, such as accuracy, precision, and recall. The results of the
empirical analysis were used to validate the proposed approach and to provide recommenda-
tions for further research in this area. In accordance with the previously stated hypotheses,
the empirical research is divided into three parts, depending on the layer of the three-layer
IoT architecture in which it was conducted. All computations for this research study were
conducted on a dedicated laptop computer. The laptop used for these computations featured
an Intel(R) Core(TM) i7-7700HQ processor running at 2.80 GHz, 16 GB of RAM, and an
NVIDIA GeForce GTX 1050 Ti graphics card with CUDA capabilities. The laptop oper-
ated on a 64-bit Windows 10 operating system. To optimize computational efficiency, the
NVIDIA CUDA deep neural network library (cuDNN) was utilized. The entire codebase for
this research study was implemented in Python 3.8 using Tensorflow 2.2.0.
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1.2.1 Theoretical part of the research

The Theoretical aspect of this research involved conducting a comprehensive review of sci-
entific literature in the field. The primary objective was to identify existing models and
approaches related to the detection, processing, and assessment of conditions in IoT envi-
ronments across all three layers of the IoT architecture. Furthermore, the aim was to uncover
any unexplored aspects or gaps in these existing approaches. By analyzing relevant research,
the study aimed to identify existing challenges, guidelines, and insights from the scientific
community. Additionally, a detailed examination was conducted on research that described
various technologies, data collection methods, data processing techniques, and the develop-
ment, testing, and evaluation of Machine Learning models.

Hence, a new approach for uncovering hidden information from the environment using
available information through the individual layers of the three-layered IoT architecture is
presented, representing new solution models based on Machine Learning algorithms in order
to enhance the performance of Internet of Things stack services. This concept (illustrated
in Figure1.4) sets a framework for the empirical part of the research, which will test the
hypotheses.

Perception Layer

Data type
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Removing time 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Quantization
Distribution 
of tags from 
Monte Carlo 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the sensor

Interpolation

ML model

ML model
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Adequate system 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Complex gesture 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Network Layer

Application Layer

Established methodsNovel approach

Figure 1.4. Conceptual framework for detection, processing, and state estimation in IoT
environments based on Machine Learning models.

1.2.2 The Empirical part of the research: Perception Layer

In this part of the research the technology of Low Power Wide Area Networks was employed,
more precisely LoRa, to convey data over the radio from sensor device to the base station.
LPWANs such as LoRaWAN allow battery-operated sensors or "things" to communicate
low throughput data over long distances with minimal infrastructure deployment. To meet
the needs of overgrowing IoT demands and applications, especially in terms of lower con-
sumption, cost-effectiveness and long communication range and distances, LPWANs have
been considered as the ultimate solution [72]. To this day, LPWAN has been directed to
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accomplish all of the emerging IoT demands and has broadly been classified as unlicensed
and licensed technology [73]. The LPWANs obtain low power and wide coverage range
by using the sub-1 GHz unlicensed, industrial, scientific and medical frequency band, high
processing gains, narrow bandwidths, and by periodically transmitting packets at low data
rates [74]. The LoRa alliance patented the LoRa (standing for long range), a spread spec-
trum modulation scheme that utilizes Chirp Spread Spectrum (CSS) modulation and which
exchanges data rate for sensitivity within a fixed channel bandwidth [75]. It operates within
the sub-Gigahertz unlicensed spectrum ISM bandwidths, namely for USA: 915MHz, for EU:
433MHz and 868MHz having a standardized MAC protocol, LoRaWAN, that determines the
communication protocol and system architecture of the network for which the LoRa physi-
cal layer applies direct sequence spread spectrum with multiple spreading factors (SF) that
enable the long-range communication link [76]. Figure 1.5 depicts the LoRa and LoRaWAN
protocol stacks.

Figure 1.5. LoRa and LoRaWAN protocol stack [77].

LoRa applies six different spreading factors (SF7 to SF12) allowing the adaptation of the
data rate and range and thus making it highly resilient to interference, where the generated
signal has low noise levels and is difficult to detect or jam [78]. Precisely, a higher spreading
factor enables a longer transmission range but at the expense of lower data rate, and vice
versa, where the LoRa data rate ranges from 50bps and 300kbps depending on the spreading
factor and channel bandwidth [79]. LoRaWAN does not allow device-to-device communi-
cations working mainly in the uplink and, if need be, network servers can send downlink
data and control packets to end devices [80]. Different functionalities for bidirectional com-
munications lead to the definition of three main classes of LoRaWAN devices, which have
different capabilities to cover a wide range of applications and where each class constitutes
a trade-off between battery life and network downlink communication latency [81].

LoRaWAN exibits a star-of-stars topology, depicted in Figure 1.6, made out of LoRa
modules (end-devices), one (or more) LoRa gateways; and a central network server where
the gateway devices relay messages between end-devices and a central network server [79].
The central server further transmits the received packets to the application server, which then
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processes them for further application usages.

Network server

LoRaWAN
gateway

LoRa

LoRaWAN
gateway

LoRaWAN
end devices

IP network

Application server

Figure 1.6. LoRaWAN (Long Range Wide Area Network) architecture.

Scalability is a prominent advantage of LoRaWAN, as it has the capability to accommo-
date a vast number of devices, ranging from thousands to millions, depending on various
factors. These factors include the specific scenario, the average rate of message transactions,
the average size of transmitted messages, and the number of LoRa channels employed [77].
Another crucial advantage of LoRa it lies within the fact that a single base station can cover
hundreds of square kilometers [76]. However, the range may depend on the environment or
obstructions.

LoRaWAN will reduce the nodes cost, providing extended battery lifetime and increase
the capacity of the network, making it suitable for WSN that requires low communication
range, low energy consumption and low data rate [82]. What is more, althogh LoRaWAN
ensures data rates from 0.3 kbps up to 50 kbps, with the maximum payload length for each
message of 243 bytes, which is considered sufficient for transmission of real-time sensor
data in the IoT, Machine-to-Machine or industrial applications, the transmission of real-time
image data, or anything that requires high bandwidth may not be suitable on LoRa networks
[76]. LoRa technology has been compared in-depth with other LPWAN technologies in
terms of architecture, battery lifetime, network capacity, device classes and was rated as
advantageous, but, interestingly, the security issues in LoRa were mentioned repeatedly in
several studies, pointing out to the potential security vulnerabilities of LoRa which may
expose the LoRa network to jamming attacks [76].

Soil Humidity sensing

The first part of the research on the Perception Layer of the three-layer IoT architecture estab-
lishes and analyzes the concept of a new soil moisture estimation system that is cost-effective
and energy-efficient, based on LoRaWAN technology and Machine Learning algorithms. An
I2C soil moisture sensor based on LoRaWAN technology was implemented for this purpose,
and it monitored soil moisture and temperature over a period of several months. The sensor
device was buried 14 cm under the ground with antenna vertically oriented, within the range
of two LoRaWAN gateways as shown in Figure 1.7.
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Gateway 1

Gateway 2

Soil moisture
sensor

~60m
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Figure 1.7. Implementation of LoRaWAN-based soil moisture sensing device.

Once the message has reached the base stations, it is forwarded to the TTN network
and application server as depicted in Figure 1.8. Additionally, TTN allows the sender to
forward messages from its infrastructure to servers using the MQTT protocol. The collected
sensor data contained information about RSSI, SNR, soil temperature, soil moisture level,
timestamp, and LoRaWAN gateway ID. The majority of data was collected within the months
of November and December, for a sampling rate of 5 minutes. In the rest of the text, the RSSI
and SNR of Gateway 1 and Gateway 2 will be referred to as RSSI1 and SNR1, and RSSI2

and SNR2, respectively.
An exploratory data analysis was performed to discover anomalies in the data, define

the required data preparation approach, and identify ML algorithms that might help predict
desired level of soil moisture.

Key characteristics of raw data variables were tracked by observing changes of signal
strength in contrast to soil moisture over time. As can be observed from Figure 1.9, the
change of RSSI is rapid, whereas the soil moisture alters gradually.

Network and
Application server

LoRaWAN
base stationSoil Moisture Sensor

LoRa

Figure 1.8. Network architecture of LoRaWAN-based soil moisture sensor system.
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Figure 1.9. RSSI from Gateway 2, and soil moisture during the winter period.

A trend can be noticed, where the increasing moisture affects the signal strength causing
its decrease, and vice versa. As a result of channel stochastic behaviour there are two ma-
jor fading components of the received signal strength. One is the swift variation in signal
strength due to the multipath propagation whilst the other is its slower variant and mostly a
result of the signal reception in the radio shadow of large obstacles [83].

Hence, the raw data were smoothed by decomposing the received signal strength into
long-term and short-term fading factors using a 2-hour time window. The long-term factor
component was calculated by taking 24 samples of raw RSSI and SNR data, calculating
their mean, and subtracting it from the raw values. Through the process of data aggregation,
smoothed RSSI values were allocated to distinct soil moisture percentage classes, thereby
eliminating the time variable and enabling the investigation of the potential correlation be-
tween RSSI values and specific soil moisture percentage classes in a more controlled and
rigorous manner.
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Pearson correlation coefficients were calculated to investigate the relationship between
soil moisture, RSSI, and SNR values. The results are presented in in Table 1.1. As can be
seen, there is an inverse correlation between signal strength and soil moisture, with SNR and
RSSI from Gateway 2 having a stronger correlation with soil moisture. For data obtained
from Gateway 1, SNR had a stronger correlation with soil moisture than RSSI, suggesting
that distance affects RSSI more than soil moisture. Furthermore, a specific working-day
time-frame was found to have modified the mean value of the signal strength parameter.

Table 1.1. Pearson correlation matrix between soil humidity and RSSI and SNR.

RSSI1 SNR1 RSSI2 SNR2
Soil humidity -0.29 -0.81 -0.65 -0.73

This implies that lower values of SNR and RSSI would indicate higher soil moisture
as was observed in Figure 1.9. Based on the obtained results, it was concluded that RSSI
and soil moisture values were significantly negatively correlated and that a suitable Machine
Learning algorithm should be able to encompass the complexity of the data properties de-
tailed in the above analysis.

Two Machine Learning algorithms, Support Vector Regression (SVR) and Long Short-
Term Memory (LSTM), were employed as a means of estimating soil humidity. SVR is a
supervised learning algorithm that is frequently used in regression analysis. It operates by
identifying the hyperplane that maximizes the margin between predicted values and actual
values. This technique was chosen for its ability to deal with high-dimensional data and non-
linear correlations between variables. On the other hand, LSTM is a type of recurrent Neural
Network (RNN) that is suitable for time series prediction. It is useful for modeling long-
term dependencies in sequences since it can choose to remember or forget information from
previous time steps. The LSTM was used because soil moisture data is inherently time-series
data, with each measurement being influenced by preceding measurements. Both models
were validated using the same data and in the same manner, as further specified. Rather than
interpretation, the models’ primary goal was the precise calculation of relative soil moisture
based on signal strength. All raw RSSI and SNR data samples captured on two LoRaWAN
Gateways, as well as soil moisture, were used in the models. The models were built in
three steps: data pre-processing, model definition, and model validation, as described in the
following.

Data normalization was a part of data pre-processing, because of the different value scales
of variables in the collected data. In general, relative moisture was as a percentage, whereas
RSSI and SNR values have been measured in decibels. The models were fed numerical RSSI
and SNR values, and the output was a numeric value that estimated relative soil moisture.
Furthermore, for model assessment, data were divided into training and test sets in an 80-

17



Chapter 1: INTRODUCTION

20% ratio respectively.
The test set was used to validate the models using two measures. Namely, Loss functions

used for estimation of error were Mean Squared Error (MSE) and Mean Absolute Error
(MAE) defined with Equations 1.1 and 1.2.

MSE =
1

2m

m

∑
i=1

(ŷ(i)− y(i))2. (1.1)

MAE =
1
m

m

∑
i=1

|ŷ(i)− y(i)|. (1.2)

A lower MSE indicates greater estimation accuracy. MSE calculates the average squared
difference between the estimation and the expected results, whereas MAE calculates the
average magnitude of errors across a set of estimations. Furthermore, validation loss reflects
how well or poorly the model performs during training.

The SVR model implemented the RBF kernel. The model’s input was as follows: for
each value of RSSI and SNR at time step t required for the estimation of moisture at time
step t, values of RSSI and SNR at time step t −1 were also taken. This provided the model
with a "hybrid short-term memory" of previously measured values in time step t − 1. The
model was verified on the test set, yielding losses of MSE = 0.0243 and MAE = 0.0487.
These findings suggested that soil moisture could be estimated with reasonable accuracy
based solely on Received Signal Strength and SNR values, even with a limited data set.

Figure 1.10 shows the model’s estimation of soil moisture on the test set compared to
expected soil moisture values.

Sample number

Figure 1.10. Soil moisture estimation using the SVR model on the test set compared to
expected soil moisture values

The LSTM model was trained on previously described pre-processed data. In terms of
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inputs, a time step of 18 was chosen to approximate 90 minutes of observations (18 samples
5 minutes period) for each estimation. Normalized data was fed into the LSTM model with
the goal of estimating relative soil moisture based on signal strength. Several options for
number of neurons per layer, learning rates, epochs and different optimizers were tested, and
the best results was achieved for 32 neurons, on both LSTM layers with a learning rate of
0.001 and number of epochs 100. Three optimizers were evaluated: Adam, RMSprop, and
SGD. RMSprop outperformed the other two optimizers and was chosen as optimizer for the
final model design, achieving a MSE and MAE errors of 0.00018 and 0.01043, respectively.
Figure 1.11 (a) represents the learning path of model with previously described parameters,
training and validation loss in relation to each epoch. Estimation of soil humidity with the
model compared to expected values of soil humidity that was done on the test set is presented
in Figure 1.11 (b).
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Figure 1.11. (a) Learning path of model with training and validation loss, (b) estimation of
soil humidity with the model compared to expected values of soil humidity.

Even with a small and limited data set with only a few months of representative data
(winter period), significant results were obtained for the Machine Learning approach for
estimating soil moisture from signal strength. Table 1.2 provides a comparison between the
estimation training and test time and the previously described errors. As can be observed
from the table, although the LSTM model needs more time to train, it achieves a minimum
delay between two consecutive estimations based on the testing time. Furthermore, it has
lower MAE and MSE errors in contrast to the SVR model.

The study found that SVR provided good estimates of soil moisture from RSSI and SNR,
validating the Signal Strength Approach and the premise of moisture sensing using just the
RSSI and SNR data with Machine Learning. However, the stacked LSTM model using avail-
able data obtained significantly more accurate estimates and outperformed SVR, suggesting
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Table 1.2. Comparison parameters of ML algorithms for soil humidity estimation

Algorithm Training time (s) Test time (s) MAE MSE

SVR 1.451 0.821 0.0487 0.0243
LSTM 1385.992 0.668 0.0104 0.00018

that LSTM was better able to encompass the complex correlation between RSSI, SNR, and
soil moisture due to its ability to handle time series data.

Detection of parking space availability

The second part of the research on the Perception Layer of the three-layer IoT architecture
aimed to conceptualize and analyze a cost-effective alternative sensor system for parking
space detection based on LoRaWAN technology and Machine Learning algorithms. To col-
lect data on parking space occupancy, five Libelium Smart Parking sensors were deployed
in a parking zone around the faculty. These sensors are equipped with a magnetometer and
radar sensor device, situated at the surface and center of the parking space. They detect
changes in occupancy status (car arrival or departure) and transmit this information via radio
channel that employs LoRa radio capabilities as a communication peripheral.

Data collection was facilitated using three LoRaWAN gateways placed within the radio
range of the sensors. These gateways were distinguished by their location relative to the
sensors and environmental setting, as depicted in Figure 1.12. The gateways received oc-
cupancy data transmitted by the sensors and forwarded it to a cloud-based application for
further analysis. It is worth noting that in addition to sensing changes in occupancy sta-
tus and transmitting this information, the Libelium sensors also periodically sent keep-alive
packets every two hours. The data collected from the sensors and gateways provided a com-
prehensive data-set on parking space occupancy.

Parking lots

GW1

GW2

GW3

Figure 1.12. Position of parking lots with LoRaWAN Smart parking sensors and location of
LoRaWAN gateways that captured information from sensor devices.

20



Chapter 1: INTRODUCTION

The first gateway (GW1) was positioned indoors approximately 30 meters away from
the sensors on the first floor of the faculty building, at a height of 4 meters. The second
gateway (GW2) was also positioned indoors, but on the fifth floor of the faculty building, at
a height of 15 meters and approximately 75 meters away from the sensors on the surface.
The third gateway (GW3) was positioned outdoors at the top floor of the building (ninth
floor), approximately 145 meters away from the sensors and 30 meters from the ground.

GW1 was installed near the sensors to observe changes in RSSI levels from a short dis-
tance during changes in parking lot occupancy. GW2, on the other hand, was placed at a dis-
tance from the sensors and had to transmit the signal through numerous obstacles and walls,
potentially causing deterioration of signal quality. This placement was chosen to observe
the impact of vehicle presence and other obstacles on signal changes. GW3 was positioned
outside with minimal obstacles to the radio signal traveling from sensors to the gateway,
other than diffraction originating from vehicle presence and the edge of the building. The
placement of the three gateways provided diverse observation scenarios for data collection,
enabling a comprehensive analysis of the system’s performance in different environmental
settings.

Over a period of ten months, 130,984 raw data points were collected from the five sen-
sors, and exported into CSV format for subsequent processing with InfluxDB. The data in-
cluded occupancy information (0 for free parking space, 1 for occupied), timestamps of TTN
gateway reception, Received Signal Strength Indicator (RSSI) in dBm, Signal to Noise Ratio
(SNR) for each gateway, and sensor and gateway IDs.

The collected data from Libelium Smart Parking sensors was analyzed to identify corre-
lations, anomalies, and suitable Machine Learning algorithms. The analysis was carried out
separately for each sensor and gateway due to differences in data reception. The first results
showed a skewed data set with a higher frequency of free parking spaces due to the university
location. TThe class ratio for free space ranged from 81.6% to 89.2%, with an average ratio
of 85% representing free space and 15% representing occupied parking space.

The second result gave the insight into how are the values of Received Signal Strength
and Signal-to-Noise Ratio associated with occupancy status. It was necessary to identify if
the specific value of RSSI (or SNR) correlates with the free and occupied parking status from
the same sensor and gateway. Therefore, the probability density function for RSSI (as well
as SNR) for diverse occupancy status were plotted to gain the needed information.

The distribution of a specific Received Signal Strength Indicator (RSSI) or Signal to
Noise Ratio (SNR) value from Gateway 1 (GW1) exhibits a large amount of overlapping as
shown in Figures 1.13 a) and b). It is also observed that higher RSSI and SNR values tend to
imply a free parking state for all sensors connected to GW1 and GW2. However, the degree
of overlapping starts to decrease for GW2. Notably, the data collected from GW3 differs
significantly from those of GW1 and GW2, especially for sensors 2, 3, and 4. Figures 1.13
c) and d) show that GW3 has the least amount of overlapping in the distribution of RSSI
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Figure 1.13. Probability density function of RSSI and SNR values alterations for diverse
sensors and occupancy status from GW1, GW2 and GW3, respectively.

and SNR values for a particular occupancy state. It can also be observed that lower RSSI
and SNR values correspond to occupied parking spaces, whereas higher values indicate a
free parking status for GW3. These variations in results among different gateways can be
attributed to their distance from the parking sensors. GW1 is the closest to the parking
sensors, whereas GW3 is the furthest away. This observation suggests that the channel has a
more significant impact on RSSI and SNR than the occupancy state if the gateway is located
closer to the parking sensors.

Finally, to address the issue of overlapping RSSI and SNR values in different occupancy
states, further analysis was conducted to examine the change of these values when the park-
ing status changes and when it does not. It was found that when the parking status remains
the same, there is minimal or no change in the RSSI and SNR values. However, when there
is a change in parking status, there is a significant shift in these values. Figure 1.14 shows
histograms of changes in RSSI values for sensor 2 from GW3, for instances when parking
spaces remain free or become occupied prior to being free again.
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Figure 1.14. (left) Difference of RSSI values when the parking space remains free, (right)
Difference of RSSI values for change of state from occupied to free for sensor 2 from GW 3.

Two different scenarios were considered for evaluating Machine Learning models. In the
first case, a two-fold approach was employed to evaluate Machine Learning models, specif-
ically the Neural Network (NN) and Markov Model. A critical aspect taken into account
was data preprocessing, with a focus on stratification to address class imbalance. Stratifica-
tion was applied to ensure an equitable distribution of samples from each class during the
training and testing phases. This technique aimed to maintain the representative proportions
of parking space occupancy states, thereby mitigating any potential bias and improving the
overall model performance. Through iterative steps, the performance of the Neural Network
and Markov Model was assessed. Notably, the Neural Network exhibited superior predictive
accuracy compared to the Markov Model. This outcome underscored the Neural Network’s
ability to capture complex relationships within the data, leading to more accurate predic-
tions of parking space occupancy. In the subsequent scenario, the evaluation expanded to
include the Neural Network and Random Forest (RF) models. To address class imbalance,
the Synthetic Minority Over-sampling Technique (SMOTE) was incorporated, which artifi-
cially generated synthetic samples to increase the representation of minority class instances.
This step aimed to enhance the training process and mitigate potential biases introduced by
imbalanced class distributions. Furthermore, for every sensor, all data about RSSI, SNR,
and occupancy status from all three gateways were associated. The models were built and
tested for each sensor separately. In the pre-processing of data for Neural Network models,
the data was normalized since diverse variables have different value scale. Moreover, it was
decided to incorporate the Time variables into the data, since Time variables can encompass
effects like temporal dependence and seasonality, giving a deeper insight into occupancy
history. Therefore, for each sensor, hour, day, month, and day of the week for a specific
occupancy were included as a feature. Due to the nature of our data, the data split was done
in 70% : 30% ratio, where 70% of data was taken for training and 30% for testing, with the
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target values being occupancy status and all other values where given as input. Through this
refined approach, the Random Forest model, coupled with the SMOTE algorithm, exhibited
notable improvements in predictive accuracy. The integration of the Random Forest model
and SMOTE technique provided a more robust and balanced framework for estimating park-
ing space occupancy.

Performance of the classifiers has been evaluated in terms of evaluation of their differ-
ent characteristics. Therefore, Accuracy, Area under the Receiver Operating Characteristic
Curve Accuracy (ROC AUC) and F1 score, were used for evaluation. Mathematically, the
evaluation metrics derive as follows:

• Let TP and TN be the number of positive and number of negative class that a correctly
classified, respectively. Let FP and FN be the number of positive and negative class
that are miss-classified, respectively. Accuracy is the proportion of correct predictions
that the model makes is given by the formula:

Accuracy =
T P+T N

T P+FP+T N +FN
, (1.3)

• F1-Score calculated as from the Precision (Pr) and Recall (Rcl) as their harmonic mean
using formula:

F1 score = 2 · Pr ·Rcl
Pr+Rcl

, (1.4)

where Pr = T P/(T P+FP) and Rcl = T P/(T P+FN) [84].

• A ROC graph is a probability curve that illustrates a relative trade-off between TP
and FP over a range of various thresholds of a classification model. A good classifier
should have the ROC curve positioned as close as possible to the upper left corner of
the diagram, in contrast to a poor classifier whose ROC curve is set along the main
diagonal [85].

• AUC gives a measure of how much a ROC curve leans near the perfect classifica-
tion point, that is, the point (0,1) on the ROC plot, i.e., the ability of the classifier to
differentiate classes [86].

First scenario
To capture the temporal dependencies and memory of occupancy changes, a second-order

Hidden Markov Model (HMM) was employed. The HMM considered the Hidden States as
the target variable, representing the occupancy status, and the Observable (Visible) States as
the changes in RSSI values between consecutive occupancy states.

The Hidden States, denoted as FF , FO, OF , and OO, retained the memory of occupancy
by representing different combinations of the previous and current occupancy states. The
HMM, denoted as λ(A,B,π), consisted of the transition matrix A, which captured the prob-
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abilities of transitioning between states, the initial state distribution π, and the observation
probability distribution matrix B.

The architecture of the second-order HMM for occupancy status detection based on RSSI
value changes is illustrated in Figure 1.15. The model was implemented considering data
from each sensor and gateway separately, allowing for comprehensive analysis.

FF FO

OF OO

RSSIT1 RSSIT2 RSSIT3 RSSITk...

ΔRSSI1 ΔRSSI2 ΔRSSIk-1

Observations (visible layer)

Hidden states
P1

P5

P9 P13

P3

P12

P6

P2

P8P10 P16

P15

P14

P4

P11

P7

Pk1 Pk2 Pk3 ... Pkn

...

Figure 1.15. Illustration of second-order Hidden Markov model for detecting occupancy
status based on change of RSSI values

The Viterbi algorithm was employed to determine the optimal sequence of states based
on the observation sequence and the model. Subsets of consecutive values were used as
observations and fed into the Viterbi algorithm with a specified step length. The specific form
of the applied algorithm is as follows. Let λ(A,B,π) be a HMM and O = (o1,o2, . . . ,oT )

given observations. The Viterbi algorithm finds single best state sequence q=(q1,q2, . . . ,qT )

for the given model and observations. The probability of observing o1,o2, . . . ,ot using the
best path that ends in state i at the time i given the model λ is:

δt(i) = max
q1,q2,...,qt−1

P(q1,q2, . . . ,qt−i,qt = i,o2,o2, . . . ,ot | λ) (1.5)

δt+1(i) can be found using induction as:

δt+1(i) = b j(ot+1) max
1≤i≤N

[δt(i)ai j] (1.6)
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To return the state sequence, the argument that maximizes Equation1.6 for every t and every
j is stored in an array ψt( j) [87].

The accuracy of the model was assessed by comparing the classified values with the true
values, utilizing the accuracy score function. Subset accuracy, where the set of classified
labels must precisely match the set of true labels, was used to evaluate the model’s perfor-
mance. Mean Absolute Error (MAE) was also calculated as an additional evaluation metric.
The model was tested for all variables from various sensors and gateways, and the best results
are provided in the corresponding Table 1.3.

Table 1.3. Table of best results using the HMM model obtained for each gateway

Gateway Variable Accuracy MAE
(sensor number) (best results)

GW1 RSSI (4) 87% 0.30
GW1 SNR (4) 87% 0.35
GW2 RSSI(3) 89% 0.27
GW2 SNR (3) 92% 0.20
GW3 RSSI (2) 93% 0.17
GW3 SNR (2) 96% 0.11

The Neural Network applied in this study has undergone a data preprocessing step, in-
cluding normalization of variables, to account for their different scales. The implemented
NN consists of two hidden layers as depicted in Figure 2.3. The input layer incorporates
data such as the sensor ID, RSSI, SNR of the LoRa packet transmitted from the sensor to
the Gateway, gateway ID, and the corresponding timestamp. The output layer is responsi-
ble for predicting the occupancy status of the parking space, indicating whether it is free or
occupied.

Input layer 1st hidden layer
256 units, ReLU

2nd hidden layer
128 units, ReLU

Output layer
1 unit

Month

Day

Hour

GW3-RSSI

GW1-SNR

GW1-RSSI

GW3-SNR

Day of the
week

Figure 1.16. Architecture of Neural Network model for parking space occupancy classifica-
tion
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To address the class imbalance observed in the data set, stratification was employed dur-
ing the data splitting process. This ensured that the distribution of classes was maintained in
the training, validation, and test sets. The test set size was set to 10%, and further stratifica-
tion was applied to split the training set into train and validation sets, with a 10% validation
set size. The Neural Network utilized different optimizers, including Adam, RMSprop, and
SGD, to optimize the model’s performance. Furthermore, various hyperparameters were
tested, such as the number of neurons in the layers, learning rate, number of epochs, as well
batch size and are presented in Table 1.8. The evaluation of these hyperparameters helped
fine-tune the model and improve its accuracy.

Table 1.4. Selection of the hyper parameters for Neural Network evaluation.

Hyper parameter Values

Number of neurons Layer1 - 256, Layer2 - 128
Learning rate 0.001 , 0.01
Number of epochs 50, 100, 150
Batch size 64

The NN model with Adam optimizer achieved the best performance with a learning rate
of 0.001 and 100 epochs, which is consistent with our previous results. This configuration
resulted in an accuracy of 96% on the validation set and 95% on the test set. Additionally,
the model achieved an AUC of 96% on both the validation and test sets. The ROC curve
is depicted in Figure 1.17 and it demonstrates that the Neural Network classifier, with the
Adam optimizer, achieved a high true positive rate (TPR) and maintained a low false positive
rate (FPR). The high AUC value of 98% indicates that the Neural Network model effectively
distinguishes between occupied and free parking spaces.
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Figure 1.17. ROC curves for Adam optimizer with the learning rate of 0.001 and 100 epochs.
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Second scenario
In this scenario, both the Random Forest and Neural Network models were utilized to

perform the classification of parking occupancy. The data used for training these models
underwent a SMOTE preprocessing technique, and for every sensor the models was built
and evaluated separately.

RF is a powerful ensemble learning method that combines multiple decision trees to
make predictions. It is widely used for its ability to handle complex relationships between
variables and produce robust and accurate results. One of the main advantages of RF is its
good performance and relatively simple implementation [88], but one must regard hyper-
parameters and tuning strategies to achieve the best possible classification accuracy.

Therefore, to optimize the RF model’s performance, a thorough hyperparameter tuning
was conducted. Key hyperparameters, such as the number of trees (n_estimators), splitting
criterion (e.g., Gini impurity or entropy), maximum tree depth (max_depth), maximum num-
ber of features considered for splitting (max_features), and minimum samples required for
node splitting (min_samples_split), were carefully selected and tuned. To find the best hyper-
parameter values, a grid search technique using the GridSearchCV class from the scikit-learn
library was employed. This search was done for each sensor and the tested hyper-parameters
are presented in Table 1.15.

Table 1.5. Result of grid search of Hyper-parameters for a particular sensor.

Sensor n_estimators criterion max_depth max_features min_samples_plit

Sensor 1 100 gini 20 sqrt 2
Sensor 2 200 entropy 20 sqrt 2
Sensor 3 200 entropy 20 auto 4
Sensor 4 150 gini 20 sqrt 2
Sensor 5 150 gini 20 auto 2

Finally, for each of the sensors Random Forest model was trained based on the above pre-
sented hyper-parameters, with the previously described data and evaluated with previously
described evaluation metrics. The Random Forest model demonstrated strong performance
across all five sensors when evaluated on the test set, as indicated by the results presented in
Table 1.6. The model achieved high accuracy scores and F-scores, indicating its ability to ac-

Table 1.6. The results for Random Forest model.

TEST

Acc. F-Score AUC

Sensor 1 0.970 0.902 0.990
Sensor 2 0.983 0.923 0.995
Sensor 3 0.978 0.900 0.995
Sensor 4 0.985 0.939 0.995
Sensor 5 0.962 0.891 0.988

curately classify parking occupancy. Notably, these results were obtained on an imbalanced

28



Chapter 1: INTRODUCTION

test set, maintaining the original class distribution. The findings align with the data analysis,
where Sensor 2 and Sensor 4 showed the least overlap in RSSI and SNR values for different
occupancy states. These sensors yielded the best overall results, with Sensor 2 achieving an
accuracy of 98.3% and Sensor 4 achieving 98.5%.
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Figure 1.18. ROC curves for Sensor 1, 2, 3, 4 and 5 respectfully for Random Forest model.

The ROC curves depicted in Figure 1.18 further support the model’s performance, with
high AUC scores across all sensors. Sensor 2 and Sensor 4 exhibited the best discrimination
ability, with AUC scores of 99.5% and 99.4% respectively, confirming the model’s profi-
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ciency in distinguishing between occupancy classes.
To further confirm the obtained results and reasoning about the correlation between the

change in parking occupancy and RSSI and SNR, one final computation was done, i.e. cal-
culation of feature (variables) importance. Feature importance rates how important each
feature is for the decision a tree makes. It results in a number ranging between 0 and 1 for
each feature and all feature importance sum up to 1, where 0 means “not used at all” and
1 means “perfectly predicts the target” [89]. These results are presented in Table 1.7. As
is shown in the table, the most important features are RSSI from GW1, followed by SNR
values from GW3 and RSSI from GW3. These results confirm the importance and strength
of RSSI and SNR values in obtaining the information about parking occupancy.

Table 1.7. Feature importance rate for each of the five sensors.

GW1 GW2 GW3 day of
Sensors RSSI SNR RSSI SNR RSSI SNR month day hour the week

Sensor 1 0.31 0.02 0.17 0.06 0.04 0.13 0.27 0.03 0.16 0.04
Sensor 2 0.23 0.02 0.09 0.07 0.18 0.22 0.03 0.04 0.09 0.04
Sensor 3 0.21 0.02 0.07 0.04 0.20 0.26 0.07 0.04 0.06 0.03
Sensor 4 0.25 0.02 0.07 0.07 0.13 0.31 0.02 0.04 0.07 0.04
Sensor 5 0.26 0.03 0.03 0.03 0.08 0.17 0.05 0.08 0.22 0.08

The second Neural Netwrok model architecture utilized in this study consisted of two
hidden layers, employing the Rectified Linear Unit (ReLU) activation function in the hid-
den layers and the Sigmoid activation function in the output layer. The incorporated data
were balanced using the SMOTE technique. The input layer incorporated information such
as Sensor ID, RSSI, SNR values from three LoRaWAN gateways, and the event timestamp
(month, day of the week, hour). The output layer predicted the parking occupancy status,
with 0 representing a free space and 1 representing an occupied space. To address the binary
classification problem, the Binary Cross-Entropy Loss function was utilized with different
optimizer combinations. The aim of the optimizer was to help the model converge and mini-
mize the loss or error function. The Neural Network model in this study employed Stochastic
Gradient Descent (SGD), Root Mean Square Propagation (RMSProp), and Adaptive Moment
Optimization (Adam) as the optimizers. Table 1.8 summarizes the hyper-parameters utilized
for building the model.

Table 1.8. Hyper parameters selected for Neural Network model performance testing.

Hyper Parameter Values

Number of neurons First layer—256, Second Layer—128
Learning rate 0.001 , 0.01
Number of epochs 50, 100
Batch size 64
Optimizer Adam, SGD, RMSProp
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The best results for hyper parameters were obtained for learning rate 0.001 and 0.01 and
100 epochs for Adam optimizer, summarized in Table 1.9.

Table 1.9. Best results obtained for NN model

TRAINING TEST

l. rate Acc. F-Score AUC Acc. F-Score AUC

A
da

m
Sensor 1 0.001 0.987 0.987 1.000 0.961 0.880 0.988
Sensor 2 0.001 0.996 0.996 1.000 0.973 0.886 0.985
Sensor 3 0.01 0.993 0.993 1.000 0.975 0.882 0.989
Sensor 4 0.001 0.995 0.995 1.000 0.977 0.906 0.989
Sensor 5 0.01 0.978 0.978 0.997 0.949 0.859 0.978

The highest Accuracy and AUC scores were consistently achieved for parking sensors
2, 3, and 4, which aligns with the findings from the data analysis. For these sensors, the
Adam optimizer yielded Accuracy values of 97.3%, 97.5%, and 97.7% on the test set, re-
spectively. Sensor 3 and Sensor 4 also demonstrated high AUC scores of 98.9%, indicating
strong differentiation between classes. These results are consistent with the Random Forest
model’s performance and the conclusions drawn from the data analysis. On the other hand,
Sensor 5 exhibited lower Accuracy and AUC scores of 94.9% and 97.8%, respectively, fur-
ther supporting the alignment between the Neural Network model and the Random Forest
model, as well as the data analysis conclusions. The ROC curves in Figure 1.19 demonstrate
the model’s ability to achieve a high True Positive Rate while maintaining a low False Posi-
tive Rate for all parking sensors. This indicates excellent classification performance for both
occupied and free parking spaces.
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Figure 1.19. ROC curves obtained on the test set for Sensor 1, 2, 3, 4 and 5 respectfully for
Neural Network model

Model performance comparison
The performance of the Random Forest and Neural Network models was compared us-

ing repeated stratified k-fold cross-validation with 10 folds and five repeats. This approach
ensures that the class distribution in the validation sets is similar to the original dataset. The
cross-validation procedure is repeated k times, with each fold serving as the validation set
once. The results of the cross-validation, depicted in Figure 1.20, show the distribution of
classification accuracy scores for both models.
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Figure 1.20. Distribution of classification accuracy scores for both Random Forest and Neu-
ral Network model from repeated stratified 10-fold cross-validation.

The results show that there is no significant difference in the accuracy of the presented
models. To further confirm this observation, the Dietterich’s 5x2-Fold Cross-Validation
method (also known as 5x2-cv paired t-test) was conducted for statistical performance com-
parison. This test involves running five replications of 2-fold cross-validations. The original
set is divided into two sets, namely X1 and X2, where |X1| : |X2|= 50% : 50%. The RF model
and the NN model are trained on X1 and onward tested on X2. Let RFAx1 and NNAX1 be the
accuracy in classification obtained for RF and NN model on the X1 set respectfully. The
performance difference measure is given by:

PMX1 = RFAx1 −NNAX1. (1.7)

This process of computation if done once more but this time the X2 is used for training and
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X1 set for testing, obtaining the second difference performance measure

PMX2 = RFAx2 −NNAX2. (1.8)

These calculations enable us to derive the mean and variance of differences as:

PMAV G =
PMX1 +PMX2

2
, (1.9)

s2 = (PMX1 −PMAV G)
2 +(PMX2 −PMAV G)

2. (1.10)

Variance of differences is calculated for each of the 5 replications and utilized to derive the t

statistic as follows:
t =

PMx1√
5

1
5 ∑s2

i
i=1

. (1.11)

Under the H0 hypotheses that there is no statistically significant difference between the RF
model and NN model, the t statistics will approximately follow a t distribution with 5 degrees
of freedom. Accepting H0 hypotheses, for a given level of significance, would show that
the differences in the estimated performance metrics is a coincidence. Contrary, if H0 is
discarded, it can be concluded that the differences in the performance metrics occurs because
of the models do not have equal performance. A significance level α = 0.05 has been chosen
enabling the computation of p-value using the t-statistic. If the p-value is smaller than α

the null hypothesis would be rejected. Thus, the calculated critical t-value is t5,0975= 2.571,
which is obtained using the scipy.stats.t.ppf() function in Python. If the absolute values of
the t- statistics are greater than the critical t value, then the results of the test are statistically
significant. Table 1.10 summarizes obtained results for the 5x2-cv paired t-test for all of the
five sensors.

Table 1.10. Results of Dietterich’s 5x2-Fold Cross-Validation statistical test for RF and NN
model for all five sensors and significance level α = 0.05

Sensor p-value t-statistics value

Sensor 1 0.190 1.515
Sensor 2 0.464 0.793
Sensor 3 0.159 1.655
Sensor 4 0.264 1.259
Sensor 5 0.167 1.618

As can be observed from the results presented in the Table 1.10, it can be concluded that
the RF and NN model have the same performance.

The importance of time-related variables in achieving accurate prediction or detection of
parking status has been emphasized in prior research. This motivated the inclusion of these
variables in the models presented in this study. However, it is important to consider whether
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the observed parking patterns are driven by occupancy patterns or leakage of knowledge
due to the use of LoRaWAN. To investigate this further, the feature importance rates for
each sensor in the Random Forest model were examined. Therefore, a final comparison
was conducted by removing the time variables from the data set, focusing solely on signal
strength and signal-to-noise ratio. To ensure comparability, the same hyperparameters as
previously used for the Random Forest and Neural Network models were considered in this
analysis. Results of hyper-parameter tuning and detection accuracy of Random Forest model
are presented in the Table 1.11 and Table 1.12 and for Neural Network model in Table 1.13.
As can be observed from the tables, results remain consistent. The Random Forest model
is not influenced by time variables with the exception for sensor 5. These results remain in
accordance with the Data analyses and calculations of the feature importance. Furthermore,
detection accuracy remain very high for the RF model. However, NN models performance
has decreased especially for sensor 1 and sensor 5. This indicates that the information about
time had an influence in accuracy detection for sensors 1 and 5.

Table 1.11. Result of grid search of Hyper-parameters for a particular sensor without time
variables.

Sensor n_estimators criterion max_depth max_features min_samples_plit
Sensor 1 50 entropy 20 auto 2
Sensor 2 100 entropy 20 sqrt 2
Sensor 3 100 gini 20 auto 4
Sensor 4 50 gini 20 auto 2
Sensor 5 200 entropy 20 auto 2

Table 1.12. The results for Random Forest model for a particular sensor without time vari-
ables.

TEST

Acc. F-Score AUC

Sensor 1 0.94 0.81 0.974
Sensor 2 0.97 0.87 0.994
Sensor 3 0.962 0.82 0.967
Sensor 4 0.974 0.89 0.974
Sensor 5 0.917 0.75 0.94

Table 1.13. Best results obtained for NN model without time variables.

TEST

l. rate Acc. F-Score AUC

A
da

m

Sensor 1 0.0001 0.903 0.742 0.964
Sensor 2 0.01 0.961 0.84 0.972
Sensor 3 0.01 0.937 0.75 0.949
Sensor 4 0.001 0.957 0.839 0.975
Sensor 5 0.001 0.903 0.739 0.931

Overall, it can be noticed that Sensor 2 and Sensor 4 have gained slightly better overall
accuracy for both Machine Learning models with and without the time variables. The reason
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for this is due to the multipath propagation scenario which is more favourable for Sensor 2
and 4, than for others. When we compare the RSSI results of Sensor 5 in Figure 1.13 a) with
Sensor 2 in Figure 1.13 c) be noticed that the difference between the most probable RSSI
values for occupied and free parking states is higher in the case of Sensor 2 than in the case
of Sensor 5. Additionally, the probability density curve is more distinct in Sensor 2 case,
which may also lead to better accuracy.

1.2.3 The Empirical part of the research: Network Layer

In this part of the research, the feasibility of using Machine Learning algorithms for estimat-
ing frame size in RFID Gen2 systems using the ALOHA protocol at the MAC layer was con-
sidered and analyzed. To achieve this, Monte Carlo simulations were conducted to generate
sets of tag distributions across slots for different frame sizes. The selected Machine Learning
algorithms were compared with a state-of-the-art algorithm, specifically the Improved Lin-
earized Combinatorial model (ILCM), for tag estimation. After comparing the performance
of the algorithms and calculating the throughput for the given dataset, the analysis shifted
to exploring the implementation possibilities of Machine Learning and deep learning algo-
rithms on modern microcontrollers with limited resources. The aim was to maximize tag
identification and throughput in such constrained environments.

In general, RFID presents radio technology that acts as a communication medium be-
tween a reader and the tag, with a unique identification used for communication [90]. In
general, the RFID tag is distinguished by the presence or absence of the battery [91]. Pas-
sive tags are self-powered and communicate using the same RF waves emitted by the reader
antennas, known as backscattering technology [92]. Among the existing technologies, pas-
sive Gen2 technology is considered the most attractive in IoT applications due to its simple
design, flexibility, cost and performance [93, 94]. Gen2 as a standard is used on the physical
and MAC levels to establish reliable communication between the reader and a tag. Read-
ers must provide sufficient power to energize tags and respond to the necessary information
since they are not equipped with batteries. The energy levels that tags can extract are quite
low and therefore cannot afford energy-efficient MAC schemes [95]. In general, the MAC
of RFID is random, and there are two widely used methods to achieve it: the first is a binary
tree, and the second is the ALOHA-based protocol [91]. In binary tree protocol continuous
YES/NO communication is achieved between reader and tags, while with ALOHA protocol
tag initiates communication with a request from the reader [96, 97, 98].

One of the commonly utilized ALOHA-based protocols is the Dynamic Framed Slotted
ALOHA (DFSA) since it has the most prominent performance which is the highest through-
put. DFSA belongs to a group of time division multiple access (TDMA) protocols, where
communication between a reader and tags is divided into time frames, which are, in turn,
divided into time slots [99]. The beginning of the interrogation process in DFSA is induced
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by the reader’s announcement of the frame size [100]. This is done by the reader sending a
QUERY command and the value of the main protocol parameter Q for the tags [101]. The
value of Q is an integer ranging from 0 to 15 that sets the frame size at L = 2Q. From there
on, all tags that are being interrogated will occupy a randomly selected position in the frame
(commonly known as a slot) and will onward reply back to the reader when their slot is being
interrogated. Based on such an access control scheme three diverse scenarios may happen:
a) only one tag is in the slot (the successful slot), no tags in the slot (empty slot), and c)
numerous tags have taken the same spot (collision) [100]. The overall number of successful,
empty, and collision slots is denoted with S, E and C respectively. An example of an inter-
rogating frame is exhibited in Figure 1.21. Therefore, the frame size is equal to the sum of

successful slots

empty slots
collision slots

Q

i

L = 2

Figure 1.21. An example of an interrogating frame of a frame size L = 2Q. i represents the
size of a particular part of the frame.

successful, empty and collision slots, i. e. L= E+S+C. According to the previous notation,
the throughput is defined using Equation (1.12) as :

η =
S
L

. (1.12)

Therefore, the main goal in DFSA systems is to increase the number of successful slots
S within the frame size L. As tags are fitting their slots randomly, previous studies [102]
show that the maximum throughput will reach its maximum value of approximately 37%
when the size of the frame equals number of tags. In usual situations, the number of tags
is unknown, and has to be estimated in order to set adequate frame size, and consequently
achieve maximum throughput.

In the context of tag estimation, commonly known scientific algorithms can be com-
putationally demanding, primarily due to the calculations involving probabilities. This can
be particularly challenging for standard microprocessors that are not designed to efficiently
handle the computation of factorials. To solve the issue the Improved Linearized Combina-
torial model (ILCM) for tag estimation has been introduced in [95]. The approach bypasses
the conditional probability calculations by doing them in advance. Onward, the estimation
model is uncomplicated and provides an effective tag estimation n̂ based on linear interpola-
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tion given by Equation (1.13):
n̂ = kS+L, (1.13)

where coefficients k and l are derived from Equation (1.14) and Equation (1.15) respec-
tively:

k =
C

(4.344L−16.28)+
( L
−2.282−0.273L

)
·C +0.2407 · ln(L+42.56), (1.14)

L = (1.2592+1.513L) tan(1.234L−0.9907 ·C). (1.15)

In the event of no collision the formula gives n̂ = S, whereas for cases when k < 0, k must
be set to 0. Following the tag estimation, Q value is calculated using Equation (1.16) as

Q = round(log2(n̂−S)). (1.16)

The results obtained by the researches have indicated that the ILCM shows a comparable
behavior to state of art algorithms regarding the identification delay (slots), but is not com-
putationally complex.

Aiming to improve the throughput of RFID systems, research presented in this study
utilized Machine Learning classifiers as an approach for efficient tag number estimation.
Performance of the ML algorithms is compared with state-of-the-art solution i.e. the ILCM
model.

Tag number estimation can be regarded as a multi-class classification problem. Amongst
many classifiers, Random Forest has been considered a simple yet powerful algorithm for
classification, successfully applied in numerous problems such as image annotation, text
classification, or medical data [103]. RF has been proven to be very accurate when dealing
with large data sets, it is robust to noise and has a parallel architecture that makes it faster
than other state-of-the-art classifiers [104]. Furthermore, it is also very efficient in stabiliz-
ing classification errors when dealing with unbalanced data sets [105]. On the other hand,
Neural Networks offer great potential for multi-class classification due to their non-linear
architecture and prominent approximation proficiency to comprehend tangled input-output
relationships between data [106].

Discriminative models, such as Neural Networks and Random Forest can model the de-
cision boundary between the classes [107], thus providing vigorous solutions for non-linear
discrimination in high-dimensional spaces [108]. Therefore, their utilization for classifica-
tion proposes has proven to be successful and efficient [109]. Both algorithms are able to
model linear as well as complex nonlinear relationships, however, Neural Networks have a
greater potential here due to their construction [110].

To obtain valuable data for model comparison, Monte Carlo simulations were done to
produce an adequate number of possible scenarios that may happen during the interrogation
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procedure in DFSA.
Generally, Monte Carlo methods are applied as algorithms for solving different com-

putational problems by using random numbers (or rather, pseudo-random numbers), with
applications ranging from materials science to biology to quantum physics [111]. Monte
Carlo algorithms tend to be simple, flexible, and scalable and can be efficiently implemented
on a computer [112].

Formally, the method can be mathematically described as follows.

Let f : [0,1] → [0,1] be a continuous function. The integral
1∫
0

f (x)dx can numerically

be calculated in the following manner. For a sequence of random independent variables
(X1,Y1,X2,Y2, ...) which are uniformly distributed on [0,1], let us define a new sequence (Zn)

as:
Zn = 1, for f (Xn)> Yn,Zn = 0, for f (Xn)≤ Yn,n ∈ N. (1.17)

(Zn) is therefore a sequence of independent equally distributed Bernoulli random vari-
ables. What is more

EZ1 = P( f (X1)> Y1) =

1∫
0




f (x)∫
0

dy


dx = 1

0
f (x)dx. (1.18)

It can be concluded that 1
n (Z1 +Z2 + · · ·+Zn) →

1∫
0

f (x)dx almost everywhere. There-

fore, for a numerical calculation of the integral
1∫
0

f (x)dx, one must generate random

numbers (Xn,Yn) ,n ∈ N, from [0,1] and the integral will approximately be equal to
1
n (Z1 +Z2 + · · ·+Zn) for large n ∈ N. This method of calculating the above integral by
generating random numbers from [0,1] is the Monte Carlo method. Basic idea of Monte
Carlo simulations is to repeat the experiment many times (or use a sufficiently long simu-
lation run) to obtain many quantities of interest using the Law of Large Numbers and other
methods of statistical inference [112] and these simulations efficiently sample an equilibrium
distribution.

The selected approach for Monte Carlo simulations of the distribution of tags in the slots
follows the research done in studies [95] and [113]. Simulations were executed for frame
sizes L = 4,8,16,32,128 and 256 i. e. for Q = 2,3,4,5,7 and 8, where number of tags was
in the range of [1,2Q+2] (this range was chosen based upon experimental findings elaborated
in [113]). For each of the frame sizes and the number of tags, random 100 000 distributions
of E empty slots, successful slots S and collision slots C were realized and are presented in
Table 1.14.

Data obtained from the simulations were given to Neural Network, Random Forest and
the ILCM model for adequate performance comparison and analyses of the accuracy of tag
estimation.
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Table 1.14. Snapshot of the obtained data

Q L S C E N (number of tags)
2 4 2 1 1 6
2 4 0 3 1 15
... ... ... ... ... ...
8 256 79 122 55 401
8 256 18 229 9 943

The architecture of the NN model displayed in this research is constructed out of five
layers as depicted in Figure 1.22.

3rd hidden  layer1st hidden  layer
2nd hidden  layer

Output layer 
(number of tags)

Input layer

Q

S

L

C

Figure 1.22. Architecture of the Neural Network model for tag estimation.

The first one is the input layer, followed by three hidden layers (one Dropout layer), and
the final is the output layer. Applied activation functions were ReLU (in hidden layers) and
Softmax (within the output layer). Data used for the input layer were number Q, frame size
L and the number of S successful, E empty, and C collision slots. The number of tags that
are associated with a particular distribution of slots within a frame is classified in the final,
exit layer.

Data was further partitioned in 70% : 30% ratio, with 70% of data used for training and
the other 30% for testing, with the target values being the number of tags, and all other values
were provided as input. The training data was pre-processed and normalized, whereas target
values were coded with One Hot Encoded with Keras library for better efficiency. By doing
so, the integer values of number of tags are encoded as binary vectors. The dropout rate
(probability of setting outputs from the hidden layer to zero) was specified to be 20%. The
number of neurons varies based on the frame size, ranging from 64 to 1024 for the first four
layers.
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Since the classification of the number of tags is a multi-class classification problem, for
this research, the Categorical Cross-Entropy Loss function was applied as the loss (cost)
function with several optimizer combinations. Another important aspect of NN model archi-
tecture was thoroughly examined and that is the selection of optimizers and learning rates.
Tested optimizers were RMSProp, SGD, and Adam. Adam provided the most accurate esti-
mation results and was onward utilized in the learning process with 100 epochs and a 0.001
learning rate.

Aiming to produce the best classification accuracy for the Random Forest classifier, in
this research hyper-parameters tuning has been done by utilizing GridSearchCV class from
scikit-learn library with five-fold cross validation. Therefore, for every frame size hyper-
parameters presented in Table 1.16 were tested resulting in a separate RF model for each of
the frame sizes as presented in Table 1.15.

Table 1.15. Grid search results of RF Hyper-parameters for a particular frame size.

Frame size n_estimators criterion max_depth max_features min_samples_plit
L=4 50 gini 5 auto 2
L=8 50 gini 5 auto 2
L=16 100 gini 10 auto 4
L=32 100 entropy 20 sqrt 2
L=128 500 gini 20 sqrt 2
L=256 200 gini 20 sqrt 4

Table 1.16. Tested Hyper-parameters for Random Forest.

Hyper Parameter Values

n_estimators 50, 100, 200, 500
criterion gini, entropy
max_depth 3, 5, 10, 20
max_features auto, sqrt
min_samples_split 2, 4, 6, 10

Results and comparison

For ILCM, Neural Network, and Random Forest, the same data was used to make a com-
prehensive performance comparison. To provide a comprehensive classifier performance
comparison several measures were taken into account. Firstly, to compare the performance
of each classifier as a Machine Learning model, the accuracy measure was taken (since it
is a standard metric for evaluation of a classifier), this being the categorical accuracy. Cat-
egorical accuracy is Keras built-in metric that calculates the result by finding the largest
percentage from the prediction and then compares it to the actual result. If the largest per-
centage matches the index of 1, then the measured accuracy increases. If it does not match,
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the accuracy goes down. Our experimental results point out that RF has out-preformed the
NN model in the classification task as shown in Table 1.17, but this measure alone is not
enough to determine which of the two ML models would be preferable for utilization in
the scenario of tags estimation. Therefore, given the nature of the tag estimation problem,
have considered Mean Absolute Errors (MAE) and Absolute Errors (AE) as measures of
classifiers performance (see eq.( 1.19) and eq.( 1.20) respectively). An accumulated estima-
tion error will degrade the whole performance [114], meaning that the overall smaller MAE
and AE for a classifier would determine the overall estimator efficiency, i. e. better system
throughput. For approximated number of tags n̂ and exact number of tags n, MAE is defined
as:

MAE =
1
m

m

∑
i=1

|n̂(i)−n(i)|. (1.19)

For every frame size AE was calculated as:

AE = |n− n̂| . (1.20)

Table 1.17. Classification accuracy of NN, RF and the ILCM model for a particular frame
size.

ACCURACY

Frame size NN ILCM RF

L=4 33.54% 23.55% 33.59%
L=8 28.56% 27.28% 28.22%

L=16 24.05% 23.27% 24.37%
L=32 19.78% 17.06% 19.54%

L=128 11.25% 4.42% 12.12%
L=256 5.74% 2.8% 9.46%

Results and comparison

For ILCM, Neural Network, and Random Forest, the same data was used to make a com-
prehensive performance comparison. To provide a comprehensive classifier performance
comparison several measures were taken into account. Firstly, to compare the performance
of each classifier as a Machine Learning model, the accuracy measure was taken (since it is a
standard metric for evaluation of a classifier), this being the categorical accuracy. Categorical
accuracy is Keras built-in metric that calculates the result by finding the largest percentage
from the prediction and then compares it to the actual result. If the largest percentage matches
the index of 1, then the measured accuracy increases. If it does not match, the accuracy goes
down. Our experimental results point out that RF has out-preformed the NN model in the
classification task as shown in Table 1.17, but this measure alone is not enough to determine
which of the two ML models would be preferable for utilization in the scenario of tags es-
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timation. Therefore, given the nature of the tag estimation problem, have considered Mean
Absolute Errors (MAE) and Absolute Errors (AE) as measures of classifiers performance
(see eq.( 1.19) and eq.( 1.20) respectively). An accumulated estimation error will degrade
the whole performance [114], meaning that the overall smaller MAE and AE for a classifier
would determine the overall estimator efficiency, i. e. better system throughput.

Table 1.18. MAE of NN, RF and the ILCM model for a particular frame size.

MAE

Frame size NN ILCM RF

L=4 2.23 2.182 2.23
L=8 2.56 2.61 2.5

L=16 3.57 4.31 3.69
L=32 5.23 6.98 5.324

L=128 11.27 17.38 11.93
L=256 16.06 27.29 18.19

This observation is further emphasised in the calculations of Absolute Errors of classifi-
cation for RF, NN and the ILCM model. AE was derived for every frame size and histograms
presented in the Figure 1.23 provide a pictorial comparison of the errors. As can be seen from
Figure 1.23 a), for smaller frame sizes the NN model performs quite complementary to the
RF model, but for the largest frame size, the NN (see Fig.1.23 c)) will have an overall smaller
AE. These histograms are consistent with the MAE results from Table 1.18 confirming that
the NN classifies values n̂ nearer to the true values of the number of tags n. This observation
is important for estimating the length of the next frame, because the closer the estimated
number of interrogating tags is to the actual number of tags, the better the frame size setting.
Incorrect estimates of the total number of tags result in lower throughput. Results from this
analysis show that, in comparison to the RF model, the NN model is generally "closer" to
the real tag number. The overall goal is to reach maximum throughput and this cannot be
done if the frame size adaptation is inadequate. The development of an effective and simple
tag estimator is burdened by the variables that must be taken into account i.e. the frame
size, the number of successful slots, the number of collisions or empty slots. Since major
drawbacks of current estimators lie in their estimation capabilities, computational complex-
ity, and memory demands. Therefore, to achieve a better setting of the next frame size, the
focus of the estimation should be on the variable which contributes the most to the overall
proficiency of the system [113].

Based on the obtained results, one final measure was done, i.e. comparison of throughput
for the NN model, ILCM, and Optimal model. The Optimal being used as the benchmark
is the one where the frame adaptation was set by the known number of tags. Results of the
comparison are presented for the scenario of frame size L = 32 realization and are exhibited
in Figure 1.24. As can be observed from the Figure 1.24, the Neural Network model is close
to the optimal one and outperforms the state-of-the-art ILCM model. This is particularly
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shown as the tag number increases, as can be seen in Figure 1.24 b).
Based on the result of this examination of the performance of classifiers and comparison

to the ILCM model, architectures of the Neural Network models were selected for further
utilization.
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Figure 1.23. Comparison of absolute errors for Neural Network, Random Forest and ILCM
model for frame sizes L = 8, L = 16 and L = 256.
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Figure 1.24. Comparison of throughput for the NN model, ILCM and Optimal model for
scenario of frame size L = 32 realization.

Mobile RFID Reader - Implementation Feasibility

Microcontroller boards are not optimized for performing complex floating-point calcula-
tions, unlike dedicated Personal Computers, as their main focus is on working seamlessly
with peripheral components. However, by configuring the TensorFlow library, it is pos-
sible to use 32-bit floating-point data types for both data and weights, resulting in larger
models. To address the limitations of microcontrollers, MCU-compatible models employ
an approach that uses integer numbers (8-bit or 16-bit) instead of floating-point numbers,
reducing the model size and significantly improving execution speed.
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While the original model with 32-bit or 64-bit weights can be executed on a microcon-
troller, it may not fully leverage the capabilities of the TFLiteConverter. The TensorFlow Lite
library for Microcontrollers enables the optimization of pre-trained Neural Network models
for specific microcontrollers and their implementation on the devices. This optimization is
achieved through smart quantization, which approximates 32-bit floating-point values to ei-
ther 16-bit floating-point values or 8-bit integer values. Although there may be a slight loss
in accuracy, this is compensated by reduced memory requirements and improved execution
times, particularly in complex models.

Quantization plays a crucial role in determining whether a model can be run on a
memory-restricted microcontroller. TFLiteConverter, part of the TFLite library, offers var-
ious optimization options. Float16 quantization reduces the size of the original model by
half with minimal impact on accuracy. Dynamic range quantization uses 8-bit weights and
floating-point activations, striking an optimal balance for certain low-performance yet ca-
pable computer boards. The third optimization option, ideal for low-power microcontroller
devices, employs full integer quantization, where both weights and activations are 8-bit, and
all operations are performed using integers. This quantization approach is slightly more
complex, as the converter requires a representative dataset for the quantization process of the
entire model.

Data shown in Table 1.19 provides simple insight of accuracy decrease due to performed
quantization for models used in our paper.

Table 1.19. Model accuracy before and after quantisation

Original model Quantisied model

Model L=4 33.33 % 32.72 %
Model L=8 28.53 % 27.58 %
Model L=16 23.11 % 22.04 %
Model L=32 19.00 % 12.08 %
Model L=128 8.03 % 4.08 %
Model L=256 6.71 % 3.03 %

It can be observed that a decrease in accuracy is observable for the two most complex
NN architectures (L=128 and L=256), while for the least complex NN architectures (L=4
and L=8) loss due to quantization is merely measurable. Loss inaccuracy for the two most
complex architectures is possibly the result of output quantization where more than 256
classes are possible (notably 512 for L=128 and 1024 for L=256).

After the quantized model is created, a file containing the model which the microcon-
troller will understand is created. Linux command tool xxd takes a data file and outputs a
text-based hex dump, which we copy-paste as a c array, and add to a microcontroller project
source code (as an additional header file).

Among the microcontroller boards tested, the Teensy 4.0 stands out as the fastest avail-
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Table 1.20. Model performance on Teensy 4.0 MCU, Arduino DUE and Raspberry PI4

Frame size Model size Execution time [microseconds]

[Bytes] Teensy 4.0 Arduino DUE Raspberry PI4
L=4 4320 22 897 143
L=8 5152 32 1284 159

L=16 6592 48 1983 173
L=32 13824 120 4928 187

L=128 75776 692 29615 270
L=256 283264 1669 111374 648

able on the market. It features an ARM Cortex-M7 processor with an NXP iMXRT1062
chip clocked up to 600 MHz, offering excellent performance for complex calculations. The
Teensy 4.0 consumes approximately 100 mA of current at a 3.3V supplied voltage, making it
more power-efficient than desktop computers or other microcontroller boards. With 1024K
RAM available, it provides sufficient storage for ML models, which can be stored in FLASH
memory and read into RAM as needed.

Another considered microcontroller board was the Arduino Due, based on the AMR M3
architecture. It features an Atmel SAM3X8E microcontroller clocked at 84 MHz, but has a
smaller RAM capacity of 96 KB. This limited RAM may restrict its usability for executing
complex ML models, as reading data from slower FLASH memory can result in longer
execution times.

The third board considered was the STM32F103C8T6, also known as the "blue pill,"
which is based on the Arm Cortex-M3 microcontroller. This board operates at 72 MHz and
has only 20 KB of RAM and 64 KB of FLASH memory, making it unsuitable for holding
and executing most of the NN models tested.

Figure 1.25 presents an overview of the three tested microcontroller devices.

Figure 1.25. “Devices used in the test: Teensy 4.0 (left), Arduino DUE (center), Raspberry
PI4 (right), source: Own photo

For a comprehensive assessment of the microcontroller’s performance in executing the
proposed NN models, the same quantized TensorFlow models were also tested on a Rasp-
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berry Pi 4B computer board. The Raspberry Pi 4B features a quad-core Cortex-A72 1.5GHz
SOC with 4GB of RAM and runs the Raspbian desktop OS with kernel version 5.10.

To ensure simplicity and ease of development, the coding for the microcontroller side was
carried out using the Arduino IDE. This IDE provides a user-friendly interface and access
to various additional libraries for extending the project’s functionality. The ML model was
incorporated into the project by including the hexdump file as an additional header file, which
was then converted into a binary format and transferred to the microcontroller’s FLASH
memory during programming.

On the Raspberry Pi computer, a straightforward Python script was utilized along with
the TFLite interpreter library to execute the ML model. This approach allowed for seamless
integration and execution of the model on the Raspberry Pi.

Several proposed model architectures on the Teensy 4.0 microcontroller board, were
trained, that have been considered as the optimal solution for executing proposed NN mod-
els. The presented analysis aims to indicate the real limits of the NN architecture that can be
fluently run on selected hardware. ANN layers configuration was kept intact, while the com-
plexity of the model was achieved by increasing the number of neurons in the third and fifth
layers. By utilizing a microcontroller integrated timer, the average ANN execution time has
been measured on the microcontroller. Another interesting piece of information obtained
was the quantized model size and amount of RAM commonly assigned for storing global
variables after initial programming. Please note that microcontrollers usually do not possess
the possibility of measuring free RAM space during execution, as compared to computers.
The used library offers some tweaking of tensor size, which may reduce or increase avail-
able RAM size and consequently affect execution time, but we kept this option on default
for all tested models and all devices. It is recommended to keep at least 10% of available
RAM for local variables for stable performance. Results for all 6 models’ execution times
and model size on Teensy 4.0 ARM Cortex M7 microcontroller, Arduino DUE ARM Cortex
M3 microcontroller, and Raspberry PI4 computer board are listed in Table 1.20.

As can be observed from Table 1.20 increasing the number of neurons in hidden layers
(notably 3. and 5. hidden layer) and in output layers increases the model size and prolongs
execution. As an example, comparing models for L=4 and with the model for L=16 which
have exactly twice more neurons in layers 3 and 5, the total model size increases by a fac-
tor of 1.5, while execution time on the Teensy 4.0 microcontroller observes an increase by
factor 2.2. The last presented model (L=256) features an increase in model size by a factor
of 65 with execution time with a factor of 75 as compared to the simplest model (L=4). It
is worth mentioning, that the last model represents an example of the most complex ANN
model that our microcontroller can hold, where after importing it to the microcontroller only
13% of RAM was free for local variables. We also observed that increasing the depth and/or
increasing the number of neurons per layer of an NN pose a significant memory demand,
which can be afforded only by high-end edge devices (eg. RaspberryPI). The average exe-
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cution time for the exemplary most complex model was 1.7 ms, which is surprisingly fast
for this type of device and can offer real-time performance. ARM Cortex M3-based Arduino
DUE behaved similarly to the Teensy 4.0 microcontroller with significantly larger execution
times (41 times slower on the simplest model and 67 times slower on the most complex
model). The execution of the most complex model took 111 ms, which makes it impractical
for some real-time scenarios. Execution times on Raspberry PI4 computer varied greatly
(due to non-real-time OS architecture) and surprisingly showed to be much slower for less
complex models (up to L=32). For more complex models Raspberry PI was able to ben-
efit from its enormous computing power, and the most complex model executed in 0.6 ms,
which is when compared to Teensy 4.0 not significantly better to persuade us to use computer
boards instead of the microcontroller. This once more proves that if the loss in accuracy due
to quantization is acceptable, the only real limitation is available RAM and FLASH memory
on the used microcontroller.

In some scenarios RF can offer better or comparable results than deep NN with only
fraction of execution time required on MCU [115]. As aim of our study was to increase
throughput, which is achieved by better estimating number of interrogating tags, that which
is best performed by NN model, thus only NN model was considered for implementation on
microcontroller. Additionally, NN models can offer numerous optimization and quantization
possibilities, which is worth further investigation.

Based on the overall result, one final observation is made. As can be noticed in Fig-
ure 1.24, η for ILCM and NN is quite different. Such diversity is a result of the ILCM’s
interpolation, even though it contributes to lower computation complexity. When examin-
ing the worst case for both models, i. e. frame size L = 256, the Neural Network model
reaches ηNN = 0.2498 in contrast to ηILCM = 0.2265. This results in a difference of 0.0233,
which is approximately 6 successful slots per given frame. Reader setting determines the
execution time per frame and such a time cost needs to be compared with the time for a
successful tag read, i.e. successful slot time. Based on empirical evidence from research
studies as ones in [116], the time for standard reader setting in a general scenario is 3ms.
Therefore, the read tags that are scarified as Neural Network computational burden are equal
to 1.7ms/3ms = 0.57.

1.2.4 The Empirical part of the research: Application Layer

This particular aspect of the research was conducted at the Application Level of the IoT stack.
The main research focus was on design and evaluation the first prototype of a Smart learn-
ing toy for preschool geometry education, utilizing IoT technology, particular sensing tech-
nology, Machine Learning algorithms, and user-centered design principles. Furthermore, a
preliminary pilot testing study was done, aiming to assess the usability and performance of
the toy prototype while also exploring how the toy can enhance young children’s learning
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experiences in a fun and engaging manner.
In the pursuit of designing a Smart toy for geometry learning, the integration of IoT sens-

ing technology and Machine Learning algorithms was chosen for incorporation into an exist-
ing plush giraffe toy. This strategic decision aimed to leverage the toy’s pliability, familiarity,
and adaptability to create an interactive and captivating learning experience for young chil-
dren. The inherent flexibility of plush toys facilitated the seamless integration of sensors and
electronic components, preserving the overall aesthetic and tactile appeal of the toy. Plush
toys have established themselves as child-friendly and comforting, making them an ideal
platform for designing engaging educational tools. Additionally, these toys have demon-
strated their ability to foster emotional connections with children, enhancing personalization
and enjoyment [117, 118]. Furthermore, the gender-neutral nature of animal-themed and
robotic toys presented an opportunity to explore potential gender-based preferences among
children [119].

Hardware

The main hardware components of the smart toy are presented in Figure 1.26. The specific
functions of the components are elaborated in the rest of this section.

Figure 1.26. Main Smart toy hardware components

The interaction with the Smart toy follows these steps: a geometric shape is displayed on
an LCD screen with an accompanying sound signal. The child is then prompted to draw the
shape above the Sensor module using hand movements. The Machine Learning algorithm
integrated into the toy analyzes the drawn gesture and determines if it matches the displayed
shape, providing immediate feedback. This approach minimizes cognitive effort and enables
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seamless interaction with the system [120]. Hand gestures enhance usability, especially for
young children, and contribute to the development of fine motor skills. Fine motor skills are
crucial for early childhood development and are linked to improved learning abilities and
overall cognitive development [121]. Gesture studies highlight the role of kinetic movement
in the origin and development of abstract geometric cognition in children [122, 123, 124].
The toy’s audio and visual feedback enriches the learning experience, making it engaging
and enjoyable. Additionally, this activity fosters the development of spatial skills, which are
essential for success in STEM fields like mathematics and science [125].

The combination of the Teensy 3.6 microcontroller board, SdFat library, SanDisk Mi-
croSD card, piezoelectric speaker, Newhaven TFT display, and GPIO-connected pushbutton
constituted the hardware foundation of the system, enabling data acquisition, user feedback,
and interaction. The proposed system incorporates a microcontroller with additional mod-
ules to fulfill its functionality requirements. For data acquisition and storage, the Teensy 3.6
microcontroller board was chosen due to its ARM Cortex-M4 MK66FX1M0VMD18 core,
1024 KB Flash, and 256K RAM, operating at 180 MHz. The Teensy 3.6 board met the
necessary criteria for real-time acquisition and logging data to a MicroSD card. The SdFat
library, compatible with Teensy microcontrollers, facilitated fast write, read, and file han-
dling operations for data logging. A SanDisk Class 10 MicroSD card was utilized for this
purpose, although any Class 10 microSD card would suffice. To provide user feedback, the
system incorporated both audio and visual components. A piezoelectric speaker (buzzer)
was employed to produce limited and short monophonic melodies, signaling events such as
measurement start, end, or error states. Visual feedback was achieved through a Newhaven
4.3-inch TFT display with an integrated FTDI FT800 TFT Controller. This display offered
a resolution of 480 x 272 pixels, capable of displaying up to 262K colors. Communication
between the display and the microcontroller utilized SPI, with a clock rate of up to 30 MHz.
The Newhaven library facilitated easy integration and the creation of simple geometrical ob-
jects and progress bar elements for display. A pushbutton, connected to an interrupt-enabled
GPIO pin via a long cable, served as a trigger for initiating measurements. During the devel-
opment and testing stage of the system, the microcontroller board was directly connected to
the PC using a 480 Mbit/sec USB 2.0 interface. This configuration allowed insight into all
raw sensor data, more flexibility when testing different ML models, and deeper information
on the performance of each ML classification algorithm tested.

A schematic of all electronic components and interfaces between devices is presented in
Figure 1.27.
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Figure 1.27. Electronic components and interfaces between devices

Sensing Technology

Regarding sensing technologies employed, to locate a hand in space, several possibilities
were considered, including visual recognition, capacitive sensor, ultrasonic sensors, TOF
sensors, and finally selected infrared sensors. The proposed system is based on a micro-
controller rather than a single-board computer like Raspberry Pi, primarily due to power
requirements and faster boot-up times. Using an RGB or RGBD camera for real-time sens-
ing would necessitate a powerful embedded computer for data processing [126, 127]. As an
alternative, proximity sensors were chosen for their affordability, low power consumption,
and simple 1D output and visualized in Figure 1.28.

Figure 1.28. Distance sensors evaluated during the development of the proposed device (a)
Parallax Ping)), (b) In house developed capacitive sensor, (c) short-range Sharp IR sensor,
(d) long-range Sharp IR sensor

Initially, the HC-SR04 ultrasonic distance sensors (Parallax Ping))) were considered
for their conical sensing area and ability to measure distances in large volumes (https:
//cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf). However, when
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multiple sensors were used in overlapping areas, interference caused unsatisfactory perfor-
mance and a useful acquisition rate below 10Hz.

Another sensor type, the TOF VL53L0X distance sensors, excelled in precise dis-
tance measurement and refresh rate due to their principle of operation and small sensing
area (https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html).
However, the system would require a dense array of sensors to reliably detect and track hand
movement, increasing the cost and complexity of the system.

For the initial prototype, an in-house developed capacitive proximity sensor with a 10
cm sensing range was selected [128]. To enable gesture recognition in a two-dimensional
plane, two capacitive sensors were mounted on the neck of a plush toy, creating a virtual
canvas for users to perform gestures on as presented in Figure 1.29 sensor acquisition rate
to a. The sensing element of the capacitive sensor, made of copper sheet, was determined
experimentally to provide the optimal sensing range without introducing excessive ambient
capacitance. The calibration procedure equalizes the frequencies of the sensing and referent
oscillators when no objects are present within the sensing range. This ensures a maximum
output voltage from the sensor, which reduces proportionally as objects are brought closer
[128].

Figure 1.29. Researcher interacting with the first prototype of the device, featuring capacitive
proximity sensors

In addition to capacitive sensors, Another type of sensor that was considered was a family
of Sharp infrared distance sensors (https://global.sharp/products/device/lineup/
data/pdf/datasheet/gp2y0a21yk_e.pdf). There are a few similar models that are com-
pletely compatible and the only difference is the minimum and maximum measurement dis-
tance. We have tested two models, GP2Y0A41SK0F (Figure 1.28 c) which operates in the
range of 3 to 40 cm, and GP2Y0A21YK0F (Figure 1.28 d) which operates in the range of
10 to 80 cm. Both sensors are analog, which means that they output a signal with roughly a
2.15V differential between the minimum and maximum distance, which is read using the mi-
crocontroller’s integrated AD converter. Both short-range (30 cm) and long-range (80 cm) IR
sensors were implemented and a dataset for ML training was built. Based on real-world test-
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ing and comparisons, the 80 cm version of the IR sensor was selected as the optimal choice,
despite its longer minimal distance, to track gestures performed in larger volumes. These
sensor choices, including the capacitive proximity sensor and the Sharp GP2Y0A21YK0F
Analog Distance Sensor, provide analog signals that can be read using the microcontroller’s
integrated AD converter. However, the relationship between the measured distance and the
analog signal is non-linear, requiring recalculation for accurate distance determination.

Data Collection, Processing, and Machine Learning

Building accurate and robust models for complex hand gesture recognition is challenging due
to the diversity and complexity of hand gestures. Therefore, preliminary testing of Machine
Learning models with collected data is critical to ensuring their reliability and effectiveness.
Data have been collected from 8 adult individuals to serve as data for building a Machine
Learning model. The research employed a non-probability sampling method known as con-
venience sampling, which entails selecting study participants who are easily accessible and
willing to participate. In this case, those were academic staff involved in the research project
on a wider scope. All subjects signed an informed consent form in accordance with the Dec-
laration of Helsinki and approved by the Ethics Committee of the Faculty of Electrical En-
gineering, Mechanical Engineering, and Naval Architecture. Each individual has performed
gesture movements for around an hour. In general, around 200 gestures (depending on the
sensing technology) were gathered per individual, and onward were processed, depending
on the sensing technology. While preparing the training dataset, subjects were instructed
to follow all five hand gestures (shapes) when one is displayed on the screen. Those were,
namely, circle, square, triangle, rhombus and pentagon. ML models were originally trained
in all shapes, but the performance of the test data set showed to be unsatisfactory. However,
by keeping only three gestures (namely circle, square, and pentagon), we have achieved
better categorical accuracy.

An example of the raw sensor reading is presented in the Figure 1.30 for capacitive
sensor, Figure 1.31 for the short-range IR sensor, and Figure 1.32 for the long-range IR
sensor. All three figures show raw data for the same performed gesture. As the system is
set to capture raw data in 10 s intervals, useful data (actual hand gesture) is found only in a
few seconds intervals and can be anywhere inside the original signal. While comparing raw
data reading for the same gesture, some similarities can be found across all sensor readings
(please note that capacitive sensor is using only 2 sensors and the signal is inverted).
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Figure 1.30. Raw sensor readings, 2 capacitive sensors

Figure 1.31. Raw sensor readings, 4 short-range IR sensors
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Figure 1.32. Raw sensor readings, 4 long-range sensor

In the context of Smart toys and human-computer interaction, the utilization of SVM,
Random Forest, and Neural Networks provides valuable options for effective gesture recog-
nition and interaction analysis. These algorithms have been successfully applied in diverse
domains, such as educational technologies, gaming, and robotics. Their ability to handle
complex and multi-modal input data, along with their robustness and scalability, makes them
well-suited for the development of intelligent systems capable of accurately and real-time in-
terpretation and response to children’s gestures [129, 130, 131].

In order to maximize the performance of the SVM, RF, and NN models for gesture recog-
nition, a parameter grid search was conducted [132, 133, 134]. The grid search approach is
employed to systematically explore various combinations of hyperparameters, allowing for
the identification of the optimal configuration [132]. The selected parameters for each model
are presented in their respective tables below (Table 1.21, Table 1.22 and Table 1.23).

Table 1.21. SVM Parameter Grid Search

Kernel C Gamma
Linear 0.1 Scale
RBF 1 Auto
Poly 10 Scale
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Table 1.22. Random Forest Parameter Grid Search

Max Samples N Estimators Criterion Max Depth Max Features Min Samples Split
0.1 50 Gini 3 Auto 2
0.2 100 Entropy 5 Sqrt 4
0.3 150 Gini 7 Auto 6
0.4 200 Entropy 9 Sqrt 10

Table 1.23. Neural Network Parameter Grid Search

Hidden Layer Sizes Activation Solver Alpha Learning Rate
(50,) ReLU SGD 0.0001 Constant

(100,) Tanh Adam 0.001 Adaptive
(50, 50) ReLU SGD 0.01 Constant

(1024, 512, 64, 6) ReLU Adam 0.001 Adaptive

The Table 1.24 presents the initial results of Machine Learning models applied to raw
data from different sensor types for gesture recognition. The accuracy of the models varied
across sensor types. The IR long-range sensor demonstrated higher accuracy in gesture
recognition compared to other sensor types due to its ability to capture more detailed and
precise data. The extended range of the sensor allows for capturing a wider range of hand
movements, resulting in improved classification accuracy. The longer range also helps in
reducing occlusion and interference, leading to more reliable and consistent recognition of
gestures.

Table 1.24. ML results for raw data

Table Accuracy
Sensor type SVM RF NN
Capacitive 0.80 0.78 0.80

IR short-range 0.82 0.70 0.82
IR long-range 0.91 0.89 0.91

Raw sensor data were pre-processed before to improve the accuracy and efficiency of
Machine Learning models. Due to the nature of the sensors used, the raw data is noisy
and inconsistent, making it difficult to extract meaningful information. Data preprocessing
helps to address these issues and prepares data for analysis through data transformation, data
cleaning, and data reduction. Data transformation converts data into a more suitable format
by doing linear or non-linear scaling and normalization of numerical values. As a notable
example, the IR distance sensor outputs non-linear analog data that could be transformed to
a linear distance [135].

By performing non-linear scaling before feeding data to an ML model, the first layers of
our Machine Learning model do not have to find relations between non-linear voltage input
and actual linear distance and can focus on resolving hand gesture form transformed linear
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distance data. The data cleaning technique removes or corrects errors and inconsistencies
and predicts missing values. This requirement is again presented on the IR distance sensor,
which internally updates readings with a 25 Hz refresh rate, while our system is set to a
fixed 50 Hz refresh rate. The faster refresh rate was required as the IR distance sensor
outputs faulty readings during short periods of internal distance recalculation, and there is the
possibility of reading the sensor output during that exact moment. By having more readings
than required, simple data filtering can be performed, and outliers are simply removed and
replaced with mean neighboring values (using a mean filter). The data reduction technique
effectively reduces the size of the dataset while still preserving important information. As
reported in the literature, human self-paced movements are within the 3.3 Hz bandwidth (ref),
thus the system’s 50 Hz sampling rate is excessive for recognizing complex hand gestures.
Additionally, the training and inference time of any ML model is significantly reduced by
reducing the input size. By our conservative estimation and general experience, a 10 Hz
refresh rate was selected as optimal that balances the performance of the ML model and the
complexity of the ML model. Data reduction was performed by resampling 500 inputs per
sensor (for 10 s measurement time) to 100 inputs using cubic spline interpolation. When
data are resampled at a five-fold lower rate, noisy sensor inputs are filtered, and readings are
smoothed. By resampling data to a 1:5 rate we have effectively achieved low-pass filtering
and simplification (reduction) of the ML model. With this approach, we are effectively
reducing the 50Hz sensor acquisition rate to a 20Hz acquisition rate, which is still suitable
to recognize complex hand gestures. If a lower acquisition rate were to be used, some faster
movements may be tracked with an inadequate number of samples thus preventing accurate
recognition. Additionally, when the original input vector (4 x 500 samples) is used for ML
training with a similar ML model (only input size was modified) categorical accuracy on the
test is significantly reduced to 0.86, and with the model size around 6.3 MB (1.4 MB for
resampled inputs) which may be inadequate for ML implementation on microcontrollers.

An additional pre-processing step was also considered, where only data belonging to
the performed gesture are extracted and forwarded to an ML model. This is usually done by
observing the first and the last samples where the object is detected by sensors and extracting
all samples in between. This approach was shown to be unreliable in practice, as the subject
may place the hand in the sensed area long before or keep it long after the required gesture
is performed.

In order to enhance the accuracy and smoothness of the hand gesture trajectories, cu-
bic interpolation was applied to the raw sensor data. Cubic interpolation is a mathematical
method that estimates data points between known data points using a smooth curve. It helps
to overcome the limitations of discrete sensor data and improve the representation of the
hand gestures for further analysis and modeling [136]. Figure 1.33 shows an example of
cubic interpolated data for a long-range IR sensor.

The utilization of cubic interpolation significantly improved the accuracy of the NN
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Figure 1.33. IR long interpolation

Table 1.25. ML results for cubic interpolated data

Table Accuracy
Sensor type SVM RF NN
Capacitive 0.84 0.80 0.79

IR short-range 0.82 0.69 0.75
IR long-range 0.88 0.83 0.94

model when applied to interpolated sensor data. The results presented in the Table 1.25
reveal notable enhancements in accuracy for certain sensor types, such as capacitive and IR
long-range sensors. However, a slight decrease in accuracy was observed for the IR short-
range sensor. These findings underscore the substantial impact of cubic interpolation in
augmenting the performance of the NN model for accurate gesture recognition.

The final architecture of the NN model displayed in this investigation is constructed of
eight layers, as depicted in Figure 1.34. The first is the input to a 1D convolution layer with
32 filters and 16 kernel sizes. The convolution layer is followed by a flattening, which is
then followed by a dense layer with 32 neurons. The dense layer is followed by a Dropout
layer with a dropout rate of 0.2 and another dense layer with 32 neurons, which is again
followed by another dropout layer with a dropout rate of 0.1. The last two layers are the
Dense layer with 32 neurons and the final output layer. The applied activation functions were
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ReLU (in dense layers) and Softmax (in the output layer). Our proposed architecture is a 1D
Convolutional Neural Network (cNN), where the convolution layer extracts characteristic
features from the signal input, and where Dense layers try to find relations between extracted
features to classify signals. The dropout rate (probability of setting output from the hidden
layer to zero) must be included because of the small training dataset, which prevents the
overfitting of the network to a training dataset.

Figure 1.34. ANN Arhitecture

Since the classification of the hand gestures is a multiclass classification problem, the
Categorical Cross-Entropy Loss function was applied as the loss function. Another key
aspect of the ANN model architecture that was thoroughly examined is the selection of opti-
mizers, learning rates, number of epochs, and batch size. Adam provided the most accurate
estimation results on the test dataset with a 0.0005 learning rate. Optimal training results
were obtained with 100 epochs and 128 batch size.

ML models were originally trained in all shapes, but the performance of the test data set
showed unsatisfactory results with a categorical precision of 87.3%. By removing one ges-
ture from the training and test dataset, categorical accuracy with the remaining four gestures
increased to 89.8%, which was also unsatisfactory. Finally, by keeping only three gestures
(namely circle, square, and pentagon), we have achieved better categorical accuracy. After
performing several repetitions of the classification, the accuracy ranged from 93.8 % up to
98.3%, depending on the repetition. The results in the form of a confusion matrix for all
three models are presented in Figure 1.35, and do not show which shape or gesture is to be
blamed for the poor performance of the model with the five gestures in the training dataset.

Figure 1.35. Confusion matrix for models that include 3 shapes (left), 4 shapes (middle),
and 5 shapes (right)

We have analyzed raw training data from different subjects in search of a solution that
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could eventually improve performance. An example of the analysis is presented in the form
of a plot on Figure 1.36, for all five gestures-shapes for a single sensor and the same subject.
As the system is capturing raw data in 10s intervals, useful data (when the user is performing
a gesture) takes only a few seconds and can be found anywhere inside the original signal. As
seen from the sample data presented in Fig.1.36, useful data takes only 2 seconds intervals
per sensor while the rest of the data is extremely noisy. Relative timings and shapes of slopes
between sensors capturing the same gesture are actual features that have to be extracted and
used for gesture recognition and classification. By visual inspection of raw data for several
examples (same person performing same gesture) some obvious similarities between signals
cannot be easily found. Thus, this non-trivial task is delegated to our proposed ML model,
which extracts those features and decides which gesture is performed. More detailed analysis
of measured raw data from all four sensors on several subjects in the training set suggested
that shapes 3 and 4 (namely triangle and rhombus) are similar to shapes 1 (circle). We
presume that acquiring larger training data would improve the performance of a 5-shape ML
model, by allowing it to find more specific features for each shape and consequently build a
better model. Due to the aforementioned reasons, we have removed shapes 3 and 4 from the
training and test data set.

Figure 1.36. Raw sensor data for five hand gestures -shapes recorded with a single sensor

Exploratory Pilot Study

This pilot evaluation collected data on children’s experiences and perceptions of using IoT
technology for educational purposes, focusing on usability, engagement levels, and motor as-
pects of interactions with a Smart Toy for early childhood geometry education. Exploratory
pilot studies with children are crucial for identifying usability issues before larger-scale stud-
ies. Pilot testing and small sample sizes in child-related research have been highlighted in
previous studies, emphasizing the need to involve children in the design process [137, 138].
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Small sample sizes allow for iterative design processes and can reveal design flaws not ap-
parent in larger studies [139].

In order to conduct the pilot study, the faculty Ethics Committee gave their positive opin-
ion on the experiment procedure, stating that the proposed scientific research is carried out
in accordance with the ethical principle of scientific integrity. All parents had signed a con-
sent form before their children participated in the experiment. This exploratory study in-
volved a small group of children (ages 4-7) interacting with the toy prototype and providing
feedback. Hand movements during interaction were analyzed to guide future design and
movement-based feedback. The collected data will inform toy design and the performance
of the Machine Learning model in future research.

Experiment Design and Procedure
The study used a mixed-method approach, combining quantitative data from pre- and

post-test tasks and usability testing with qualitative and quantitative data from video record-
ings, questionnaires, and interviews with children. The study was carried out in a controlled
laboratory setting, with one-on-one interaction between the researcher, participants, and the
proposed Smart toy. Experimental design along with materials and methods is further de-
scribed.

The assessment process was based on a set of criteria that includes several quantitative
and qualitative measures, which are expressed in terms of:

• Time-related aspects of interaction (time taken by the user to draw a shape and overall
interaction duration);

• Hand gestures used to interact with the toy;

• Perceived ease of use (mapping of the particular shape);

• User mapping accuracy per particular shape;

• Engagement;

• Returnance (as one of the endurability dimensions);

• Fun and Subjective satisfaction;

• Obtained knowledge.

Several measuring instruments were used to acquire the aforementioned quantitative and
qualitative measures:

• Pre-test and Post-test: employed to evaluate the level of information acquisition as an
indicator of the educational value.
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• Attitude questionnaires (Smileyometer and The Again Again table) [140]: used to
measure children’s fun and subjective satisfaction.

• Structured interview: used as an instrument to measure children’s fun and subjective
satisfaction, level of engagement and as well as their perceived ease of use (mapping
of the particular shape).

• Video recording: used as an instrument to measure motor aspects of interaction (hand
gestures), time-related aspects of interaction, and engagement.

• Observation checklist: used as an instrument during the assessment process to record
notes, document identified problems, and fill in additional information related to task
completion accuracy.

Figure 1.37 represents the overall framework of the experiment.

Experiment
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Introducing
motivation and
description of
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Introducing
the smart toy

and interaction
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Structured
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Figure 1.37. Overall framework of the experiment

Laboratory equipment utilized for the experiment were as follows:

• Cardboard geometric shapes and boxes

• Smart toy for geometry learning

• Computer for data collection

• Consent forms for parents/guardians

Figure 1.38 gives the graphical representation of the laboratory setup and equipment applied
in the experiment.
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Figure 1.38. Visualization of laboratory setup

Experiment Procedure was as follows:

• Recruitment: The study employed a convenience sampling strategy, which is a non-
probability sampling method. Convenience sampling entails selecting study partic-
ipants who are readily available and willing to participate. The preschool children
were recruited from the University staff, including non-scientific personnel and per-
sonal networks of research aiming to ensure that the study sample was as diverse as
possible. The study was explained to parents/guardians, who were asked to consent
to their child’s participation. Overall, 14 children (7 girls and 7 boys) aged from 4 to
7 years old participated in the pilot study. Inclusion criteria will include no previous
exposure to the smart toy used in the study, as well as no history of developmental or
learning disabilities.

• Pre-test task: Before interacting with the Smart toy, each child was given a pre-test task
to assess their current knowledge of basic geometric shapes. Children were given 30
simple cardboard geometric shapes (namely 10 circles, 10 squares and 10 pentagons)
of different color and size and were asked to put them in appropriate box for each of
the shapes. The evaluation was administered orally by the researcher.

• Interaction with the Smart Toy: Each child had 30 minutes to play with the toy. The re-
searcher observed the child and documented their level of participation, motor aspects
of interaction, interest, and overall behavior while interacting with the smart toy.

• Data Collection: A video camera was used to record the participants during the exper-
iment. It recorded the duration of the interaction, the accuracy of the completed task,
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and any errors made by the participants. It also captured the levels of engagement and
other aspects of interaction that children had with the toy. Furthermore, the data was
also collected by the Smart toy in terms of sensor output data obtained from gesture
movement.

• Post-Test task: After interacting with the smart toy, each child completed a post-test
task the same as the one in the pre-test. They were again given 30 (new) simple card-
board geometric shapes (namely 10 circles, 10 squares, and 10 pentagons) of differ-
ent color and size and were asked to put them in appropriate box (new) for each of
the shapes. The evaluation was administered orally by the researcher. The pre- and
post-test task were further utilized to examine the effectiveness of the Smart toy for
geometry learning.

• Follow-up Interview and Questionnaire: The researcher asked close-ended questions
about the child’s engagement with the smart toy, ease of use, their learning experience,
and subjective satisfaction while interacting.

• Data Analysis: Analyses of the overall collected data included statistical analysis while
focusing on several aspects such as fun and subjective user satisfactions, ease of use,
engagement, returnance, and motor aspects of interaction. The pre- and post-test re-
sults were compared to see if the interaction with the Smart toy significantly improved
geometry knowledge. The results of the questionnaire, interviews, and video record-
ings were also be analyzed in order to gain insight into the child’s level of engagement
and overall satisfaction with the smart toy.

This pilot study utilized several techniques for evaluating children’s experiences with a Smart
Toy for early childhood geometry education. Firstly, simple cardboard geometric shapes
were used for pre-test and post-test assessments. These shapes have been shown to be a valid
tool in user evaluation studies and provide a tangible representation of geometric concepts
[141, 142, 143, 144, 145]. Secondly, a structured interview, as presented in Table 1.26,
was conducted to gather insights into children’s fun, subjective satisfaction, and perceived
ease of use while interacting with the Smart Toy. Interviews have been proven effective in
investigating the user experience in studies involving children [146, 147, 148, 149, 150, 151].

To assess subjective satisfaction and fun, two instruments from the Fun Toolkit were
employed. The Smileyometer, which uses a visual scale of smiley faces, was used to measure
children’s subjective experiences with the toy. The tool is based on a 5-point Likert scale (as
presented in Figure 1.39), with responses ranging from 1 (awful) to 5 (excellent) (brilliant)
[152]. The Again-Again table was used to assess children’s desire to repeat an activity [140].
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Table 1.26. Structured Interview

Questions Aspects of exploration

1. Did you like the game? Fun; Subjective satisfaction
2. Which shape was the easiest for you to draw? Ease of mapping
3. Which shape was the hardest for you to draw? Ease of mapping
4. Was the game boring? Fun; Subjective satisfaction
5. Was the game difficult? Fun; Subjective satisfaction
6. Would you like to play this game again? Fun; Subjective satisfaction
7. What else would you like to teach the giraffe? Engagement

Figure 1.39. Smileyometer rating scale

The “Again-Again Table” was derived (presented in Table 1.27) from the original pre-
sented in [152]. The table was filled applying by the researcher asking the research question:
“Would you like to draw this shape again?”

Table 1.27. The Again-Again Table

Would you like to draw this shape again?

Yes Maybe No

Circle

Square

Pentagon

Video recording was used to capture important aspects of interaction, including engage-
ment, time-related aspects, and hand gestures. Video recording allows for detailed analysis
of children’s behavior and movements, enabling researchers to identify patterns and areas
for improvement in the user experience [153, 154, 155, 156]. These evaluation methods pro-
vided valuable data for assessing the effectiveness of the Smart Toy and informing future
design improvements.

Results
Over the course of three consecutive days, 14 children participated in the pilot study.

Among them were 7 girls and 7 boys. Ten preschool children were 6 years old, three were 4
and 5 years old and went to kindergarten, and one was 7 years old and is a first grader.

a) Results regarding the objective aspects of interaction
The pre-test was designed to assess children’s knowledge of a variety of geometric shapes

appropriate for their ages in order to study the change after using the proposed Smart toy.

67



Chapter 1: INTRODUCTION

Children can touch, feel, and manipulate cardboard cutouts, which provide a tangible and
physical representation of geometric shapes. This enables children to grasp and internalize
geometric concepts and relationships. Most children do not have a thorough understanding of
all geometric shapes at a young age so it was important to examine if they can appropriately
distinguish and name them. Table 1.28 shows how children performed in the pre-test stage.

Table 1.28. The number of correct and incorrect answers given by children in the pre-test
stage when identifying geometric shapes.

Circle Square Pentagon

Correct Answers 100% 99.3% 99.3%
Incorrect Answers 0% 0.7% 0.7%

As can be seen, the children were good at distinguishing circles from squares and pen-
tagons. However, due to the fact that cardboard geometric shapes were of different colors
and sizes, on two occasions, a square was mistaken for a pentagon and vice versa.

Following the pre-test, the children were taken to a separate area of the laboratory where
the Smart toy giraffe was placed, as shown in Figure 1.38. The entire interaction process was
recorded on video and the researcher let the child become acquainted with the toy without
intervention or specific instructions. The children were then asked if they wanted to "teach
the giraffe" the geometric shapes they had been playing with in the pre-test. Each child
had 30 minutes to interact with the Smart Toy. The researcher instructed them to draw
(map) the shape from the LCD screen above the giraffe’s back with their hands as if they
were drawing on a canvas or a board. During interaction with the smart toy, the researcher
observed the child and recorded motor aspects of the interaction, their level of participation,
interest, and overall behavior. The researcher labeled each gesture made by the child as
correct or incorrect. This was later verified by analyzing the video recording. For each
shape, the researcher asked the child if they wanted to play a bit more. When the child
expressed a desire to stop playing, he or she was interviewed and encouraged to take the
post-test.

Firstly, four children did not establish the appropriate manner of interaction with the
Smart Toy. Two of them were ages 4 and 5 (kindergarten) and eager to touch and cuddle the
toy. They showed their emotions by smiling. The other two children were six-year-olds and
tried to interact with the toy, however, they did not manage to do it. One of them did not
show interest in the toy. This was especially evident in the fact that the child did not touch
the giraffe at all. The other tried to do the gestures but gave up and continued to play with the
toy in his own way. This child was interested in the toy and expressed emotions by smiling.

In total, ten children managed to interact with the toy in a suitable way. The primary
aspect of the interaction observed was the formation of the gesture. According to the results,
five children performed the interaction with a single finger (index finger). Four children
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interacted with two fingers (thumb and index finger), while one child used the entire fist.
Children who used one finger had longer interactions because they performed more gestures,
while those who used two fingers or a fist had shorter interactions and performed fewer
gestures, as exhibited in Figure 1.40. No child interacted with the toy for a planned period
of 30 minutes. The majority of interactions lasted from around five to ten minutes. A child,
a first-grader, engaged with the toy longest and managed to make a significant number of
gestures.
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Figure 1.40. Interaction duration related to the established manner of the performed gesture

The time required to form a specific shape was the second aspect of the observed interac-
tion. Figure 1.41 shows the distribution of the time required to perform a particular gesture.
There is an evident and reasonable increase in complexity correlated with the time required
to perform a given gesture, with a circle requiring the least time and a pentagon demanding
the most, which was to be expected. In the case of the square shape, there is an outlier caused
by one child’s playfulness even though the gesture was correctly performed.

69



Chapter 1: INTRODUCTION

Circle Square Pentagon
Shapes

0:00:02

0:00:03

0:00:04

0:00:05

0:00:06

0:00:07
Ti

m
e 

[s
]

Figure 1.41. Gesture time per particular shape

To identify any potential confounding variables in our limited data sample size, we con-
ducted a search for variables that are correlated with both the independent variable and the
dependent variable. Through our investigation, we discovered that age was highly positively
correlated with the number of user gestures, the number of correct user gestures per partic-
ular shape, and the number of correct user gestures. Specifically, the Pearson correlation
coefficient for age and the number of user gestures was 0.77, while for the number of correct
gestures for circle, square, and pentagon shapes, it was 0.74, 0.7, and 0.83, respectively. Ad-
ditionally, the Pearson correlation coefficient for age and the number of overall correct user
gestures was 0.77, indicating that the age may be a confounding variable that needs to be con-
trolled for in analysis. We have therefore calculated partial correlation coefficients between
the number of correct user gestures for per particular shape and the number of performed
gestures, while controlling for the effect of age. We have found strong positive correlations
between the number of correct user gestures and the number of performed gestures for the
circle, square, and pentagon shapes, even after controlling for the effect of age. Specifically,
the partial correlation coefficients were 0.942 (p-value=0.0001), 0.84 (p-value=0.004), and
0.899 (p-value=0.001) for the circle, square, and pentagon shapes, respectively. The statis-
tically significant relationship between correct user gestures and performed gestures even
after controlling for age suggests that age may not be a significant factor in predicting user
performance for these shapes. This result may have implications for the future design of
gesture-based interfaces, for instance for older children.

The final part of assessing the motor aspect of interaction was the accuracy of the child’s
gesture mapping. This will provide a subjective measure of the ease of mapping while in-
teracting with the toy, which is an important aspect of user experience design. A gesture is
considered correct if drawn on a virtual canvas above the sensors in the following way:

• a circle is drawn in 360 degrees, without overwriting the previous trajectory;
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• the starting vertex for a square and pentagon is the same as the ending one, without
repetition of previous edges.

This was evaluated in real-time by the researcher during the experiment, and validated by
examining the video footage. The results presented in Figure 1.42 show a somewhat different
and unexpected order of complexity among different shapes. That is, a circle has a higher
failure rate than a square. This is most likely the result of outlining multiple circles on
existing ones. As assumed, the failure rate for a pentagon is the highest.
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Figure 1.42. User mapping accuracy per particular shape

b) Results regarding the subjective aspects of interaction
These results are onward compared with the child’s subjective experience related to the

ease of mapping. Based on the answers provided from the interview questions "2. Which

shape was the easiest for you to draw?" and "3. Which shape was the hardest for you to

draw?" the following results were obtained and presented in Figure 1.43.
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Figure 1.43. The results of the answers to interview questions 2 and 3.
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As can be seen, the children perceived the circle to be the easiest shape to map, as op-
posed to the pentagon, which they perceived to be the most difficult. This result correlates
with the distribution of the time required to perform a specific gesture, with the circle requir-
ing the least time and the pentagon requiring the most. However, these results are in contrast
to the objective user mapping accuracy, as the square was the most accurately mapped shape.
As was previously mentioned, this is probably due to the fact that a great number of children
draw the circle by outlining multiple circles over existing ones.

Furthermore, the relationship between the perceived difficulty of different shapes and
the actual time required to draw them was examined. The Mann-Whitney U test was used
to compare the time taken to draw the hardest/most time-consuming shape (pentagon) with
the time taken to draw the easiest/least time-consuming shape (circle). The null hypothesis,
which stated that there would be no significant difference in time taken between the two
shapes, was rejected based on the results of the test. The statistic was calculated to be
0.000000 and the p-value was found to be 0.00041, indicating a significant difference in
time taken between the two shapes. This suggests that the perceived difficulty of the shapes
corresponds to the actual time required to draw them. These findings have implications for
the design of educational materials and activities that involve drawing shapes, as they suggest
that the time required to draw a shape can be used as an objective measure of its difficulty.

Regarding the results from the children’s subjective impressions of fun and satisfaction,
valuable feedback from the children about their subjective experiences with the smart toy
was obtained. Table 1.29 provides information on children’s responses to question "Can you

show me, using these pictures, how you felt while playing this game?"

Table 1.29. Fun and subjective satisfactions measured with the Smileyometer rating scale.

The Smileyometer rating scale results

Awful Not Very good Okay Really good Fantastic

Number of children 0 (0%) 1 (7.1%) 2 (14.3%) 2 (14.3%) 9 (64.3%)

As can be seen, the dominating majority of children expressed a feeling of "Really good"
and "Fantastic" while interacting with the smart toy. These results indicate that the children
are enjoying the activity and experiencing positive subjective satisfaction. This may also
imply that, in future interactions, children are more likely to fully engage in toy play. These
implications are supported by the results obtained from children’s responses to interview
questions "4. Was the game boring?" and "5. Was the game difficult?", presented in Table
1.30.
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Table 1.30. The results of the answers to interview questions 4. and 5

Yes No

Was the game boring? 3 11
Was the game difficult? 1 13

The children perceived the play with the giraffe to be engaging and easy. Such positive
experiences indicate that the toy is meeting expectations, which can be an important factor
in promoting children’s learning since they are more likely to continue using the toy. The
latter might overall result in greater technology adoption and success.

These implications are in correlation with the results obtained by analyses of video
recordings of children’s expressions and behavior during toy interaction. The majority of
children (12) smiled and were happy while interacting with the toy, one child danced and
others bounced excitably. They were also keen on touching, petting, and exploring the toy,
while at the same time communicating with the researcher. It was also noticed, that some
children, four of them, were more concentrated on the task itself, rather than on the toy itself.
Although they said they feel good interacting with the toy, they did not engage in other types
of play with the toy apart from the proposed interaction. They were more interested in the
toy’s educational features. When asked, "7. What else would you like to teach the giraffe?"

the majority of children just smiled and were unsure what to say other than "I don’t know."
However, some children provided rather interesting answers like "I would like to teach her

letters", "I would like the draw hearts", and one child answered "I would like to teach her

about good behavior."

Finally, the results of the returnability aspect based on the responses from Again-Again
Table 1.27 are presented in Figure 1.44.
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Figure 1.44. Results from the responses from Again-Again Table 1.27

Results indicate that the majority of children would like to play with the toy again. Fur-
thermore, findings suggest that the children found the square shape to be the most engaging
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and interesting to play with, as evidenced by their desire to play with it again and their pref-
erence for drawing the square. This preference may be related to the objective user mapping
aspect, in which the square was the most accurately mapped shape. It is also worth not-
ing that, despite the children’s subjective assessment that the circle was the easiest shape
to draw, they preferred drawing the square. This suggests that a child’s interest in the toy
was not solely determined by its ease of use. Overall, these findings suggest that future en-
hancements to the toy’s design should consider not only the ease of use but also the toy’s
engagement factor. The objective user mapping aspect can also be considered to increase
engagement. As was to be expected, half of the children would not want to draw the pen-
tagon again. It’s possible that the children’s lack of interest in drawing the pentagon again
is related to their level of motor skill development, as the pentagon has more sides and an-
gles than the other shapes, potentially making it more difficult to draw. They may also feel
less confident or interested in attempting to draw the pentagon again or that they found the
pentagon more challenging to understand or remember compared to the other shapes. This
implication is supported by the researcher’s observations as well as the video analyses, as
none of the children were familiar with the shape or knew its name, and usually referred to
it as the "house shape".

An immediate post-test followed the interaction with the toy. The results of the test are
presented in Table 1.31. Only the results of children who interacted with the toy were taken
into account. As can be noticed, the accuracy of recognizing and classifying the pentagon
seems to decline. This was probably an immediate result of the fatigue of one child who in-
correctly classified the pentagon as a square several times since this child has interacted with
the toy the longest and has performed a great number of gestures. Overall, due to the small
sample size, a definitive conclusion about the impact of the toy on children’s performance
on the post-test cannot be drawn. Therefore, in the future, it is important to ensure that
sample sizes are adequate to make accurate claims about the impact of the toy on children’s
educational performance.

Table 1.31. The number of correct and incorrect answers given by children in the post-test
stage for identifying geometric shapes.

Circle Square Pentagon

Correct Answers 99% 99% 95%
Incorrect Answers 1% 1% 5%

c) Machine Learning performance
Finally, the performance of the Neural Network in experimental scenarios is presented.

Children performed an overall amount of 111 different gestures and Table 1.32 provides
insight into gesture classification accuracy.

As can be observed, the classification accuracy is quite low, especially for the pentagon
shape. There are several possible reasons for such a bad performance. To begin with, our
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Table 1.32. Machine Learning gesture classification accuracy results

Circle Square Pentagon

Guessed Missed Guessed Missed Guessed Missed

Number of gestures 25 15 19 20 6 26

experimental results have shown that children’s gestures differ from adult gestures in terms of
frequency and execution. As demonstrated, children performed gestures primarily with their
index fingers, while the data used to build the model came from adult users who primarily
used their entire fists. Furthermore, of those 111 gestures, half came from a single user, the
first grader, that is, 46, who made gestures with his index finger, while the other 55 gestures
were distributed among the other children, indicating an imbalance in the test set. With that
regard we have later done a comparison of raw sensor data from a child and an adult subject
while performing gestures for a same geometrical shape, as presented in Figure 1.45.

Figure 1.45. Comparison of raw sensor data of child and adult subject while performing
gestures for a same geometrical shape

It can be observed that children’s gestures greatly differ from adult gestures, both in
terms of their frequency and the way they are executed. Adults generally performed gestures
with the entire fist, where, as we have seen, the children primarily used their index finger.
Therefore, the feature set used to train the Machine Learning model was unable to accurately
capture the variation in children’s gestures, leading to poor classification accuracy.

As this was a pilot study, it provided valuable information on the performance of the
smart toy for geometry learning and identified areas for improvement. This information will
be used to guide future design iterations, helping to refine Smart the toy and improve the
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accuracy of the Machine Learning algorithm. In that regard, it will be necessary to collect
a large data set of children’s gestures and train the Machine Learning model specifically on
this data set. This can involve collecting data from a range of ages and developmental stages
to ensure that the model can capture the variation in children’s gestures. Additionally, it may
be necessary to develop new feature sets or modify existing ones to better capture the unique
features of children’s gestures. Finally, it may be necessary to test the model on a separate
validation data set to ensure that it generalizes well to new examples of children’s gestures.

1.2.5 The fundamental scientific contributions

The fundamental scientific contribution of this research lies in the utilization of Machine
Learning techniques to optimize and improve the performance of Internet of Things stack
services. This contribution is exhibited through three main domains:

1. Enhancement of the Perception Layer service within the IoT architecture through a
novel approach that leverages the signal strength of LoRaWAN devices and utilizes
Machine Learning algorithms to detect states and changes in the environment. The
improvement is exhibited in better cost-effectiveness and robustness with high preci-
sion compared to existing solutions.

2. Enhancement of the Network Layer service within the IoT architecture with a new
model for frame size estimation and tag estimation in RFID Gen2 systems that utilize
the ALOHA protocol. A model based on machine learning algorithms is proposed.
The improvement is exhibited in better throughput compared to the state-of-the-art
algorithm, with appropriate execution time to meet the protocol requirements.

3. A new interface for interaction on the Application Layer of the IoT architecture that
utilizes Machine Learning techniques to recognize complex human gestures from sen-
sor output data.
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The Figure 1.46 visually represents the embodiment and potential implementation of
the proposed solution. It serves as an illustration of the fundamental scientific contribution,
demonstrating the utilization of Machine Learning techniques to optimize and enhance the
performance of Internet of Things for specific use case scenarios explored within research
conducted within this doctoral dissertation.

Figure 1.46. Realization and potential implementation of solutions

77



Chapter 1: INTRODUCTION

1.3 List of Published Papers Upon Which the Disserta-
tion’s Scientific Contribution was Founded

The proposed doctoral dissertation aims to improve the perception, communication, and ap-
plication layers of the IoT architecture by utilizing Machine Learning algorithms. Through
these novel approaches, the dissertation provides original scientific contributions to the field.
These fundamental contributions cover all three layers of the IoT stack and are confirmed by
the publication of scientific articles that collectively form a comprehensive and innovative
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1.3.1 Other publications

In addition to the research presented in the aforementioned journal papers, the author has un-
dertaken a significant volume of supplementary work, which has been disseminated through
journal and conference papers, encompassing diverse domains of computer science, par-
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applications.
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Estimation Method for ALOHA-based RFID system. 2021 6th International Confer-
ence on Smart and Sustainable Technologies (SpliTech) Bol (Brač), Hrvatska: IEEE,
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1.4 Overview of the Dissertation Structure

The introductory chapter of this doctoral dissertation presents the motivation for the study
and the corresponding hypotheses. The following section of the introduction describes and
explains the scientific methods employed to verify the hypotheses and realize scientific con-
tributions. Furthermore, an overview of the scientific literature upon which the dissertation’s
contributions are based is provided. The second chapter is a review article that focuses on the
doctoral candidate’s contributions across three main research areas. The third chapter offers
a detailed review of the scientific contributions of the papers upon which the dissertation
is founded, with special emphasis on the candidate’s contributions to each individual work.
The fourth chapter consists of the concluding remarks of the entire doctoral dissertation, in-
cluding a discussion of future research. Finally, relevant literature is cited and the published
scientific papers (Appendix A, B, C, D, E, F) upon which the scientific contribution of this
dissertation is based are included
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2 SATE OF THE ART

The State of the Art chapter of this dissertation provides a comprehensive overview of sci-
entific literature, divided into four parts. The first part presents an overview of the advance-
ments and key concepts in Machine Learning, highlighting its relevance in the context of IoT
systems. Additionally, this part will incorporate the scientific definitions of the applied algo-
rithms that are pertinent to the research, enriching the understanding of the subject matter.
The subsequent three parts are focused on the Perception layer, Network Layer, and Appli-
cation Layer of the three-layer IoT stack, respectively. Each part delves into the specific
challenges and application domains that have been the primary focus of scientific research
within this dissertation. This structured approach ensures a thorough exploration of the con-
temporary scientific achievements in each layer, shedding light on the advancements and
areas of interest in the field.

2.1 Machine Learning: General Overview

In the IoT paradigm of numerous smart connected devices, Machine Learning has emerged as
an essential field of research and application aiming at providing computer programs the abil-
ity to automatically improve through experience [157]. The most distinguished attribute of
a learning machine is that the trainer of learning machine is ignorant of the processes within
it [158]. Origins of Machine Learning have its foundation in the study of pattern recognition
and Computational Learning Theory and can be considered an integral part of Artificial In-
telligence utilized for development of algorithms based on relationships between data [159].
Machine Learning generally includes data processing, training, and testing phases with the
aim of making the system able to carry out decisions based on the input received from the
training phase [160]. In order to archive the learning process, systems use various algorithms
and statistical models to analyze the data and gain information about the correlation between
the data features [161]. The algorithms that are used in these processes can be divided into
four distinctive groups, as Supervised, Unsupervised, Semi-supervised, and Reinforcement
learning algorithms:

• Supervised learning algorithms demand external monitoring by a supervisor with the
goal of learning how to map input values to the output values where the accurate values
are given by a supervisor [162].
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• Unsupervised learning algorithms make computers learn how to perform a specific task
only with the provided unlabeled data. These types of algorithms need to find existing
relationships, irregularities, similarities, and regularities in provided input data [163].

• Semi-supervised learning is a hybrid approach of the previous two categories that uses
both labeled data and unlabeled data. These algorithms generally act like the unsuper-
vised learning algorithms with the improvements that are brought from a portion of
labeled data [164].

• Reinforcement learning algorithms operate with a restricted insight of the environ-
ment and with limited feedback on the quality of the decisions. In order to operate
effectively and provide the most positive outcome, these algorithms have the ability to
selectively ignore irrelevant details [165].

Machine Learning has proven to be highly effective in addressing a wide range of prob-
lems, including classification, clustering, prediction, and pattern recognition, among oth-
ers [161]. The selection of the most suitable ML algorithm depends on factors such as the
speed of the technique and its computational intensity, tailored to the specific application
requirements [161].

In recent years, Deep Learning has emerged as a prominent approach within the field of
ML, particularly in IoT applications [166]. DL exhibits robust capabilities in mining real-
world IoT data, even in noisy and complex environments, surpassing traditional ML tech-
niques. This makes DL a powerful analytical tool, particularly in handling vast amounts of
data and achieving superior performance in various tasks [167]. Unlike traditional ML tech-
niques that heavily rely on the quality and accuracy of manually engineered features, DL has
the ability to automatically extract and organize multiple levels of information, thereby effec-
tively capturing complex relationships within the data [168]. ML, including DL, has found
widespread applications across different fields, such as computer vision, computer graphics,
natural language processing (NLP), speech recognition, decision-making, intelligent con-
trol [169], and even intrusion detection systems [170]. Within the realm of IoT devices, the
application of ML techniques enables users to uncover deeper insights into data correlations
and extract hidden information and features that might otherwise remain obscured [171].
This capability facilitates enhanced data analysis and decision-making processes in IoT en-
vironments.

2.1.1 Algorithms

1. Support Vector Machine

The idea of Support Vector Machine (SVM) was introduced by Vapnik in mid 1990-ties
and today this a well known machine learning algorithm used in various applications from
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classification, forecasting to pattern recognition. The SVM implements the idea of mapping
input vectors into a high-dimensional space F , which is furnished with a dot product, using
a non-linear mapping selected a priory [172]. This idea has been generalized to become
applicable to regression problems using Support Vector Regression (SVR) briefly presented
in the following.

Let us consider a training set T = {(xi,yi) | xi ∈ Rn,yi ∈ R, i = 1, ...,n}, where X =

(x1, ...,xn) are sampling data and Y = (y1, ...yn) target vaules. The objective of SVR is to
find function f (x) that has at most ε- deviation from the observed target yi for all training
data, enforcing flatness. This function can be defined as a linear function

f (x) = ωΦ(x)+b, (2.1)

where Φ : Rn → F is the map into the higher dimensional feature space, ω represents vector
of wights of the linear function and b is the bias. Desired function which is optimal is chosen
by minimizing the function

Ψ(ω,ξ) =C ·
n

∑
i=1

(ξi +ξ
∗
i )+

1
2
∥ω∥2 , (2.2)

where ξ,ξ∗ are non negative slack variables that measure the upper and lower excess devia-
tion, ∥.∥ is the Euclidean norm (1

2 ∥ω∥2 represents regularization term), C is a regularization
parameter which allows the tune of the trade-off between tolerance to empirical errors and
regularization term. Ψ(ω,ξ) must satisfy following constraints:





yi −ωΦ(xi)+bi ≤ ε+ξi

ωΦ(xi)+bi − yi ≤ ε+ξ∗i
ξ,ξ∗ ≥ 0, i = 1, ..,n

. (2.3)

Furthermore, the most prominent feature of SVR is the ability to establish correlation
between data using non-linear mapping. This is achieved using kernel functions for generat-
ing the inner products, know as kernels, which satisfy Mercer’s theorem. One of the broadly
used kernels are polynomial and Gaussian radial basis function (RBF) kernels. The RBF
kernel is given with the formula:

Kγ (|x− xi|) = exp
{
−γ · |x− xi|2

}
(2.4)

The necessary parameters γ, C and ε can be selected with grid search process of perform-
ing hyper parameter tuning in order to determine the optimal values for a given model.
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2. Random Forest

Random Forest as an ensemble learning Machine Learning approach to classification and re-
gression was first introduced by Breiman in 2001. [173]. It has successfully been utilized in
many research and application domains and has become a standard in non-parametric classi-
fication and regression Machine Learning technique for making predictions based on differ-
ent types of variables without making any prior assumption of how they are associated with
the target variables [174]. Its application ranges from bioinformatics [175], intrusion detec-
tion systems [176] computer vision [177], RS land cover classification [178], as well traffic
accident detection [179], crop classification based on object-based image analysis [180] and
DDoS attack detection [181].

Formally, RF can be defined as a classifier constructed out of a collection of tree-
structured classifiers {ck (x,Tk)} ,k = 1, ...,L, where Tk are independent identically dis-
tributed random samples (vectors) and for a input x, each of the trees casts a unit vote for the
most popular class [182] as depicted in Figure 2.1.

Tree 1

Bootstrap
Samples

Tree 2 Tree N

Majority voting

Training dataset (N instances)

Decision
Tree
growing

Figure 2.1. Example of an Architecture of Random forest model.

The trees are generated using a bagging approach, that is by producing random sam-
ples of training sets through replacement, where some samples can be taken several times
and others may not be taken at all [183]. For a given training set T constructed classifiers
{ck (x,Tk)} cast a vote and make the bagged predictor and for each y,x in the train set the
votes from classifiers for which the Tk did not contain y,x are stored as out-of-the- bag clas-
sifiers [173]. Generally, samples used for training the trees are taken from two thirds of the
instances and the remaining one third are used in an inner cross-validation technique that
estimates the resulting RF model performance [183]. The out-of-the-bag estimate for the
generalization error is the error rate of the out-of-the- bag classifier on the training set and
this estimate is as accurate as using a test set of the same size as the training set, thus remov-
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ing the need for a set aside test set [173]. Commonly, user defines the number of trees and the
algorithm creates trees that have high variance and low bias where each decision tree is inde-
pendently produced without any pruning, and each node is split using a user-defined number
of features that are randomly selected [183]. The error rate will decrease as the number of
combinations increases and therefore the out-of-the- bag estimates will tend to overestimate
the current error rate and therefore it is necessary to run past the point where the test set
error converges [173]. Final classification is done by taking the average of class assigned
probabilities calculated by all generated trees and new data given as an input is accordingly
evaluated against all decision trees produced in the ensemble and each tree votes for a class
membership [183]. The class which has the biggest overall number of votes is the one that
in chosen in the end.

3. Hidden Markov Models

Hidden Markov Models (HMMs) have been known for decades and today are making a large
impact with regard to their applications, especially in form of Machine Learning models
and applications in reinforcement learning. They are widely being used for pattern recog-
nition [184], i.e. namely speech recognition [185] as well as in biological sequence anal-
ysis [186], gene sequence modeling, activity recognition [187] and analyses of ECG sig-
nal [188, 189]. Markov Chains and process were introduced by the Russian mathematician
Markov in 1906 when he obtained a theoretical result for a stochastic process. Markov pro-
cess can be considered a time-varying random phenomenon for which Markov properties are
attained. It’s practical importance is the use of the hypothesis that the Markov property holds
for a certain random process in order to build a stochastic model for that process [190]. Such
a process has a fixed number of states, and it randomly evolves from one state to another at
each step. The probability for it to evolve from state a to a state b is fixed, and it depends
only on the pair (a, b), not on past states (the system has no memory) [191].

In the broadest sense, a Hidden Markov model (HMM) is a Markov process that can
be divided into two parts: an observable component and an unobservable or hidden com-
ponent. The observation is a probabilistic function of the state, i.e. the resulting model
is a doubly embedded stochastic process, which is not necessarily observable, but can be
observed through another set of stochastic processes that produce the sequence of observa-
tions. A machine learning algorithm can apply Markov models to decision making processes
regarding the prediction of an outcome.

In 1986 Rabiner and Juang [87] gave the structure of the first order Hidden Markov
Model denoted as λ(A,B,π), where A = {ai j} is the matrix of transition probabilities, B =

{b j(k)} is the matrix of observation probability distribution in each state and π is the initial
state distribution. Rabiner (1989) presented [192] three different types of problems in HMM:
The Evaluation Problem, Decoding problem and Learning.
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1. The Evaluation Problem. Given the observation sequence O = o1,o2, . . . ,oT , and
the model λ(A,B,π), how to compute P(O | λ), the probability of the observation
sequence.

2. Decoding. What is the most likely state sequence in the given model that produced the
given observations.

3. Learning. How to adjust the model parameters λ(A,B,π) to maximize P(O | λ).

The first problem is commonly solved by using the Forward or Backward algorithm,
where as the last problem is, the most difficult of the three problems, usually solved using
Baum-Welch method. With regards to the second problem the central issue is to find the
optimal sequence of states to a given observation sequence and model used. Most common
method to this is by using the Viterbi algorithm, introduced by Andrew Viterbi in 1967 as
a decoding algorithm for convolution codes over noisy digital communication links. It is
the answer to the decoding problem resulting in the Viterbi path, since the algorithm can be
interpreted as a search in a graph whose nodes are formed by the states of the HMM in each
of the time instant [190].

Definition 2.1.1. Let λ(A,B,π) be a HMM and O = (o1,o2, . . . ,oT ) given observations. The
Viterbi algorithm finds single best state sequence q = (q1,q2, . . . ,qT ) for the given model and
observations. The probability of observing o1,o2, . . . ,ot using the best path that ends in state
i at the time i given the model λ is:

δt(i) = max
q1,q2,...,qt−1

P(q1,q2, . . . ,qt−i,qt = i,o2,o2, . . . ,ot | λ) (2.5)

δt+1(i) can be found using induction as:

δt+1(i) = b j(ot+1) max
1≤i≤N

[δt(i)ai j] (2.6)

To return the state sequence, the argument that maximizes Equation (2) for every t and
every j is stored in a array ψt( j) [87]. It is important to point out that The Viterbi algorithm
can be implemented directly as a computer algorithm. Moreover, the algorithm succeeds in
splitting up a global optimization problem so that the optimum can be computed recursively:
in each step we maximize over one variable only, rather than maximizing over all n variables
simultaneously.

Hidden Markov models have been used now for decades in signal-processing applica-
tions, such as speech recognition, but the interest in models has been broaden to fields of all
kind of recognition, bioinformatics, finance etc. [193].

With regards the first order Markov model, if the past and the present information of the
process is known, the statistical behaviour of the future evolution of the process is determined
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by the present state. Thus, the past and the future are conditionally independent (the system
has no memory) [194]. Therefore, it is reasonable to ask can there be a model which can
gather and somewhat keep information from the past. The answer lies within a higher-order
Markov models, where the hidden process is a higher order Markov chain and it is dependent
on previous states. This gives memory to the model and such a modeling is more appropriate
for processes in which memory is evident and important, for example a stock market time
series.

4. k- Nearest Neighbour (k-NN)

One of the most straightforward, fundamental and extensively used algorithms for classifica-
tion (although it can be applied for regression as well) is the k- Nearest Neighbour algorithm.
It was first introduced by Fix and Hodges in 1951 as non-parametric method for pattern clas-
sification and was later formally elaborated and defined by Cover and Hart in 1967 [195].
For almost half a century, k-NN has been explored and implemented in numerous problems
related to pattern classification such as pattern recognition, ranking models, text categoriza-
tion as well as object recognition and has been recognized as one of the top ten data mining
techniques [196]. k-NN needs no prior knowledge about data distribution and has been la-
beled as as a “lazy learning” or “instance-based learning” algorithm [164]. The algorithm
will use raw training instances to make decision and no learning of the model is needed, i.
e. it will not construct a mapping function or an internal model- the computational outcome
will be derived directly from training data set stored in the memory [197].

The basic operation of the k-NN is founded on the calculation of distances among the
tested and the training data samples for identification of its nearest neighbours thus assigning
the tested instance to a particular class of its nearest neighbour[198]. One of the k-NN
advantages are simplicity of implementation, robustness to noisy training data and its ability
to effectively process large training data [199]. In the following some formal definitions
will be provided alongside with the mathematical concepts for k- Nearest Neighbour that
employs distance as a method for classifying data.

Definition 2.1.2. Let S be a set. A metric on S is a function d : S×S → R that satisfies the
following properties :

i) (Positivity) For all x,y ∈ S, d(x,y)≥ 0; equality holds if and only if x = y;

ii) (Simetry) For all x,y ∈ S, d(x,y) = d(y,x);

iii) (Triangle inequality) For all x,y,z ∈ S, d(x,y)≤ d(x,z)+d(z,y).

The couple (S,d) is called a metric space, the elements of S are called points and the number
d(x,y) is called the distance between x and y.
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Commonly used metrics for k- Nearest Neighbour technique are Euclidean, Manhattan,
Minkowsky and Chebyshev distances with Euclidean distance being is the most frequently
applied [198]. Some of these are defined in the following.

Definition 2.1.3. Let x = (x1,x2, ..,xn) and y = (y1,y2, ...,yn) be points in the n−dimensional
metric space (X ,d).

• The Minkowski distance, commonly know as the Lp norm is defined as:

Lp =
p

√
n

∑
i=1

|xi − yi|p. (2.7)

• The Euclidean distance norm, also known as the L2 norm is defined as:

L2 =

√
n

∑
i=1

|xi − yi|2. (2.8)

• The Manhattan distance or the City block distance, otherwise known as the L1 norm is
the special case of Minkowski distance for p = 1 and is given with formula:

L1 =
n

∑
i=1

|xi − yi| . (2.9)

• The Chebyshev distance, also known as chessboard distance or maximum value dis-
tance is defined as:

DChebyshev(x,y) = max
i

|xi − yi| . (2.10)

From the two above formulas it can be seen that the Euclidean distance is just a special
case of the Minkowski distance for p = 2.

Principle of operation: Let k be a positive integer and let set C be a set of dif-
ferent classes C = C1, ...,Cl}. For a given m−dimensional metric space (X ,d) let
{(x1,y1) , ...,(xn,yn)} be a set of points xi ∈ X with their appropriate classses, i.e. yi ∈C,∀i =

1, ...,n, (or in regresssion case let yi ∈ R). For a given query point x ∈ X the k-NN algorithm
determines the k closests points to x with respect to metric d, permutates the values yi and or-
deres them with respect to the given metric obtaining an ordered set {(x1′ ,y1′) , ...,(xn′,yk′)}.
In the case of classification, the corresponding class y(x) of the point x will be determined
by majority voting rule, where as in the regression case, y(x) is calculated using formula:

y(x) =
k

∑
i′=1

ωi′yi′ , (2.11)

where number ωi′ represents weight of each point, commonly calculated as ωi′ =
1

d(x,xi′)
.
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The majority voting rule for classification problems can also be expressed using Formula
2.11, where all weights are set to be 1

k and

y(x) =





1, if
k
∑

i=1
yi′ >

1
2

0, if
k
∑

i=1
yi′ <

1
2

a tie otherwise.

(2.12)

Figure 2.2 represents an example of k- Nearest Neighbour classification. The test sample
(the green star within the two circles) needs to be classified as class 1 of purple squares or
class 2 of red circles. For k = 1 it is assigned to class 1 since there is only one square within
that circle. For k = 3 (outside the first circle) it is assigned to the second class since there are
2 red circles and only 1 purple square inside the inner circle. For the case of k = 5 the green
star will be classified belonging to the first class since there are 3 purple squares vs. 2 red
circles outside the outer circle.

Figure 2.2. Example of k- Nearest Neighbour classification.

The main disadvantages of k- Nearest Neighbour algorithm are its dependence of the
appropriate selection of distance (metric), high computational time since for every new in-
stance, all the distances from k-neighbors need to be calculated all over [199], [196]. What
is more, the k-NN inherits instability with respect to the order in which the data are pre-
sented to the algorithm which is not desirable and can be avoided by labeling the data, but
at the cost of expanding the computational time [200]. What is more, if the class probability
estimation is based on a simple voting, it can be a drawback if the nearest neighbors vary
extensively in their distance and the closer neighbors more reliably indicate the class of the
points, indicating that it may be prudent to give weight to each of the points based on their
distance [201].
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5. Neural Network

The core concept of DL has been displayed throughout an increasing research interest re-
garding Neural Networks or Artificial Neural Networks (ANN). They can be described as
computational models and architectures that simulate the true functionality and structures
of biological neural networks [202]. ANN have been found in a wide variety of areas that
require classification or some form of prediction in many applications such as science, engi-
neering, agriculture, mining, business, technology etc. [203]. Generally, the neural network
is comprised out of an input layer, an output layer, and at least one hidden layer between the
input and output with interconnections [202], as depicted in Figure 2.3.

Figure 2.3. Example of a Neural Network Architecture

An important feature of a neural network is that it can hold more than one hidden layer,
which actually represents the depth of the neural network. In one such a neural network,
the simulation of the learning process is based on finding hidden connections among the
sequences of input data through layers of neurons, in such a way that the output from a
neuron in one layer represents the input to a neuron located in the next layer. An artificial
neuron can be mathematically defined as non-linear mapping that is applied to a weighted
sum of its input values and a bias, producing an output ŷ according to formula 2.13:

ŷ = σ

(
m

∑
i=1

wixi +b

)
; (2.13)

m represent the number of inputs, xi represents the inputs, and wi are the weights. Weights
are assigned based on the inputs relative importance with regards to the other inputs, where
as the bias provides a constant value to the mapping which can be crucial for a successful
learning [88]. The non-linear mapping σ(.) is called the activation (or transfer) function
and it controls the output of the neuron by keeping it within acceptable values, usually be-
tween [0,1] or between [−1,1] [204]. Activation functions are characterized as linear and
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non-linear, where non-linear ones are the most frequently used. Commonly utilized non-
linear functions include (ReLU) ψ(x) = max(0,x), often used in recent years, as well as the
more conventional Sigmoids function, like the hyperbolic tangent Φ(x) = ex−e−x

ex+e−x and logistic
function logistic, S(x) = 1

1+e−x [205]. ReLU is mainly used as an activation function in the
hidden layer, while Sigmoid is usually employed in the output layer [206].

Since the training procedure of a Neural Network is an iterative process, the loss (cost)
function is utilized to determine the quality of the network, aimed at giving weights to neu-
rons during the training procedure. To minimize loss function during the training phase in
which the weight of neurons is determined, a good deal of optimization algorithms have
been implemented, many of which are first-order iterative optimization algorithms such
as: Stochastic Gradient Descent (SGD), Adaptive Moment Optimization (Adam), and Root
Mean Square Propagation (RMSProp). It is also important to determine the best learning
rate in the model i.e., how much the model need to be changed in response to the estimated
error each time the model weights are updated. With a high learning rate it may not enable
find global minimum and the model might not converge at all, whereas with low learning
rates model might take to long to converge [88].

6. Long-Short Term Memory (LSTM) neural network
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Figure 2.4. Long Short-Term Memory (LSTM) cell.

Recurrent Neural Networks are based on the recursive structure in which the one-step model
with a time-step is trained first and then recursively used to return the multi-step predic-
tion [207]. A special type of RNN is Long-Short Term Memory (LSTM) neural network
constituted out of a set of recurrently connected memory blocks – LSTM cells (depicted in
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Figure 2.4). LSTM cell consists out of four layers, main layer and three layers which are
gate controllers each computing values between 0 and 1 based on their input [166].

Layers operate in the following way:

• Main layer - analyses the current inputs x(t) and the previous (short-term) state h(t−1)

then outputs the g(t) vector;

• Forget gate f(t) decides parts of the long-term state c(t −1) that need to be erased;

• Input gate i(t) controls parts of g(t) that are added to the long-term state c(t);

• Output gate o(t) determines which parts of long-term state should be read c(t−1) and
given to the output y(t) and short-term state h(t) at the current time step(t).

The states of the cell are calculated using equations given below:

i(t) = σ(W T
xi · x(t)+W T

hi ·h(t−1)+bi) (2.14)

f(t) = σ(W T
x f · x(t)+W T

h f ·h(t−1)+b f ) (2.15)

o(t) = σ(W T
xo · x(t)+W T

ho ·h(t−1)+bo) (2.16)

g(t) = tanh(W T
xg · x(t)+W T

hg ·h(t−1)+bg) (2.17)

c(t) = f(t)⊗ c(t−1)+ i(t)⊗g(t) (2.18)

y(t) = h(t) = o(t)⊗ tanh(c(t)) (2.19)

where σ represents logistic activation function, tanh is hyperbolic tangent function, W(x) are
weight matrices for each of the four layers for input vector x(t), and W(h) are matrices of
the previous short-term state h(t−1). Finally, b denotes the bias term of each layer. Differ-
ence between the LSTM and the standard RNN is within their structure to memorize. With
traditional RNN parts of information are lost in the process of each feedback resulting in
RNN not being able to have long time memory in contrast to LSTM which has a long term
memory. LSTM is able to remove or add information to the cell state, unlike the mecha-
nism that completely overrides cell states like in standard RNN [208]. Long dependency in
time can be observed in IoT applications such as environmental monitoring, human activity
recognition, or machine translation and LSTM models have proven to perform better than
RNN for such data [166]. LSTM cells are very successful at capturing long-term patterns in
time series data and that was one the reasons for their selection as Deep Learning approach
for prediction.

7. Convolutional Neural Networks

Convolutional Neural Networks have arisen as very effective Deep Learning models intended
particularly for computer vision problems. These networks have shown remarkable perfor-
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mance in a variety of visual identification tasks, such as picture classification, object detec-
tion, sentence classification, and image segmentation, making them an essential component
of current computer vision systems [209]. Yann LeCun, Yoshua Bengio, and Geoffrey Hin-
ton introduced CNNs in [210], laying the foundation for the application of CNNs in com-
puter vision tasks. Convolutional Neural Networks are a specially designed for processing
data with a known grid-like topology, such as time-series data or image data [211]. CNNs
have demonstrated remarkable success in practical applications, and their name stems from
the utilization of the mathematical operation known as convolution [162]. Convolution is
a specialized linear operation, and in CNNs, it replaces the general matrix multiplication
commonly used in traditional neural networks, being employed in at least one layer of the
network architecture [212].

Convolutional Neural Networks exhibit a hierarchical architecture where the computa-
tion of each subsequent layer, denoted as x j, builds upon the input signal x in the following
manner:

x j = ρWjx j−1, (2.20)

were Wj is a linear operator and ρ is a non-linearity [213]. This hierarchical structure enables
the network to extract increasingly complex and abstract features from the input data. In
the context of a CNN, Wj is commonly implemented as a convolution operation, while the
activation function ρ is often chosen as either the rectifier function max(x,0) or the Sigmoid
function 1/(1+ exp(−x)) [209]. Conceptually, it is helpful to envision Wj as a collection of
stacked convolutional filters. Consequently, the layers in a CNN can be regarded as maps
of filters, with each layer expressed as the sum of convolutions performed on the preceding
layer as follows [213]:

x j(u,k j) = ρ

(
∑
k

(
x j−1 (.,k)∗Wj,k j (.,k)

)
(u)

)
, (2.21)

where, ∗ is a discrete convolutional operator [162]:

( f ∗g)(x) =
+∞

∑
u=−∞

f (u)g(x−u). (2.22)

In genreal, The fundamental CNNs is composed of interconnected layers which include con-
volutional layers, pooling layers, and fully connected layers, which collectively enable CNNs
to automatically learn and extract meaningful features from raw input data [209]. Convolu-
tional layers employ filters that perform local receptive field operations, capturing spatial
dependencies and detecting patterns at various scales [214]. Pooling layers, on the other
hand, downsample the feature maps, reducing their spatial dimensions while retaining the
most salient information [212]. Finally, fully connected layers combine the learned features
and generate predictions based on them [209]. An example of Convolutional Neural Network
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Architecture as given in [211] is presented in Figure 2.5.

Figure 2.5. Example of a Convolutional Neural Network Architecture [211].

The field of CNNs has seen significant advancements through the introduction of in-
fluential architectures and techniques. LeNet-5, proposed by LeCun et al. [210], played
a pivotal role in early CNN development, specifically for handwritten digit recognition.
AlexNet, introduced by Krizhevsky et al. [?], marked a breakthrough by winning the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, showcasing the power
of deep CNNs. VGGNet, proposed by Simonyan and Zisserman (2014) in [215], empha-
sized the importance of deeper networks by introducing a series of stacked convolutional
layers. GoogLeNet, introduced by Szegedy et al. (2015) [216], proposed the inception mod-
ule, enabling efficient network architectures with multiple paths. ResNet, presented by He et
al. (2016) in [217], introduced residual connections to address the challenge of training very
deep networks.

2.2 Perception Layer: Overview of Scientific Literature

2.2.1 Soil Humidity Sensing

Soil moisture plays a significant role in agricultural production and hydrological cycles, and
accurate prediction is crucial for the effective utilization and management of water resources
[218]. However, predicting soil moisture accurately is challenging due to its complex struc-
tural characteristics and the influence of meteorological factors [219]. Developing an ideal
mathematical model for soil moisture prediction is a difficult task. Existing prediction mod-
els face issues such as limited accuracy, generalization capability, and the ability to pro-
cess multiple features simultaneously, necessitating improvements in prediction performance
[218]. The dynamics of soil moisture, encompassing both its growth and regression, exert a
direct influence on the water consumption and growth of crops. It serves as a crucial indica-
tor for various aspects of agricultural production, including drought resistance, flood control
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[220, 221], and precision irrigation decisions [222, 223]. Accurate prediction of the tempo-
ral patterns of soil moisture regression is of paramount importance in effectively managing
agricultural water resources and fostering improvements in crop yields [218]. Wide variety
of battery-operated sensing devices already exist which are based on measuring the electri-
cal properties of the soil, while data is delivered through some wireless interface. Existing
wireless technologies have been either designed for high-throughput applications (e.g., 3G,
WiFi, LTE) with high power consumption or are characterized by low power consumption
(e.g., ZigBee, Bluetooth Low Energy) but limited in the achievable coverage area. Low
power wide area networks (LPWA), such as LoRa, Sigfox NB-IoT are emerging as the en-
abling wireless technology especially for the development of precision farming, flood moni-
toring [224], precision livestock farming and/or smart irrigation systems [225, 226]. LPWA
leverage the need for only intermittent or sporadic transmissions of small data packets, mak-
ing them suitable for battery-operated devices. Existing commercial sensors for irrigation
systems are quite expensive, while sensor lifetime can reach up to couple of years.

Application of machine learning techniques for agriculture use and specifically soil mois-
ture estimation and prediction have interested researches for over two decades. One such re-
search is presented in [227], where Soil moisture is estimated using remote sensing data from
Tropical Rainfall Measuring Mission Precipitation Radar (TRMMPR). The aim of the study
was the estimation of soil moisture content for the Lower Colorado River Basin area. The
authors developed Support Vector Machine (SVM), Artificial Neural Networks (ANN) and
multivariate linear regression (MLR) models for the estimation and showed that the SVM
model is better in capturing interrelation between soil moisture, backscatter and vegetation
in comparisons to the ANN and MLR models. Study presented in [228] investigated rela-
tionship between soil moisture, Precipitation-Evapotranspiration Index (SPEI) and climate
indices in Xiangjiang River basin. Incorporating the climate impact on drought, the Sup-
port Vector Regression SVR model is built to predict the SPEI from climate indices. The
results showed that the SVR model could improve prediction accuracy of drought in com-
parison to solely using the drought index as the only input parameter. In [229] authors used
precipitation, daytime and nighttime land surface temperature, potential evapotranspiration
(PET) estimated using mean temperature, the Normalized Difference Vegetation Index, the
Normalized Difference Water Index data combined with large-scale climate indices and long-
range forecast climatological data for drought forecasting in the area of South Korea. They
developed Decision trees (DT), Random forest (RF) and Extremely randomized trees (ERT)
models as both classification and regression models. Results show that the regression models
gave better performance in majority of cases. Soil moisture estimation from meteorological
data using SVR is given in [230]. The authors also compare the SVR model with ANN
to validate capabilities of the SVR model and conclude that SVR outperforms ANN in all
cases. A Deep Learning model for soil moisture estimation is presented in the study [231].
The authors use deep belief networks (DBN) to predict Soil moisture content form topo-
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graphic properties, environmental and meteorological data such as evapotranspiration, leaf
area index (LAI) and land surface temperature in the Zhangye oasis in Northwest China. A
novel macroscopic cellular automata (MCA) model by combining DBN is given and com-
pared with widely used neural network, multi-layer perceptron (MLP). The result show that
the DBN-MCA model led to a reduction in root mean square error by 18% in comparison
with the MLP model. The authors conclude that the MCA model is promising for modeling
the temporal and spatial variations of Soil Moisture content.

Review of Machine Learning dedicated to applications of machine learning in agricul-
tural production systems is presented in [232]. The authors emphasise key and unique fea-
tures of popular ML models and conclude that the ML models will be even more widespread
in the future providing production improvement. Generally, a variety of ML algorithms have
been exploited for agricultural purposes, such as [233], where soil moisture, crop biomass
and Leaf Area Index are estimated form X-band ground-based scatterometer measurements
using two variants of Radial basis function neural networks (RBFNN) algorithms, namely
conventional radial basis function neural network and generalized regression neural network
(GRNN). Results show that good performance was obtained from both networks in retriev-
ing soil moisture content. Furthermore, in [234] support vector regression (SVR) technique
was used and compared with multi layer perceptron neural network (MLP NN) algorithm
for soil moisture estimation using C-band scatterometer field measurements and considering
various combinations of the input features (i.e., different active and/or passive microwave
measurements acquired using various sensor frequencies, polarization, and acquisition ge-
ometries). The authors present a comparison of SVR model performance and the MLP NN
model and conclude that the SVR provides higher accuracy in prediction for the given data
sets and for all the input feature configurations. They imply that the SVR model has a better
generalization ability than the MLP NN model, i.e., the SVR model is more capable to learn
mapping that provides higher accuracy in the prediction of unknown real samples. Futhre-
more, in [235] Long Short-Term Memory (LSTM) has been applied to predict water depth
in agricultural Hetao Irrigation District in arid northwestern China using monthly water di-
version, evaporation, precipitation, temperature, and time as input data to predict water table
depth. The model was evaluated using RMSE and coefficient of determination R2. The
authors conclude that the proposed model is suitable for predicting water table depth and es-
pecially can be used in areas with complex hydro-geological characteristics. In [236] neural
networks, multiple regression, and fuzzy logic were used for spatial soil moisture retrieval
using active microwave data. The study area was located in Oklahoma, USA and models
sensitivity was estimated by measuring the change of RMSE when an input variable is added
(or deleted) from the models. The obtained results suggest that soil texture and vegetation
highly influence soil moisture retrieval. The authors conclude that the fuzzy logic and neural
network models out-preformed multiple regression in terms of validation. Table 2.1 gives a
short comparison of above mentioned researches regarding ML models for soil moisture and
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drought estimation and forecasting.
Soil moisture estimation from other measurements such as RSSI only recently started to

attract the research community. In [237] authors present a case study of how variations in
meteorological conditions with four selected meteorological factors, air temperature, abso-
lute air humidity, precipitation and sunlight influence IEEE 802.15.4 network based on six
months of sensor data. Amongst the obtained results, they conclude that temperature is the
most dominantly correlated with RSSI. Similarly, in [238] an impact of both air tempera-
ture and air humidity on performances of signal strength variations of 802.15.4 networks is
shown. The authors conclude that air temperature has a significant negative influence on
signal strength in general, while high relative air humidity may effect the signal on lower
temperatures.

Table 2.1. Comparison table of Machine Learning models and applications for Soil moisture
and drought estimation.

Paper Prediction model Application Best peformance model
A. Sajjad et al. [227] SVM, ANN, MLR Soil moisture estimation SVM
Y. Tian et al. [228] SVR, drought index Prediction of agricultural drought SVR
J. Rhee and J. Im [229] DT, RF, ERT (classification and regression models) Drought forecasting regression
M. Gill et al. [230] SVM, ANN Soil moisture prediction SVM
X-D.Song et al. [231] DBN, MLP Soil moisture content prediction DBN
R. Prasad et al. [233] RBFNN, GRNN Soil moisture estimation both
L. Pasolli [234] SVR, MLP NN Soil moisture estimation SVR
J. Zhang et al. [235] LSTM Water depth LSTM
T. Lakhankar et al. [236] neural networks, multiple regression, fuzzy logic Spatial soil moisture retrieval fuzzy logic, neural network

In [239], authors present a soil moisture monitoring system that uses UHF RFID tags
in order to provide a wireless and battery-less field sensor. The paper presents the con-
ceptual design of the system and provides experimental results showing that RSSI signal
correlates with soil moisture using ANN. Further on, Artificial Neural Network was used
for soil moisture prediction based on the RFID tag signal analyses giving coefficient of de-
termination R2 > 0.9 in majority of cases. However, since buried UHF RFID tags can be
only read from short distances (up to 50 cm), this work proposes a mobile robot that trav-
els across the field and navigates above the buried UHF RFID tags to collect RSSI data.
Such a solution is time consuming and challenging especially when a large number of RFID
sensors is scattered over a large and possibly uneven crop field, which requires a robot to
travel to every tag to collect RSSI data. In [240] authors propose a passive UHF RFID tags
sensors integrated with a monopole probe for soil moisture monitoring. Their experimental
results show that changes in soil permittivity cause changes in RSSI of the back-scattered
signal. Therefore, we conclude that further exploration of Received Signal Strength in the
context of soil moisture estimation in required, especially for the purpose of reducing size,
cost and battery efficiency of sensor device. With regards to LoRa based systems, research
community has recently began to research the potential of correlating RSSI changes in LoRa
signal with specific environmental changes. In study presented in [241] a publicly available
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dataset of LoRaWAN RSSI measurements is utilized to compare different machine learn-
ing methods for fingerprinting localization. The authors present the k-Nearest Neighbours
(kNN) method, the Extra Trees method and a neural network approach using a Multi-layer
Perceptron. They conclude that the MLP performs best achieving highest accuracy. In [242],
the authors present results of signal strenght measurements and simulations based on Wire-
less InSite radio propagation software and imply that parking occupancy can be estimated
by detecting the change in RSSI at the receiver side. With regards to soil moisture and
its correlation to RSSI researches, [243, 244] show existence of correlation between RSSI
signals from LoRa-based devices and soil moisture, for sensors and gateways buried fully
into the ground. In [244] authors present design and experimental validation of the devel-
oped Soil Moisture Sensing System (SoMoS) based on a Software Defined Radio (SDR)
approach using LoRa in the laboratory. The system showed valid behavior and is able to
detect soil moisture via the radio field. Furthermore, authors in [243] have done a long term
evaluation of the previously proposed SoMoS system showing a high correlation between
measured Receive Signal Strength Indicator and precipitation events. Table 2.2 compares
the above mentioned papers and this paper in terms of used radio technology for variety of
applications.

Table 2.2. Comparison table of various radio technologies and applications based on signal
strength variations.

RSSI values mapped with
Paper Radio technology Application ML model Best performance model specific soil moisture values
Aroca et al. [239] UHF RFID (short range) soil moisture prediction ANN ANN YES (MSE=0.00152)
Hasan et al. [240] UHF RFID (short range) soil permitivity none none NO
Anagnostopoulos et al. [241] LoRa (long range) localization kNN, Extra Trees, MLP MLP /
Solic et al. [242] LoRa (long range) parking space occupancy none none /
Wennerström et al. [237] 802.15.4 (short range) change of meterological factors none none NO
Luomala et al. [238] 802.15.4 (short range) air temperature and air humidity none none NO
Liedmann et al. [244] LoRa (long range) soil moisture estimation none none NO
Liedmann et al. [243] LoRa (long range) soil moisture estimation none none NO

In the context of soil humidity estimation, employing LoRa technology in combination
with Machine Learning techniques offers several advantages. LoRa’s long-range capabili-
ties enable devices to communicate over extended distances, reaching up to 10 km. This
surpasses the communication range of other technologies such as UHF RFID and 802.15.4
radio technology. The extended communication range of LoRa allows for the deployment of
underground beacons distributed across large crop fields, while utilizing a single overground
gateway device for data collection. This setup could enable simultaneous gathering of sig-
nal strength measurements from multiple beacons, providing a comprehensive view of soil
conditions across the entire field. By harnessing Machine Learning techniques, the collected
signal strength data can be analyzed to extract meaningful insights. Through the training of
Machine Learning models, we can establish relationships between the signal strength mea-
surements and corresponding soil humidity levels. These models can then be utilized to
predict soil humidity based on future signal strength measurements.

100



Chapter 2: SATE OF THE ART

2.2.2 Smart Parking Solutions

In the age of the Internet of Things and Smart City ecosystems, Smart Parking solutions have
gained prominence due to their ability to optimize time, reduce fuel consumption, and lower
carbon emissions [245]. With a defined architecture comprising sensors, communication
protocols, and software solutions, smart parking addresses the challenge of parking space
and management in congested cities. The increasing number of vehicles and limited parking
spaces result in congestion, driver frustration, and environmental pollution. For instance, in
New York, drivers spend an average of 107 hours per year searching for parking spots, lead-
ing to increased emissions and fuel consumption [13]. Addressing these challenges through
effective and sustainable smart parking solutions is a significant endeavor.

Diverse research efforts have been done that focus on enhancing parking space detection
and predicting future occupancy for optimal utilization. It particularly solutions extensively
investigate and test the three key components of Smart Parking Solutions: sensor types,
communication protocols, and the utilization of Machine Learning techniques.

An IoT based smart parking system presented in research [246] exhibits a solution that
provides parking lot occupancy information, parking slot reservation and payments using a
mobile app. The solution is based on the Passive Infrared and Ultrasonic Sensors to sense
parking slot availability where information is send using Wi-Fi and a raspberry pi acts as
an intermediate between the sensors and cloud allowing communication with the cloud to
process collected data. Finally, the mobile application serves as an interaction interface
between the end user and the system.

In [247], the authors designed a prototype of a parking occupancy monitoring and visu-
alization system that uses an ultrasonic sensor being controlled by an Arduino Uno which
uses a Wireless XBee shield and an XBee Series 2 module for communication. The data
collected from the sensor is then given as an input to a algorithm that detects parking space
statues and reports to a database in a real-time basis.

Research presented in [248] describes a system based on ultrasonic sensors for detection
of parking spaces. Information about occupancy is then sent via Zigbee protocol to an infor-
mation center, where as a Bluetooth station is employed to identify a user within the parking
lot. By employing a proposed “Shortest path search algorithm”, the user will be able to find
the swiftest ways to a free parking space. All the collected data is onwards sent via Wi-Fi to
a parking a management menu.

In [249], the authors used a light detection and ranging optical sensor in order to measure
the distance between a car and an object next to it. They have combined this sensor with
a GPS receiver to determine the speed of a vehicle in a particular pair of geographic coor-
dinates and a web camera to track tests. The information were then sent to a Raspberry Pi
connected to the cloud via LTE-IEEE 802.11p protocol for further data processing and anal-
yses. Parking situations were estimated by applying machine learning (not explicit which
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one) obtaining accuracy above 95%.
Research that was conducted in [250] uses video camera sensors for detecting multiple

parking space occupancy. Using image processing techniques: the Histogram of oriented
Gradient (HOG) descriptor, the Scale-invariant feature transform (SIFT) corner detector, and
Metrics on Color Spaces YUV, HSV, and YCrCb authors achieved an accuracy rate of over
93% for parking lot occupancy detection.

Employment of RFID sensors in a smart parking scenario has been explored in [251].
The solution is based on RFID readers, passive RFID tags, barriers, retractable bollards,
Wi-Fi spots and a database. Readers are placed at the entrance and exit of the parking area
allowing entrance to cars that have RFID tags, where the parking space is assigned with the
same identification number as the passive RFID tag. This way, information about parking
occupation is collected at the entrance along with the time of occupancy as well as exit time.
Gathered data is sent through Wi-Fi to a cloud server that saves it in a database for future
study. The main novelty of the proposed solution is the adoption of RFID tag-to-tag com-
munication, which can support a more energy-efficient collection of information from the
RFID tags compared to the conventional direct type of communication. Research presented
in [92] demonstrates a proof-of-concept of a smart parking solution based on Ultra-High
Frequency (UHF) RFID and WSN technologies. The infrastructure of the system consists
of Zigbee network, Smart Gateway (SG), Central Server (CS) and two different mobile ap-
plications, named Parking App and Policeman App, designed for vehicle drivers and traffic
cops, respectively. The information about occupancy is collected using RFID tags, where
CS receives the information about occupancy if an appropriate RFID tag has been read by
the reader that is placed on poles located near the reserved parking spaces. The system on-
wards directs the drivers to the nearest empty parking space by using a customized software
application.

A novel vehicle detection sensor design based on a dual microwave Doppler radar
transceiver modules is presented in [252]. By employing a motion recognition algorithm
for vehicle behavior identification and parking occupancy detection, the proposed sensor is
able to detected the vehicle movement clearly with the parking space occupancy detection
accuracy higher than 98%. Research elaborated in [253] provided a radar based real-time
algorithm, which detects, classifies, and evaluates parking spaces in a vehicle’s immedi-
ate vicinity. Their approach processed data obtained from radar in a form of a particularly
designed target list of 2D vectors. Using this method, computation burden was decreased
and quantization errors were evaded. Experimental results show that more than 95% of all
parking spaces were classified correctly in several test drives, indicating that the proposed
algorithm is suited for both parallel and perpendicular parking spaces in urban scenarios.

Recently, an extensive research elaborated in [254] presented an IoT-driven vehicle detec-
tion method by combining the data feature of magnetic signals with that of Ultra-wideband
(UWB) radio channels aiming to improve wireless vehicle detectors that are based based on
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the IoT technology and magnetic sensor. The proposed method obtains vehicle detection by
examining the length of the propagation path and signature of the channel impulse response
with respect to the vehicles, which can be obtained from UWB modules. The experimental
results indicate that the sensor can achieve a detection accuracy of 98.81% when the sam-
pling rate of the magnetic sensor is 1 Hz. Research presented in [255] provides a comparison
between inductive loop and magnetic sensors for vehicle detection that can be employed for
traffic or parking systems. The overall measurements provided good comparison results be-
tween the two technologies and when considering all the values gathered, the inductive loop
detector reported a total of 13,713 vehicles, while the magnetic sensor reported 13,407 ve-
hicles, resulting in an overall detection difference of 306 vehicles (2,28%). Furthermore, a
street parking system proposed in [256], employs a magnetic sensor node on the space to
monitor the state of every parking space. Authors of the study propose a vehicle detection
algorithm based on the magnetic signal along with a an adaptive sampling mechanism to
reduce energy consumption. Evaluation of the system was preformed on a street parking
spaces where eighty-two sensor nodes were implemented and collected the data for over a
year. Their results indicate a vehicle detection accuracy of over 98% and the lifetime of the
sensor node of more than 5 years with a pair of 2500mAh Li batteries.

Implementation of an acoustic senors parking space surveillance system is exhibited
in [257]. Authors elaborate on the design, implementation, and evaluation of the system
equipped with low-cost microphones that are able to localize acoustic events. The system is
constituted out of the Acoustic Source Localization (ASL) system, the surveillance camera
system, and the server system. One an a acoustic event occurs, the ASL sends estimated
position of the acoustic event to the server, which than displays the estimated position on
the map and sounds an alarm. The camera surveillance system than rearranges the cameras
pointing to the estimated position to capture the event scene and onward performs motion
detection to locate a more precise position. The data is transmitted over 802.15.4 wireless
network protocol. The proposed system can efficiently supervises a large parking lot of 100
vehicles using only a dozen sensor nodes. Feasibility of the system was validated in a real
parking lot, where experimental results show that detection rate in the region with the alarm
using a camera is 94.29%.

Research presented in [258] proposes a smart parking solution based on the advantages of
NB-IoT technology. The system is comprised of the sensor node made geomagnetic vehicle
detectors , smart parking cloud server, application for mobile device and the third-party
payment platform. The cloud server implements basic information management, charge
management, sensor node surveillance, task management and business intelligence modules.
The proposed system has already been deployed two cities in Zhejiang province,China. The
author however, do not discuss the accuracy of detection of the proposed system.

Rather recently, authors in [259] presented an smart parking system based on ultrasonic
sensors and the received signal strength indicator (RSSI) in Bluetooth communication. Park-
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ing occupancy is determined by using sensor motes located in the parking spaces whereas
the parked vehicle location is based on the BLE communication between the user’s smart-
phone and the sensor motes. What is more, the authors have done RSSI transformation into a
distance range using triangulation in order to improve the location awareness for users. Sys-
tem was further evaluated by employing the sensor motes for the ultrasonic sensor and the
BLE modules in parking spaces. Experimental results confirmed that the ultrasonic sensors
successfully detected the available parking spaces with the 83% accuracy. A similar idea
was explored in work presented in [260]. Authors present a smart parking solution for both
indoor an outdoor parking areas that is based Bluetooth low energy beacons and which uses
particle filtering to improve its accuracy with the goal to develop a smartphone application
for parking users enable them to securely and easily find and pay for parking, while also
providing management capabilities for the parking facility owners. The system builds an
RSSI path loss model for the desired parking region and further implements the RSSI-based
distance estimation on the smartphone. Based on the experimental results, the solution has
achieved accuracy ranging from 87% to 100% for outdoor and 74% to 100% accuracy in
indoor parking availability estimation.

Employment of LoRa technology for smart parking solution was examined in research
[202]. Authors propose a smart vehicle parking system architecture is made out of four lay-
ers: sensor nodes, edge gateway, LoRa gateway and Cloud and provide a proof-of-concept
with a specific realization. Employed senors were accelerometer, magnetometer and tem-
perature, humidity and barometric pressure sensor for weather conditions. Sensor data is
sent over to the edge layer before transmitting it to the cloud layer, and consequently to the
end users. The LoRa gateway layer provided communication to ensure robust connection
between the edge and cloud layers. The authors examined the latest LoRa and nRF com-
munication technology to effectively increase the energy-efficiency and coverage area. They
also propose a dynamic pricing algorithm for maximizing profit for the parking manage-
ment authorities. Although the presented system is energy-efficient, secure, and provides
a multi-parametric data about the parking slots the authors do not discuss the accuracy of
detection.

In the last decade, a number of solutions aiming at predicting the occupancy in the future
have emerged with the goal of simplifying the search of free parking spaces. These solu-
tions are based on Machine Learning techniques that involve learning, predicting, and the
exploiting of cloud based architectures for data storage [261]. Generally, data regarding oc-
cupancy are the history of occupancy for a parking lot, containing date-time information with
a specific occupancy status. For instance, in the work [262], while using ML, the authors
present two smart car parking scenarios based on real-time car parking information that has
been collected from sensors in the City of San Francisco, USA, and the City of Melbourne,
Australia. The historic data contained features, like area name, street name, side of street,
street marker, arrival time, departure time, duration of parking events (in seconds), sign, in
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violation, street ID, and device ID. From these data, the occupancy rate was calculated. The
evaluation revealed that the Regression Tree, when compared to NN and SVR, using a fea-
ture set that includes the history of the occupancy rates along with the time and the day of
the week performed best for prediction of a free parking space on both the data sets. More-
over, in research [261], the authors applied a Recurrent Neural Network-based approach for
the prediction of the number of free parking spaces. They have used parking data of Birm-
ingham, U.K., which contained the parking occupancy rate for each parking area given the
time and date. They achieved the median of mean absolute error of 0.077 for prediction of
occupancy. The results show that the approach used is accurate to the point of being useful
for being utilized in Smart Parking solutions. In [263], the authors discuss the problem of
predicting the number of available parking spaces in a parking lot by regarding the vehicle’s
arrival as a Poisson distribution process. They model the parking lot as a continuous-time
Markov chain. With the predicted occupancy status, each parking lot can provide availability
information to the drivers via vehicular networks.

Research presented in [264] proposes an urban smart parking management platform
based on the NB-IoT and wireless sensor network. The presented solution employees au-
tomatic license plate recognition (LPR) device to obtain images from the video stream and
determine the license plate information whereas the vehicle location within the parking space
is acquired by geomagnetic sensors. The employed image recognition algorithm for LPR is
the Back Propagation (BP) Neural Network Algorithm. In the overall architecture of the
system a personal digital adaptor (PDA)/mobile app acts as the management tool, and the
NB-IoT wireless communication is used for data transmission. The authors elaborate and
compare power consumption of NB-IoT with that of Zigbee to verify the performance of
the proposed platform, concluding that the NB-IoT consumed less energy than Zigbee, in-
dicating that the technique is cheaper to maintain, considering the long-term maintenance
cost. The authors do not comment or discuss the system performance in terms of accuracy
of detection of a free parking space.

A recent study exhibited in [265] attempted to realize a low-cost smart parking system
utilizing several BLE beacon devices, a smartphone owned by a pedestrian/driver, a gate-
way, and a server. The idea is that a pedestrian’s smartphone measures the received signal
strength when it receives radio waves transmitted from the beacon device, and then estimates
its own position in the parking lot by inputting the time series data to a learning model of
the machine learning based on deep learning . Once the server gets the status of each slot in
the parking space from the gateway, it would provide a driver outside the parking lot infor-
mation about parking availability. What is more, the server has a function of constructing a
new learning model based on the measurement results of the smartphones, and applying the
updated learning model to the smartphones. The authors utilized Deep Neural Networks and
Convolutional Neural Network ( as deep learning approaches for parking occupancy estima-
tion. Experimental results show that DNN obtained 98% accuracy in parking slot estimation
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in contrast to CCN that had 99% estimation accuracy. What is more, estimation accuracy
of the pedestrian’s position is around 70% and the system is able to position of vehicles /
pedestrians and to send the estimation results in the parking lot in less than 0.1 seconds. A
similar idea of employment BLE beacon devices (a mesh network topology) and localization
technique based on radio fingerprinting was presented in research [266]. Author propose a
smart parking solution in which nodes listen for broadcasts of RSSI values from a custom
beacon placed in every vehicle that parks in the lot. The RSSI values are then validated,
encrypted, and sent back to a designated central node where space prediction occurs using
ML; namely Decision Tree, Random Forest, Naive Bayes, Support Vector Machines and k-
Nearest Neighbors were employed. Experimental results indicate prediction model obtains
a high accuracy using radio training data (90.7% correctly identified) where the evaluation
shows a promising result of 69.17% accuracy up to and including 3 spaces away), even
without employing tuning and data filtering techniques for the RF classifier.

Two possible solutions for a smart parking deployment are presented in a research ex-
hibited in [267]. Authors propose a design of an adaptable and affordable smart parking
system using distributed cameras, LIDAR sensors edge computing, data analyses, and uti-
lization of advanced deep learning algorithms. One solution would use a network of cameras
as a sensing technique and the other network of LIDAR sensors, where the data is sent for
further processing via Wi-Fi mesh technology. Both solution utilize three types of Neural
Networks, namely Standard AlexNet, AlexNet with two convolution and a custom designed
network model with one convolution layer. Their results show that camera model obtained
99.8584 % accuracy of detection of empty parking spots, wheras for the LIDAR model result
vary depending of the spot from 30% to up to 93% of accuracy.

Moreover, in [268], the authors presented a novel system for detecting the cruising behav-
ior in vehicle journeys and developed a real-time parking information system. The system
uses GPS sensors as an application that sends the user’s location and allows for the system to
create a heat map with the acquired information showing free and unavailable parking lots.
The proposed method relies on the principle of detecting a significant local minimum in the
GPS trace with respect to the distance from the destination. In addition to GPS data, other
sensing data from the driver’s smartphone, such as accelerometer, gyroscope, and magne-
tometer, were also collected. Classification using Decision Trees, Support Vector Machines
and k-Nearest Neighbors is used to detect cruising behavior. The system then automatically
annotates parking availability on road segments based on the classified data and displays
this information as a heat-map of parking availability information on the user’s smartphone.
Using this approach, the researches were able to detect cruising on average 81% of the time.

The work presented in [269] investigates the changing characteristics of short-term avail-
able parking spaces. The availability data were collected from parking in several off-street
parking garages in Newcastle. This forecasting model is based on the Wavelet Neural Net-
work (WNN) method and it is compared with the largest Lyapunov exponents (LEs) method
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in the aspects of accuracy, efficiency, and robustness. They conclude that WNN gives a more
accurate short-term forecasting prediction with a average mean square error (MSE) is 6.4 ±
3.1.

More recently, the authors in [270] presented a framework that is based on LSTM in
order to predict the availability of parking space with the integration of Internet of Things.
They have also used the previously mentioned Birmingham parking sensors data set for per-
formance evaluation of free parking space prediction that is based on location, days of a
week, and working hours of a day. The authors show that, from all performance measure-
ment parameters, the minimum prediction accuracy is 93.2% and maximum prediction ac-
curacy is 99.8% . They present the experimental results that show that their proposed model
outperforms the state-of-the-art prediction models. Finally, they point to some limitations of
the study regarding the decision support system: it predicts the availability of parking lots
only considering the parking occupancy information.

Recent works of researches incorporated Markov models for parking space occupancy
predictions. For instance, in [271], the authors propose a model-based framework in order
to predict future occupancy from historical occupancy data. The foundation of this predic-
tive framework is continuous-time Markov queuing model, which is employed to describe
the stochastic occupancy change of a parking facility. The model was evaluated while us-
ing a mean absolute relative error (MARE), ranging from 5.23% to 1.86% for different case
studies. Furthermore, in [272], an agent-based service combined with a learning and predic-
tion system that uses a time varying Markov chain to predict parking availability is proposed.
Agents predict the parking availability in a given parking garage and communicate with other
agents in order to produce a cumulative prediction achieving prediction accuracy of about
83%.

Neural Networks have also been used for in prediction of future occupation of parking
space such as in [273, 274]. Researches in [273] have exploited the data concerning the
availability of a free parking state depending on the duration of a particular occupancy sta-
tus. Therefore, they have deployed a long term and short term occupancy prediction system
based on neural network that achieves good performance with only a 0.004 Mean Absolute
Error. They concluded that temporal changes of parking occupancy status was appropriately
encompassed by the NN model that can provide an rather precise occupancy prediction up
to thirty minutes ahead.

Authors in [274] have utilized a DL neural network for classification of a free parking
space. Their model is based on images of a parking lot and it achieves a exceptionally good
classification with 93% accurately classified occupancy status for a particular data set. Work
presented in [275] proposed an occupancy prediction model using a deep neural network
model which includes various data sources such as weather conditions, traffic conditions as
well as parking meter transactions. Using Graph-Convolutional Neural Networks (GCNN)
model is able to extract the spatial relations of traffic flow in large-scale networks and further
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captures the temporal features by applying Recurrent Neural Networks along with Long-
Short Term Memory. Evaluation of the model’s performance was done on a case study for
the downtown area in Pittsburgh and it achieved mean absolute percentage error (MAPE) of
10.6% when predicting block-level parking occupancy half an hour in advance.

Researches in [269] have explored the altering properties of parking spaces that available
for a short-term period. Data about occupancy in a particular period have been collected in a
couple of Newcastle off-street parking garages. A model has been designed based on Wavelet
Neural Networks (WNN) and it provides a short- term predictions of occupancy. The pro-
posed model was evaluated in the terms of efficiency, accuracy and robustness and compared
with the largest Lyapunov exponents (LEs) method. They conclude that WNN gives a more
accurate prediction achieving an average mean square error of 6.4 ± 3.1. More recently, au-
thors in [276] have explored the use of deep convolutional neural networks, namely ResNet,
based on the two different data sets containing parking lot images. The have been able to
obtain an high accuracy rate raining from 97,36% up to 99,82% for the test set and have
optimized the increase of the learning error that occurs when the network becomes deeper
thus providing swifter training. Research presented in [277] depicts a parking space occu-
pancy monitoring software solution based on video and image processing and interpretation
methods. Authors have employed five different models for classification, namely Logis-
tic Regression, Radial Basis Function Support Vector Machine, Linear Support Vector Ma-
chine, Decision Tree and Random Forest. Based on classifier comparison Logistic regression
achieved highest classification score of 93.5% out-preforming other classifiers.

Authors in [278] have carried out a study that utilizes several future parking occupancy
prediction models such as Multi-Layer Perceptron, k-Nearest Neighbour, Random Forest,
Linear Regression and KStar (instance-based model) for the campus location Charles Sturt
University (CSU), Australia. The algorithms are based on car park occupancy data collected
for a period of five weeks. They have done a performance comparison for all of the algo-
rithms based on the the simple mean as criterion of good performance. Authors conclude
that although majority of algorithms provide rather precise prediction in stable conditions,
for highly variable conditions the KStar has achieved the best results.

Work presented in [279] explored a concept of using the smartphone’s sensors readings
such as sound, pressure levels and luminosity to obtain the information about the users trans-
portation mode. By using the pervasive Wi-Fi and cellular infrastructure they were able to
automatically detect users which are going out from a parking spot. Researches have utilized
the Random Forrest algorithm to classify sensor readings, in real time, and determine which
form of the most frequent transportation modes used in city areas the user is applying (for ex-
ample walking, bus driving, car riding, cycling, train riding etc.) Evaluation was carried out
on 7 smartphones and 3 different cities showing an accuracy of over 95% in transportation
mode classification and in return-to-vehicle scenarios.

Rather recently, researchers in [280] have proposed a parking space detection system that
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uses parking lot images captured under different weather conditions as input and detects the
empty slots in a particular images. They have employed combination of canny edge detec-
tion as well as LUV based colour variation detection methods to accurately derive the edges
for each parking slot. Over a 942 images showing 37,680 parking spaces were used and
Random Forest classifier has been utilized achieving accuracy of 98.31% compared to the
existing methods. Authors point out to RF’s good ability to solve the over-fitting problem
with regards to training data and conclude this to be the reason of its accuracy. Not long
ago, work presented in [281] provided a comparative analysis of Multilayer Perceptron, k-
NN, Random Forest, Decision Tree, and Voting Classifier for the prediction of parking space
availability. Data set used for the analysis was obtained by collecting the measurements of
sensors deployed in city of Santander, Spain and it contained information about parking spot
ID, day of the week, parking duration and status. Algorithms were evaluated in terms us-
ing K-fold cross-validation and numerical results obtained for Accuracy, Precision, Recall
and F1-score. Authors conclude that the simpler algorithms such as DT, KNN and RF out-
perform more complex algorithms like Multilayer Perceptron, achieving higher prediction
accuracy, giving better information about the prediction of parking space occupancy that can
be compared.

The literature reviewed reveals important insights into current smart parking solutions.
Many studies focus on implementing sensor and communication technologies for obtaining
and sharing information about parking space occupancy. Some researches achieve high de-
tection rates without employing machine learning techniques, while others utilize machine
learning, particularly Neural Networks, for accurate prediction and classification of parking
availability. Additionally, certain studies emphasize the performance of sensor technology
alone, while others concentrate on historical data analysis for predicting parking occupancy.
Overall, the literature highlights the significance of Neural Networks in achieving accurate
results in parking prediction and classification.

Amongst 41 overall examined researches for Smart Parking solutions, only 8 exhibited
all three components of the technological architecture for Smart Parking solutions exam-
ined within this paper. Table 2.3 gives a comparison of identified researches regarding the
technological architecture of these existing Smart Parking solutions and the concept that is
presented in this paper. Within this comparison only researches that have incorporated all
three components of the technological architecture for Smart Parking solutions have been
considered since only such solutions can be considered equivalent for comparison.
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Table 2.3. Comparison table of various sensing technologies and it applications in Smart
Parking.

Paper
Sensing Device

(Network
Protocol)

Data Type Application ML Model Detection Rate

Ebuchi and
Yamamoto[265]

BLE beacon and
smarphone(BLE)

RSSI
parking

occupancy
detection

DNN, CNN 98%, 99%

Seymer et al.[266] BLE beacon RSSI
parking

occupancy
detection

DT,RF, Naive
Bayes, SVM,

k-NN
69.17%-90.7%

Bura et al.[267]
camera, LIDAR

(Wi-Fi mesh)
images, distance

parking
occupancy
detection

NN 30%-99.8%

Vlahogianni et
al. [273]

ferromagnetic
parking sensor

(802.15.4)

occupancy
history

parking
occupancy
prediction

NN 0.004 MAE

Farag et al. [274] camera
parking spaces

images

parking
occupancy

classification
NN

93%
classification rate

Jones et al. [268] GPS sensors location data
detection of

cruising
behaviour

DT, SVM, k-NN
81% detection

accuracy

Hiesmair et al. [249]
LIDAR(LTE-

IEEE 802.11p),
GPS

distance, speed
estimation of

parking situation
NN, DT, k-NN,

SVM
95% accuracy

Krieg et al.[279]
smartphone

sensor (Wi-Fi)

sound, pressure
levels and
luminosity

users
transportation

mode
RF 95%

As can be seen from the table, there is an overwhelming dominance of short range tech-
nologies which will be further discussed. Data type used for building the Machine Learning
models vary depending on the sensor technologies, which indicates that on a base level, the
sensing technology greatly influences the choice of an appropriate Machine Learning model
that is further utilized. What is more, the researches report on extremely high accuracy of
detection/ prediction of availability of finding a free parking space when ML algorithms are
adequately applied. It can also be noticed that traditional classifiers like k- NN or RF are
able to compete with deep learning approaches like DNN or CNN.

Second major observation obtained from research of literature is the immense dominance
of short-range communication technologies. Only researches presented in [258, 202, 264]
have reported to have examined the long-range technologies, which is only 7% of all papers
considered in this research. This trend has already been confirmed in a rater recent review
of literature presented in [245], that has has elaborated than only 10% of researched papers
employed long-range commutation technologies. What is more, amongst these non have
employed Sigfox technology within their research. This is rather unusual, since it has been
reported by [282, 283] that Libelium 1, a WSN platform provider, has used both LoRaWAN
and Sigfox in their Plug & Sense platform, which uses magnetic sensors to detect vehicles

1Libelium: https://www.libelium.com/iot-products/smart-parking/, (accessed on 8 October
2021)
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in parking spots for commercial purposes. Author in [283] claim that Lora has not yet
been popular within smart parking solutions, whereas SigFox has been highly commercially
employed in large cities like Moscow and Barcelona, but not explored for scientific purposes.

Thirdly, only some studies have elaborated the cost and energy efficiency of the proposed
solutions in general, like the ones presented in [256, 264]. This a rather small percent of re-
search, and such aspects should be examined more. An appropriate solution must consider
all technological aspects of a system in terms of accuracy, cost and energy savings. One such
good approach was presented in [284], in which the authors have discussed state-of-the-art by
a systematic in-depth overview of technologies used for the smart parking detection realiza-
tion consuming mW of power. The researchers have conducted a real-scenario performances
and power consumption of most popular sensor devices and LoRa, Sigfox and NB-IoT com-
munication technology. Based on their results, lowest consumption is for LoRa devices.
They have also conducted an analysis of power consumption of commercial LPWA-based
Smart parking sensor device along with battery estimation lifetime.

To conclude, there is a need for comprehensive analyses of parking occupancy sensor
accuracy and reliability through benchmarking experiments. The choice of sensor technolo-
gies significantly impacts communication and machine learning deployment in smart park-
ing solutions. Further research is required to explore the performance and cost-effectiveness
of long-range communication technologies. Moreover, Machine Learning implementation
should focus on achieving high detection accuracy while reducing the cost and power con-
sumption associated with multiple sensors and communication peripherals. Alternative so-
lutions based on machine learning can offer cost-effective and accurate detection without the
need for complex hardware configurations.

2.3 Network Layer: Overview of Scientific Literature

The use of RFID technology drives numerous applications in the Internet of Things. How-
ever, the high production cost and short service lifetime due to periodic battery replacement
pose challenges. To address these issues, it is crucial to focus on energy efficiency in RFID
systems [285, 286, 287]. By accurately tracking information such as expiry dates and item
leakage, RFID technology contributes to waste reduction and energy conservation in vari-
ous operations, including monitoring, packaging, and refrigeration. This, in turn, facilitates
the wider deployment of RFID systems [288]. As the integration of RFID into IoT systems
progresses, the traditional fixed reader format is no longer the sole option. Mobile readers
and battery-powered wireless sensor nodes are becoming viable reader devices. Therefore,
energy efficiency becomes a vital metric for evaluating the overall performance of RFID
systems [285, 286, 287]. An energy-efficient RFID protocol plays a significant role in pro-
longing the operating lifetimes of readers and, if applicable, active tags, thereby supporting
the growth of environmentally friendly RFID technology and its envisioned applications.
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Achieving energy efficiency requires the adoption of an energy-efficient anti-collision algo-
rithm by the reader, which optimizes tag cardinality estimation, adaptively modulates trans-
mission power levels, and reduces tag collision and eavesdropping [287] .

Over the past few years, various methods and approaches have been employed for tag
estimation. In [289], Vogt presented a method based on Minimum Squared Error (MSE) es-
timation by minimizing the Euclidean norm of the vector difference between the actual frame
statistics and their expected values. The number of empty, successful, and collision slots is
taken into account. However, the predicted values are calculated under the assumption that
the tags in each slot have independent binomial distributions, which leads to unreliable find-
ings. In the research presented by Chen in [102] the authors apply probabilistic modeling of
the tag distribution within the frame, which they consider to be a multinomial distribution.
By doing so, they obtain the tag number estimation. For each slot, binomial distributions
provide occupancy information, however, it does not consider the fact that the number of
tags in the interrogation area is limited [290]. An improvement of the previous model was
given by research in [291], although this improvement tends to have a high computational
cost of implementation for genuine RFID systems [290]. Furthermore, a study presented
in [292] offered a unique tag number estimation scheme termed ‘Scalable Minimum Mean
Square Error (sMMSE) which enhanced accuracy and reduced estimation time. The effi-
cient modification of the frame size is derived from two principal parameters: the first one
puts a limit on the slot occupancy whereupon frame size needs to be expanded, and the
second determines the frame size expansion factor. In the research presented in [293], au-
thors provided an in-depth analysis of some of the most relevant anti-collision algorithms
taking into account the limitations imposed by EPCglobal Class-1 Gen-2 for passive RFID
systems. The study classified and compared some of the most important algorithms and op-
timal frame length selection. Based on their research results, the authors point out that the
maximum-likelihood algorithms achieve the best performance, in terms of mean identifica-
tion delay. Finally, researchers conclude that the algorithm performance also depends on the
computation time for estimating the number of tags.

A study presented in [294] introduced a new MFML-DFSA anticollision protocol. In
order to increase the accuracy of the estimate, it uses a maximum-likelihood estimator that
makes use of statistical data from many frames (multiframe estimation). The algorithm
chooses the ideal frame length for the following reading frame based on the anticipated num-
ber of tags, taking into account the limitations of the EPCglobal Class-1 Gen-2 standard. The
MFML-DFSA algorithm outperforms earlier suggestions in terms of average identification
time and computing cost (which is lower), making it appropriate for use in commercial RFID
readers. Rather novel research given in [295], proposes an RFID tag anti-collision method
that applies adjustable frame length modification. The original tag number is estimated based
on the initial assumption that the number of tags identified in the first frame are known. The
authors present a nonlinear transcendental equation-based DFSA (NTEBD) algorithm and
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compare it to the ALOHA algorithm demonstrating the error rate for experimental results
to be less than 5% and improved tag identification throughput by 50%. Authors in [296]
present an extension for an anti-collision estimator based on a binomial distribution. They
have constructed a simulation module to examine estimator performance in diverse scenar-
ios and have shown that the proposed extension has enhanced performance in comparison to
other estimators, no matter if the number of tags is 1000 or 10 000.

As can be observed, previously mentioned algorithms tend to have high computational
costs, since they are commonly funded by calculating probabilities. This might present an
issue for standard microprocessors that are not adjusted to perform computations of factorials
that produce large numbers. To solve the issue, a diverse method for tag estimation has been
introduced by researchers in [95], namely the Improved Linearized Combinatorial model.
Their approach bypasses the conditional probability calculations by doing them in advance.
Onward, the estimation model is uncomplicated and provides an effective tag estimation n̂

based on linear interpolation. The results obtained by the authors have indicated that the
ILCM shows a comparable behavior to state of art algorithms regarding the identification
delay (slots), but is not computationally complex. Extension of their study was done in [113]
by presenting a C-MAP anti-collision algorithm for RFID system which has lower memory
demands.

Novel research, like the one presented in [297] present a comprehensive review and anal-
ysis of tag identification protocols in UHF RFID systems, focusing on the aspects of time
and energy consumption.The authors examine prior works in the field and propose a novel
DFSA-based algorithm called TES-FAS for EPC C1 Gen2, which employs low-cost cardi-
nality estimation using look-up tables and adaptive frame configuration based on different
parameters. The algorithm incorporates a slot-by-slot mechanism within a sub-frame ob-
servation phase, allowing for fine-grained frame size adjustment and improved efficiency.
The TES-FAS algorithm improves reading performance without requiring modifications to
the hardware. Simulation results highlight the enhanced slot efficiency, time efficiency, and
energy efficiency achieved by TES-FAS compared to prior approaches. Additionally, the
researches have developed a prototype RFID system, and experimental results indicate that
TES-FAS outperforms commercial solutions, improving the average identification rate by
22.4% and 28.9% in different scenarios. These promising outcomes establish TES-FAS as a
viable option for commercial and industrial RFID systems.

Paper given in [298] presents a novel approach to decrease the average time required to
receive the Electronic Product Code (EPC) and read a sensor data packet from a tag in UHF
RFID systems. The proposed approach, called Fuzzy Frame Slotted Aloha (FFSA) proto-
col, outperforms existing DFSA strategies compliant with the current standard, resulting in
improved efficiency. Authors imply that the FFSA protocol that meets the requirements of
the EPC C1G2 standard and can be easily implemented using existing RFID technology in-
frastructure. They present the development of a frame update policy and FFSA protocol that
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significantly reduce the time for the reader to receive sensor data packets. Furthermore, they
utilize the Mean Minimum Square Error estimator to calculate the frame size in FFSA, lead-
ing to improved performance compared to existing anti-collision protocols. FFSA conforms
to the UHF RFID standard, allowing it to recognize commercial sensor tags, particularly
in scenarios where low sensor data read time is essential. Through extensive experimenta-
tion, this paper demonstrates the superiority of FFSA over current anti-collision protocols,
highlighting its potential for enhancing the performance of UHF RFID systems with varying
numbers of sensor tags.

In research presented in [299] authors introduce a novel cross-layer anti-collision algo-
rithm for slotted ALOHA-based UHF RFID systems. The proposed algorithm, called Cross
Layer Anti-Collision Algorithm (CLAA), addresses the limitations of existing approaches
by considering a complete slot-by-slot (SbS) estimation method and reducing the computa-
tion requirements in the MAC layer. The contributions of their work are twofold. Firstly, a
modified Bayesian inference algorithm is proposed for accurate estimation of the number of
tags in the MAC layer. Unlike existing approaches, the proposed SbS estimator maintains
its accuracy even when a new frame is set up. This improves system efficiency and reduces
the sensitivity to the initial frame length and the number of tags. Secondly, the computation
requirement in the MAC layer is significantly reduced to a fixed number of floating-point
operations per time slot, approaching the efficiency of the ILCM model. Additionally, the
proposed algorithm introduces an additional computation part in the physical layer, which
can be implemented in hardware for faster and more stable calculations. Simulation re-
sults demonstrate the effectiveness of the CLAA algorithm and its superior system efficiency
compared to state-of-the-art DFS approaches. The proposed method achieves an average sys-
tem efficiency of 35.64% for EPC systems and 36.67% for non-EPC systems, considering a
uniform distribution of tags ranging from 0 to 1000. The CLAA algorithm exhibits robust
performance independent of the number of tags and the initial frame length, thanks to its slot-
by-slot nature. Furthermore, the algorithm strikes a good balance between performance and
computation cost, reducing the computational requirements in the MAC layer while utilizing
the available resources in the physical layer for stable and efficient calculations.

Effective anti-collision algorithms are essential in RFID applications that involve a large
number of tags. These algorithms play a crucial role in reducing communication overhead,
thereby enhancing the energy and time efficiency of RFID systems. While existing MAC al-
gorithms primarily focus on improving system throughput and reducing identification time,
the increasing significance of embedded systems and mobile applications demands the inte-
gration of energy consumption considerations in the design of new anti-collision algorithms
[300].
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2.4 Application Layer: Overview of Scientific Literature

Toys play a significant role in facilitating children’s expression, fantasy, and cognitive de-
velopment [301, 302]. With the advancement of technology, technology-based toys have
gained popularity, with Smart Toys emerging as a favored choice [66]. The application
of technology to toys and its impact on children’s interaction with them has become an
area of increasing focus for the scientific community due to the vital role that toys play in
the development of children [67]. Smart toys, which incorporate digital features such as
software or sensors, provide a more interactive environment than traditional toys, fostering
the development of cognitive, social and behavioral skills in children [66, 303]. Accord-
ing to toys manufacturers and marketers, the possibilities of using smart and connected toys
in education appear to offer rich, interactive, innovative, and mobile learning experiences
in preschool children [304]. Smart toys distinguish themselves by integrating tangible ob-
jects with electronic components, enabling interactive child-toy interactions and purposeful
tasks, thus offering a dynamic environment that promotes cognitive, social, and behavioral
development[67]. Smart toys can be categorized based on the tasks they initiate, such as
behavioral tasks or cognitive tasks [66]. Behavioral Smart Toys, like the Furby or Fisher
Price’s Learning Kitchen, aim to enhance children’s behavioral skills through caring for and
interacting with the toy [305]. Cognitive Smart Toys, such as StoryMat or Fisher Price’s
Learning Lantern, focus on developing cognitive skills through activities like storytelling or
teaching numbers and concepts [306].Moreover, Smart Toys can be classified based on their
interactions, either with computers or as self-contained devices [66].Examples of smart toys
that interact with computers include Rosebud and StoryTech, which integrate stuffed ani-
mals or plush toys with a computer to enable storytelling and imaginative play [307, 308].
In contrast, self-contained Smart Toys, such as Sifteo blocks, have integrated digital features
within their structure and provide opportunities for creativity and learning through physical
interactions [309]. Two-way child-toy interactions are a significant characteristic of smart
toys, combining physical and virtual realities to provide richer experiences [310]. Electronic
sensors in smart toys facilitate meaningful interactions, allowing children to engage in pur-
poseful tasks and build knowledge relationships [311, 312]. As children interact with the
toys’ technical and educational components, interaction with Smart Toys fosters learning,
creativity, and imagination. For example, StoryTech enables children to improve storytelling
skills and imagination through interactions with plush toys and multimedia features, while
curlybot encourages computational and mathematical thinking through play [308, 313].

Futhermore, Smart Toys leverage Tangible User Interfaces to provide children with phys-
ical interactions that bridge the gap between the physical and digital worlds, enhancing their
engagement and learning experiences [314]. TUIs enable children to manipulate and inter-
act with digital elements through tangible objects and physical gestures, facilitating a deeper
understanding of abstract concepts[315, 316].
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Studies have shown the positive impact of TUIs in Smart Toys, promoting collaborative
learning, problem-solving skills, and cognitive development [317, 318]. For example, the
TUI-based Smart Toy platform, Osmo, integrates physical objects with digital activities, fos-
tering spatial reasoning, mathematical thinking, and creativity [319]. Similarly, the Cubelets
robotic construction kit utilizes TUIs to allow children to physically assemble and program
robots, promoting computational thinking and engineering concepts [320]. By incorporating
TUIs into smart toy design, these studies demonstrate how the physicality and tangibility of
interactions contribute to children’s engagement and learning outcomes.

Smart toys have also emerged as a promising tool for STEM education in preschool
children [321]. For successful STEM education, research has emphasized the importance of
improving mathematical skills, programming skills, and problem-solving skills.

The design and implementation of technology for learning cannot take place without
taking into account the psychological aspects of a child’s development that affect their abil-
ity to learn and interact with technology, on the one hand, and the pedagogical practices
that improve those abilities, on the other [65, 62, 322]. STEM education for children is
based on the principle of introducing them to programming through a high-level language,
which was pioneered by Seymour Papert [323] with his development of Logo Turtles. This
approach is based on Piaget’s theory of cognitive constructivism [324]. In recent decades,
educational technology research has been influenced by Piaget’s theory of cognitive develop-
ment and Montessori’s educational approach, which emphasize the importance of hands-on
learning and manipulation of objects in the development of logical-mathematical knowledge
[324, 325]. Researchers and practitioners have embraced Piaget’s theory of cognitive devel-
opment and the significance of play in learning. Studies have shown that interactive smart
toys, such as robotic kits, foster children’s problem-solving skills and enhance their spatial
cognition[137, 326] providing hands-on experiences that align with Piaget’s view of children
as active constructors of knowledge. On the other hand, Papert’s concept of construction-
ism has influenced the design of smart toys that promote creative thinking and programming
skills. For example, programmable robots like LEGO Mindstorms and KIBO enable chil-
dren to build and code their own creations, fostering computational thinking and problem-
solving abilities [327, 328]. The Montessori approach, emphasizing self-directed learning
and independent exploration, has also been integrated into the design of Smart Toys. For
instance, interactive learning platforms, such as tablet-based applications, have been found
to support children’s independent learning, creativity, and self-regulation skills [329, 330].
These Smart Toys provide opportunities for children to engage in autonomous exploration
and personalized learning experiences.

Studies have shown that physical manipulation plays a critical role in the development
of thinking skills, enabling the transition between physical and virtual representations and
simplifying abstract concepts for young children [331]. Interactive features such as sound,
animation, and movement-initiated feedback can also provide rich contextual information to
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enhance learning and motivate children to complete tasks successfully [61].
A study presented in [67] provides a review of Smart toys from the last 30 years, focus-

ing on toys for children in early childhood and primary school by analyzing and categorizing
Smart toys based on their technological and educational capabilities. One of the major find-
ings of the study emphasizes that in recent years smart toys have focused on special sciences
(programming) and some skills of the 21st century (STEM and computational thinking). On
the contrary, in the first 20 years, greater emphasis was placed on cross-disciplinary skills
such as collaboration, emotional thinking, symbolic thinking, storytelling, and problem solv-
ing. Another novel research presented in [332] aimed to review 30 computational toys and
kits designed for children aged 7 years and under, including physical, virtual, and hybrid
kits. Qualitative analysis examines the kits’ design, support for exploring computational
concepts and practices, participation in projects and activities, and exploration of other do-
mains of knowledge. The study presents design suggestions and opportunities to expand
the exploration of computational concepts, new modes of expression, and expanded support
for children from underrepresented groups in computing. The findings reveal commonal-
ities between existing kits and suggest ways for designers and researchers to improve the
possibilities for children to create, explore and play with computing.

Smart toys are now being scientifically researched in the STEM context for preschool
education. For example, the KIBO Robot Demo is an educational robot designed to teach
young children (ages 4 to 8) programming and engineering concepts [333]. The children
can program the robot using wooden blocks with barcodes, learning basic programming
concepts such as sequencing, loops, and conditional statements. The system has been tested
in a variety of settings and has been shown to effectively engage children in programming and
engineering. A research presented in [334] focuses on the development of a Smart toy called
ABBOT, designed to motivate children to become outdoor explorers. ABBOT is equipped
with sensors that allow it to collect environmental data such as temperature, humidity, and
light levels. The device is also designed to encourage children to participate in outdoor
activities and learn about their environment by providing feedback and rewards. The research
study presented in [335] describes the anthropomorphic design, development, and testing
of a prototype called OBSY, which is an Observation Learning System aimed at facilitate
learning of science concepts for primary school children in Thailand. The system consists of
an ubiquitous sensor-based device that resembles an octopus and a mobile web application
hosted on the device. Sensors attached to the OBSY device collect environmental data,
which is then interpreted using the web application accessed through tablet computers. The
system was developed through a user-centered design approach and aims to promote science
learning in an engaging and interactive way. The study presented in [336] describes the
design and interactive behavior of a tangible augmented reality toy kit that teaches preschool
children about color mixing, mathematics and geometric 2D-3D shapes. The game allows
children to interact with both physical and in-screen objects, using touch-screen and AR
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interactions. Researches conclude that the game has the potential to improve the learning
experience for young children and promote interest in STEM fields.

In pilot study presented in [326], focus was on exploring the potential of the Kindergarten
Social Assistive Robot (KindSAR) as an innovative tool for promoting children’s develop-
ment through social interaction. The study aimed to investigate how KindSAR could assist
educational staff in teaching geometric thinking and promoting metacognitive development
by engaging children in interactive play activities. The findings revealed that most children
demonstrated positive interaction with the robot and expressed a high level of enjoyment.
Furthermore, the results indicated that children’s performances in terms of geometric think-
ing and metacognitive tasks improved while they engaged in play activities with the robot.
To assess the children’s learning, a unique measure called "velocity of learning" was devel-
oped and employed. Overall, this study showcased the feasibility of incorporating KindSAR
into preschool education and highlighted the anticipated benefits it can bring in terms of
children’s cognitive development.

Through tangible programming, the study presented in [337] investigates the use of IoT
technology in the smart farming education of children. It involves creating a tangible pro-
gramming kit that simulates a smart farming system using sensors and Internet of Things
devices. User testing revealed that the kit was effective in promoting engagement and learn-
ing in young children and has the potential to improve learning in the fields of agriculture
and technology.

Research in [338] and [339] investigates coding with two commercial Smart toy robots
Dash and Botley as part of playful learning in the context of Finnish early education. The
results of our study show how Finnish preschoolers aged 5-6 years approached, conducted
and played coding with two toy robots. The study’s main conclusion is that preschoolers used
toy robots with coding affordances primarily in developing gamified play around them by
designing tracks for the toys, programming the toys to solve obstacle paths, and competing
in player-generated dexterity, speed, and physically mobile play contests.

A rather recent study presented in [340] examines the effects of didactic approaches in
guiding early childhood children learn computational logic and programming concepts. To
develop the students’ cognitive skills, a teaching methodology was developed that utilizes a
commercial smart mBot Arduino robot. mBot is a beginner-friendly educational robot that
makes programming and learning robots simple and enjoyable. mBot also helps develop
logical thinking and design skills. The study concludes that the developed method enhances
learning processes and computational thinking abilities.

In recent years, due to the development of Smart Toys enhanced with the Internet of
Things (IoT) that can connect to the Internet, there has been a growing body of research on
cyber security and privacy risks of smart toys. The studies presented in [341, 342] focus on
reviewing major smart toys-related children’s privacy risks and major mitigation so to such
risks.
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Despite requests from the scientific community to investigate how to best incorporate
new technologies into the formal and informal learning contexts of young children, the de-
sign and development periods of new smart toys have not been adequately emphasized, as
highlighted by the research in [305]. Therefore, they have applied the design and develop-
ment research method to create guidelines for designing and using Smart toys for preschool
children. Research examines a smart toy developed in a pilot study, holds focus group meet-
ings with early childhood teachers, creates two prototypes, and tests them with preschool
children, teachers, and scholars. The study divides the design guidelines into three cate-
gories: content, visual design, and interaction.

Based on the literature, the use of smart toys in preschool education represents a promis-
ing approach to fostering STEM skills in young children, and with that regard learning geom-
etry at an early age is crucial for the development of spatial reasoning skill. Studies indicate
that it is critical to introduce geometry in preschool period, when first critical geometrical
observations are made [343, 344]. With that regard, recent studies on gestures emphasize the
body’s significance in spatial and geometric reasoning highlighting the importance of kinetic
movement in the genesis and development of abstract geometrical cognition in early years
[122, 345, 123, 124].
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3 OVERVIEW OF THE SCIENTIFIC
CONTRIBUTION OF PUBLICATIONS

This chapter comprises abstracts of the publications, along with an overview of the scientific
contributions upon which the dissertation is grounded. It specifically emphasizes the distinct
contributions made by the doctoral candidate in each respective work.

3.1 Paper 1: Machine Learning and Soil Humidity Sens-
ing: Signal Strength Approach

Abstract:

The Internet-of-Things vision of ubiquitous and pervasive computing gives rise to future
smart irrigation systems comprising the physical and digital worlds. A smart irrigation
ecosystem combined with Machine Learning can provide solutions that successfully solve
the soil humidity sensing task in order to ensure optimal water usage. Existing solutions
are based on data received from the power hungry/expensive sensors that are transmitting
the sensed data over the wireless channel. Over time, the systems become difficult to main-
tain, especially in remote areas due to the battery replacement issues with a large number of
devices. Therefore, a novel solution must provide an alternative, cost- and energy-effective
device that has unique advantage over the existing solutions. This work explores the concept
of a novel, low-power, LoRa-based, cost-effective system that achieves humidity sensing
using Deep Learning techniques that can be employed to sense soil humidity with high ac-
curacy simply by measuring the signal strength of the given underground beacon device.

Overview of the scientific contributions

A novel, low-power, LoRa-based, cost-effective system was introduced which achieves hu-
midity sensing using Deep learning techniques that can be employed to sense soil humidity
with high accuracy simply by measuring signal strength of the given underground beacon de-
vice. Machine Learning approach was proposed that leverages RSSI data from LoRaWAN
devices to estimate soil moisture conditions. This aligns with the hypothesis, which suggests
that Machine Learning algorithms can be used to estimate IoT environment conditions using
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RSSI data. Data analisys collected from LoRaWAN-based Soil Moisture Sensor device was
employed to uncover anomalies, define necessary data preparation approaches and deter-
mine potentially useful Machine Learning algorithms for the desired estimations. Such data
analysis enabled the discovery of characteristic properties of the data with a goal to exploit
how soil humidity is related to the signal strength. Indeed, it was shown that the correla-
tion between RSSI and soil humidity is substantial, which supports the hypothesis that RSSI
data can be used to estimate environmental conditions with high precision. The proposed
Machine Learning approach can provide accurate estimates of soil moisture conditions in a
time-series dataset. Use of Long Short-Term Memory (LSTM) Neural Network as a Deep
Learning approach provided significant results in terms of accuracy of estimation in con-
trast to traditional ML techniques of Support Vector Regression. This aligns with hypothesis
where Machine Learning algorithms can be used to estimate IoT environment conditions
from the Perception Layer of the three-layer IoT architecture with high precision.

The doctoral candidate’s contribution

The doctoral candidate made significant contributions to the research thorough data analy-
sis on the collected data from the LoRaWAN-based Soil Moisture Sensor device, uncover-
ing anomalies and determining appropriate data preparation approaches. By establishing a
substantial correlation between soil humidity and the received signal strength indicator and
signal-to-noise ratio, the candidate provided valuable insights into the relationship between
these variables. The doctoral candidate used Machine Learning approaches to evaluate soil
moisture levels, first using the Support Vector Regression model and then applying the Long
Short-Term Memory Neural Network. Furthermore, the candidate enhanced the Support
Vector Regression (SVR) model by incorporating values from both the current and previ-
ous time steps, thus providing it with a "hybrid short-term memory." This improvement
resulted in enhanced accuracy of the model in estimating soil moisture conditions, as it ef-
fectively considered the temporal relationship between measurements. The LSTM model
outperformed the SVR model in terms of accuracy, making it more useful in assessing soil
humidity. These contributions not only support the hypothesis that RSSI data can be used
for precise environmental estimations, but also demonstrate the candidate’s expertise in data
analysis, correlation analysis, and the application of Machine Learning algorithms in the
context of IoT environmental sensing.
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3.2 Paper 2: Sensing Occupancy through Software: Smart
Parking Proof of Concept

Abstract:

In order to detect the vehicle presence in parking slots, different approaches have been uti-
lized, which range from image recognition to sensing via detection nodes. The last one is
usually based on getting the presence data from one or more sensors (commonly magnetic or
IR-based), controlled and processed by a micro-controller that sends the data through radio
interface. Consequently, given nodes have multiple components, adequate software is re-
quired for its control and state-machine to communicate its status to the receiver. This paper
presents an alternative, cost-effective beacon-based mechanism for sensing the vehicle pres-
ence. It is based on the well-known effect that, once the metallic obstacle (i.e., vehicle) is on
top of the sensing node, the signal strength will be attenuated, while the same shall be rec-
ognized at the receiver side. Therefore, the signal strength change conveys the information
regarding the presence. Algorithms processing signal strength change at the receiver side to
estimate the presence are required due to the stochastic nature of signal strength parameters.
In order to prove the concept, experimental setup based on LoRa-based parking sensors was
used to gather occupancy/signal strength data. In order to extract the information of pres-
ence, the Hidden Markov Model (HMM) was employed with accuracy of up to 96%, while
the Neural Network (NN) approach reaches an accuracy of up to 97%. The given approach
reduces the costs of the sensor production by at least 50%.

Overview of the scientific contributions

The paper proposes a hardware sensing solution through software that uses signal strength
information to achieve cost savings. LoRa-based parking sensors were used to gather oc-
cupancy/signal strength data, while Hidden Markov Model and Neural Network approaches
were used to estimate the presence of vehicles with high accuracy. This approach leverages
the Received Signal Strength Indicator data from LoRaWAN devices to estimate the occu-
pancy status of parking slots. The contributions are in line with the proposed hypothesis of
utilizing RSSI data from IoT devices to accurately estimate the conditions of the IoT envi-
ronment. Moreover, data analysis approach was employed to detect the relationship between
Occupancy Status, Received Signal Strength Indicator, and Signal to Noise Ratio of LoRa-
based parking sensors. The analysis showed that parking lots are free considerably more
than they are occupied, indicating the stochastic behavior of the parking place. The Hidden
Markov Model of the second order was designed and used to classify the occupancy status
of a parking space while using RSSI and SNR values. The accuracy achieved by the HMM
approach was up to 96%, while the NN approach reached an accuracy of up to 97%. The find-
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ings demonstrate the feasibility of implementing a cost-effective beacon-based mechanism
for detecting vehicle presence, leading to significant cost reductions in sensor production.

The doctoral candidate’s contribution

The doctoral candidate made significant contributions to the field of smart parking through
their research on sensing occupancy through software. They conducted extensive data anal-
yses and observed that higher Received Signal Strength Indicator values indicate a free park-
ing space, while lower values indicate an occupied one. They also noted that changes in the
parking status corresponded to significant variations in RSSI and Signal to Noise Ratio val-
ues. To estimate vehicle presence accurately, the candidate employed two Machine Learning
models: the second-order Hidden Markov Model and a Neural Network model with two
hidden layers. In the HMM approach, the candidate introduced a novel "hybrid short-term
memory" technique by defining the observable states as the changes in RSSI values between
two previous states. The Viterbi algorithm was used to determine the best state sequence
for the given model and observations. The NN model, on the other hand, utilized sensor ID,
RSSI, SNR, gateway ID, and timestamp as input variables. The NN model outperformed the
HMM model, achieving superior accuracy in classifying parking spaces compared to other
researched literature. Overall, the candidate’s research showcases the feasibility of a cost-
effective beacon-based mechanism for detecting vehicle presence in smart parking systems.
These findings have significant implications for reducing sensor production costs and im-
proving the efficiency of smart parking technologies. The candidate’s research contributes to
the field by investigating the feasibility of estimating the conditions of the Internet of Things
environment with high precision.

3.3 Paper 3: Privacy leakage of LoRaWAN smart parking
occupancy sensors

Abstract:

Development of smart cities is enabled by its core concepts of smart and sustainable mobility,
where Low Power Wide Area Network (LPWAN) such as Long Range Wide Area Network
(LoRaWAN) became one of the most important Internet of Things (IoT) technologies. Due
to its low power consumption, simple setup, and large communication range, LoRaWAN
smart parking devices are already employed to reduce congestion and improve quality of
life. This paper studies privacy leakage of LoRaWAN smart parking communication devices.
Namely, when a vehicle as a metallic obstacle obscures the LoRaWAN smart parking device,
the signal strength will be significantly reduced on the receiver side. Consequently, the
variation in the signal strength of LoRaWAN parking systems transmits information about
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parking space occupancy, allowing the implementation of a passive side-channel attack at
large distances. Using supervised machine learning techniques based on Neural Network,
the attacker can estimate parking lot occupancy with accuracy up to 97%, while Random
Forrest approach reaches the accuracy over 98%.

Overview of the scientific contributions

The primary scientific contribution involves the extensive investigation of Machine Learning
algorithms’ capacity to harness RSSI data from LoRaWAN devices for the purpose of achiev-
ing accurate detection of parking space occupancy. The paper explores the utilization of this
approach while delving into the implications of potential privacy breaches that may result
from the exploitation of this information by malicious actors. Data analysis techniques were
employed to identify potential data correlations, uncover anomalies, and determine appropri-
ate approaches for data pre-processing. Specifically, analyzed RSSI data collected from the
LoRaWAN devices was used to identify patterns and trends that could be used to accurately
estimate parking space occupancy. Exploratory data analysis was also used to identify any
outliers or anomalies in the data that could affect the performance of the Machine Learning
algorithms. Finally, statistical techniques such as feature selection and dimensionality re-
duction was used to pre-process the data before training and testing the Machine Learning
models. Namely, using supervised machine learning methodology based on Random For-
est and Neural Networks, it was shown that parking space occupancy can be estimated by
using RSSI data from LoRaWAN devices. The Random Forest algorithm achieved an accu-
racy of 98%, while the Neural Network algorithm achieved an accuracy of 97%. Through
modeling, development, and testing of these Machine Learning algorithms, the it was shown
that is indeed feasible to estimate environmental conditions from the Perception Layer of the
three-layer IoT architecture with high precision.

The doctoral candidate’s contribution

The doctoral candidate’s contributions in this research paper encompass various aspects of
the study, including data analysis, feature engineering, model selection, performance com-
parison, and computational complexity analysis. These contributions shed light on the feasi-
bility of utilizing RSSI data from LoRaWAN devices for accurate detection of parking space
occupancy while addressing potential privacy concerns. The candidate conducted extensive
data analysis, which revealed the impact of parking status changes on RSSI and SNR values,
as well as the correlation between gateway distance and the change in parking occupancy.
Furthermore, they identified the data set’s skewness, indicating that parking spaces were less
frequently occupied than free. To mitigate this data imbalance, the Synthetic Minority Over-
sampling Technique was applied. The candidate enhanced the data set by incorporating time
variables to capture temporal dependence and seasonality effects. Hour, day, month, and day
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of the week were included as features, providing deeper insights into the historical occu-
pancy patterns of parking spaces. The candidate employed two Machine Learning models,
Random Forest and Neural Network,to estimate parking lot occupancy based on RSSI data.
Separate models were built and evaluated for each sensor. The Random Forest model out-
performed the Neural Network model, achieving an accuracy of 98% in estimating parking
space occupancy. The candidate conducted a comprehensive statistical comparison of model
performance. They evaluated the classification accuracy of both Random Forest and Neural
Network models after balancing the data set and including time variables, as well as after
excluding the time variable. The candidate also performed a comparison of computational
complexity between the two models. They measured the actual run-time of each model for
five sensors, providing insights into their efficiency and resource requirements. The statis-
tical comparison between the Random Forest and Neural Network models holds significant
scientific importance as it enables the identification of the optimal Machine Learning ap-
proach for precise estimation of parking space occupancy.

3.4 Paper 4: Tag Estimation Method for ALOHA RFID
System Based on Machine Learning Classifiers

Abstract:

In the last two decades, Radio Frequency Identification (RFID) technology has attained
prominent performance improvement and has been recognized as one of the key enablers
of the Internet of Things (IoT) concepts. In parallel, extensive employment of Machine
Learning (ML) algorithms in diverse IoT areas has led to numerous advantages that increase
successful utilization in different scenarios. The work presented in this paper provides a
use-case feasibility analysis of the implementation of ML algorithms for the estimation of
ALOHA-based frame size in the RIFD Gen2 system. Findings presented in this research in-
dicate that the examined ML algorithms can be deployed on modern state-of-the-art resource-
constrained microcontrollers enhancing system throughput. In addition, such utilization can
cope with latency since the execution time is sufficient to meet protocol needs.

Overview of the scientific contributions

This study presents the scientific contributions derived from the research conducted on the
Network Layer of the three-layer IoT architecture within the context of the dissertation. The
contributions align with the hypothesis that leveraging Machine Learning models to estimate
frame size and tag count can enhance the throughput of RFID Gen2 systems that employ
the ALOHA protocol. The key contributions are as follows: The research delves into the
feasibility and effectiveness of utilizing ML models, namely the Neural Network and Ran-
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dom Forest, on the Network Layer of the three-layer IoT architecture. Specifically, the ML
models are employed to estimate the frame size and tag count in ALOHA-based RFID Gen2
systems. This exploration contributes to the advancement of ML techniques in enhancing
the overall throughput of RFID systems. The research aimed to demonstrate the robust per-
formance and generalizability of the ML models across different frame sizes within diverse
data sets. Through meticulous data set design and evaluation derived from Monte Carlo sim-
ulations, the study showcased the effectiveness of the ML models in capturing the nuances
of different data sets. The findings emphasize the models’ capability to deliver consistent
and reliable results, regardless of the frame size variations. This investigation significantly
contributes to understanding the ML techniques’ adaptability and reliability in real-world
IoT environments. A comparative analysis is conducted to evaluate the performance of ML
models in estimating frame size and tag count. The ML models are compared against a state-
of-the-art algorithms, namely the Improved Linearized Combinatorial Model. The analysis
reveals that the ML models outperform the traditional method and achieve higher accuracy
rates. The higher throughput achieved by the Neural Network model compared to the ILCM
model in the given context indicates its capability to achieve a greater number of successful
slots per frame, resulting in enhanced system efficiency. Furthermore, this research inves-
tigates the implementation of ML models on resource-constrained devices commonly used
in IoT applications, while also exploring the benefits of smart quantization techniques. By
leveraging techniques such as 16-bit float-point and 8-bit integer approximations, the re-
search demonstrates significant reductions in memory requirements and improved execution
times. The findings highlight that through quantization, ML models can be executed effi-
ciently on memory-restricted microcontrollers, making them more accessible for practical
implementation.

The doctoral candidate’s contribution

The doctoral candidate conducted Monte Carlo simulations and implemented the code to
generate the data set used in the research.The meticulous design and implementation of the
data set aimed to closely emulate real-life scenarios and enable an adequate comparison
with state-of-the-art algorithms. This approach for Monte Carlo simulations of the tag dis-
tribution in the slots was informed by previous research studies in the field. The candidate
conducted an evaluation of Machine Learning models, including Neural Network and Ran-
dom Forest, to estimate tag count in ALOHA-based RFID Gen2 systems. The evaluation
demonstrated the strong performance and adaptability of the ML models across various data
sets. Additionally, a comparative analysis was performed, comparing the ML models to the
ILCM. The latter showcased the ML models’ strong performance and adaptability across
diverse data sets, particularly when dealing with larger frame sizes and more tag distribu-
tion options, in terms of accuracy rates. Based on the evaluation of classifier performance
and comparison to the ILCM model, the candidate selected Neural Network architectures
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for further utilization, showcasing enhanced performance in terms of throughput when com-
pared to the ILCM model. The Neural Network model demonstrated improved efficiency
in accurately estimating the number of interrogating tags, aligning with the study’s objec-
tive to enhance system throughput. Further analysis revealed differences in computational
burden, with the NN model outperforming the ILCM model in terms of successful slots per
frame. This analysis provided valuable insights into the computational costs and efficiency
of the Neural Network model. By leveraging Machine Learning models to estimate frame
size and tag count, the doctoral candidate has demonstrated the feasibility of enhancing the
throughput of ALOHA-based RFID systems that employ the ALOHA protocol on the Net-
work Layer of the three-layer IoT architecture. These contributions significantly align with
the hypothesis and advance the understanding and application of Machine Learning in im-
proving the efficiency and throughput of RFID systems.

3.5 Paper 5: Tangible Interfaces in Early Years’ Educa-
tion: A Systematic Review

Abstract:

This paper presents a systematic review of the literature on Tangible User Interfaces (TUIs)
and interactions in young children’s education by identifying 155 studies published between
2001 and 2019. The review was based on a set of clear research questions addressing appli-
cation domains, forms of tangible objects, TUI design and assessment. The results indicate
that (i) the form of tangible object is closely related to the application domain, (ii) the manip-
ulatives are the most dominant form of tangible object, (iii) the majority of studies addressed
all three stages of TUI development (design, implementation and evaluation) and declared
a small sample of young children as a major shortcoming, and (iv) additional empirical re-
search is required to collect evidence that TUIs are truly beneficial for children’s acquisition
of knowledge. This review also identifies gaps in the current work, thus providing sugges-
tions for future research in TUIs application in educational context expected to be beneficial
for researchers, curriculum designers and practitioners in early years’ education. To the au-
thors’ knowledge, this is the first systematic review specific to TUIs’ studies in early years’
education and is an asset to the scientific community.

Overview of the scientific contributions

This paper presents a comprehensive scientific exploration of Tangible User Interfaces in
the context of emerging technologies and their applications in children’s education. The re-
view focused on research questions related to application domains, forms of tangible objects,
TUI design, and assessment. The findings of the review revealed several key contributions.
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Firstly, the study defined the term "form of tangible object" and identified three distinctive
embodiments through which the interaction happens: manipulatives, tabletops, and tablets.
This definition provides a comprehensive framework for understanding and categorizing the
various types of tangible objects used in TUIs. Manipulatives were found to be the most
dominant form of tangible objects used in TUIs. Additionally, the majority of the reviewed
studies addressed all three stages of TUI development, namely design, implementation, and
evaluation. However, a common limitation identified was the small sample size of young
children involved in the studies, highlighting the need for larger and more diverse partici-
pant groups in future research. The review also identified fourteen application domains for
TUIs in children’s education, ranging from Art and Literacy to Science and Problem Solv-
ing. This demonstrates the wide range of educational contexts in which TUIs have been
applied successfully. The benefits of tangible interaction, such as increased social interac-
tion and collaboration among children, were consistently highlighted across the studies. In
addition, the review identifies areas of improvement in current research, including the use
of small sample sizes and limited generalizability. It also offers insights into future research
directions in this field. One such direction is exploring the potential of combining TUIs with
IoT technologies, which shows promise in enabling innovative educational applications and
enhancing learning outcomes for children.

The doctoral candidate’s contribution

The doctoral candidate has made significant contributions to the field of Tangible User In-
terfaces in early years’ education through their meticulous and comprehensive review and
analyses of the researched litterateur.

One of the notable contributions of the candidate’s work is the formulation of a com-
prehensive framework for understanding and categorizing the "form of tangible object" in
TUIs. By identifying three distinct embodiments - manipulatives, tabletops, and tablets - the
candidate has provided a clear and structured approach for researchers and practitioners to
analyze and develop tangible objects in educational settings. Additionally, the candidate’s
review highlighted the prevalence of manipulatives as the most dominant form of tangi-
ble objects in TUIs, underscoring their significance in facilitating hands-on experiences and
physical interaction, which are crucial for young children’s engagement and learning. Fur-
thermore, the candidate established a clear relationship between the forms of tangible objects
and the application domains in TUIs, providing valuable insights into how different forms
of tangible objects are suited for specific educational contexts. Additionally, the candidate
explored the relation between children’s age and application domain, shedding light on how
the appropriateness and effectiveness of TUIs may vary based on the developmental stage
of the children. Moreover, the candidate actively addressed the gaps and limitations present
in the researched publications. They highlighted the need for larger sample sizes and more
diverse participant groups in order to enhance the generalizability of findings and ensure
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the validity of research outcomes. By identifying these gaps, the candidate has paved the
way for future studies to address these limitations and further advance the field of TUIs in
early years’ education. Finally, the candidate explored the potential of integrating TUIs with
Internet of Things technologies, envisioning innovative educational applications that capi-
talize on the synergistic benefits of both fields. This forward-thinking perspective opens up
prospective possibilities for creating interactive and personalized learning experiences for
young children.

3.6 Paper 6: Towards a Machine Learning Smart Toy De-
sign for Early Childhood Geometry Education: Usabil-
ity and Performance

Abstract:

This study presents the design and evaluation of a plush smart toy prototype for teaching
geometry shapes to young children. The hardware design involves the integration of sen-
sors, microcontrollers, an LCD screen, and a machine learning algorithm to enable gesture
recognition by the toy. The machine learning algorithm detects whether the child’s gesture
outline matches the shape displayed on the LCD screen. A pilot study was conducted with
14 preschool children to assess the usability and performance of the smart toy. The results
indicate that the smart toy is easy to use, engages children in learning, and has the potential
to be an effective educational tool for preschool children. The findings suggest that smart
toys with machine learning algorithms can be used to enhance young children’s learning
experiences in a fun and engaging way. This study highlights the importance of designing
user-friendly toys that support children’s learning and underscores the potential of machine
learning algorithms in developing effective educational toys.

Overview of the scientific contributions

This research integrates IoT sensing technology and Machine Learning algorithms to achieve
precise detection and interpretation of intricate human gestures for interaction. By leverag-
ing sensor data output, the study provides empirical evidence of the effectiveness of ML
algorithms in enabling gesture-initiated feedback. These findings support the hypothesis
that accurate detection and interpretation of complex human gestures for interaction can be
achieved on the Application Layer of the three-layer IoT architecture. Additionally, the pa-
per presents the design and evaluation of a prototype plush Smart Toy specifically tailored
for teaching geometry shapes to young children. The utilization of ML algorithms for ges-
ture recognition is explored, and the findings of a pilot user study involving preschool-aged
children interacting with the prototype toy during an experimental session are reported. In
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terms of results, the paper highlights the successful application of a 1D Convolutional Neu-
ral Network as the final Machine Learning model for gesture recognition. The CNN model
achieves high accuracy levels ranging from 93.8% up to 98.3% when tested on a data set
comprising gestures performed by adult users. This outcome underscores the potential of
ML in accurately classifying gestures and enhancing shape identification in early childhood
geometry education. The paper highlights the importance of pilot testing for evaluating the
usability of the Smart Toy, focusing on aspects such as usability, engagement levels, and
motor interactions. Specific details about the research methods employed are provided, and
observations of motor aspects, engagement levels, and overall behavior are recorded, offering
valuable insights into the usability of the Smart Toy for Early Childhood Geometry Educa-
tion. The exploratory study yielded significant findings regarding the benefits and strengths
of the Smart Toy prototype. The results indicate that the prototype is user-friendly, easily
manageable, and effectively engages children in the learning process. This suggests its po-
tential as a valuable educational tool for preschool-aged children. The study also provides
insights into the different modes of interaction between children and the toy, the distinctions
in gestures made by children compared to adults, and the impact of age on user performance
in gesture-based interfaces. These findings enhance the understanding of the factors influ-
encing user performance and highlight the need to consider potential confounding variables
during data analysis. In conclusion, the research findings emphasizes the importance of in-
volving children in the design process and highlights the need for comprehensive data sets
of children’s gestures to enhance the accuracy of ML models in gesture classification.

The doctoral candidate’s contribution

In this research, the doctoral candidate has made significant contributions to the design, im-
plementation, and evaluation of a plush Smart Toy prototype aimed at teaching geometry
shapes to young children. The candidate played a pivotal role in the inception of the toy’s
interaction concept, which utilizes hand movements, as well as the selection of the applica-
tion domain of geometry based on relevant literature research. The candidate’s involvement
also extended to the analysis of collected sensor data and the testing of Machine Learning
algorithms for gesture recognition using different data sets. The results of the candidate’s
research demonstrate the effectiveness of this approach, revealing that the applied Machine
Learning algorithms can achieve reliable gesture recognition, supporting the feasibility of
achieving accurate interaction through the utilization of sensor data in the proposed IoT ar-
chitecture. This aligns with the hypothesis that highly accurate detection and interpretation
of complex human gestures for interaction can be achieved on the Application Layer of the
three-layer IoT architecture by employing Machine Learning algorithms based on the sensor
data output.

Through collaborative efforts, the candidate shaped the methodology for the usability
study, focusing on aspects such as usability, engagement levels, and motor interactions. This
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involved conducting statistical analyses of objective and subjective aspects of children’s in-
teractions with the smart toy.

Additionally, the candidate contributed to the experimental design, including the selec-
tion of materials and methods, as well as the experiment procedure. The candidate conducted
an extensive analysis of the collected data from the usability study, providing valuable in-
sights into user performance and emphasizing the need to consider potential confounding
variables during data analysis. The research findings shed light on factors influencing user
performance and highlight the importance of involving children in the design process. Fur-
thermore, the candidate’s research revealed a correlation between the perceived difficulty
of a shape and the real-time required to draw it, which can be valuable in developing in-
structional materials and activities that objectively measure shape difficulty. Overall, the
candidate’s contributions in this research have significantly advanced the understanding of
Machine Learning-enabled Smart Toy design for early childhood geometry education. The
candidate’s involvement in shaping the interaction concept, conducting analyses, and evalu-
ating user performance has enhanced the scientific knowledge in this field and has practical
implications for designing effective educational toys for young children.
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As we move further into the 21st century, the Internet of Things (IoT) continues to revolu-
tionize various aspects of our lives, shaping new paradigms with its ubiquitous, connected
technology. The IoT landscape, characterized by its complex interplay of "things," data,
people, and processes, has immense potential that we are continually learning to harness.
The breakthrough advancements in this field span across several layers of IoT architecture,
each addressing unique sectors and challenges. Not only have these propelled the growth
and efficiency of interconnected devices and systems, but they have also paved the way for
progressive leaps in industries like healthcare, logistics, transportation, and education. With
that regard, this dissertation extensively explores the potential of Machine Learning (ML)
techniques in augmenting the functionality and performance of Internet of Things services
within the three layers of the IoT architecture: Perception, Network, and Application layers.
Throughout the research, special attention has been given to considering the usability con-
text in the development and integration of ML algorithms. By leveraging ML techniques,
this dissertation offers valuable scientific contributions to enhance enhance the performance
of Internet of Things Stack Services. The integration of ML algorithms into IoT systems
leads to significant advancements in data handling and processing, thereby improving the
overall performance of IoT services in various domains.

In the Perception layer, the research provides vital insights into how ML algorithms can
better handle and process large volumes of data. Practical examples such as smart parking
systems and soil humidity sensing in the context of precision farming demonstrate the po-
tential of ML to transform raw IoT data into valuable information, leading to effective city
resources management and improved agricultural practices, respectively. The exploration
of soil humidity sensing through signal strength approach introduced a novel mechanism
that circumvents the traditional, costly, and energy-consuming sensors. Machine learning
models empowered with high accuracy signal strength data have proven highly effective at
estimating the soil moisture conditions. This innovation not only assures optimal water usage
for smart irrigation systems but also resolves the issue of maintenance in remote locations
that often arises due to battery replacement needs by offering cost-effective, sustainable, and
dependable solutions. On the other hand, the incorporation of machine learning in smart
parking has been equally transformative. The investigation of occupancy sensing through
software leveraged Received Signal Strength Indicator (RSSI) data from the LoRaWAN de-
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vices to estimate the occupancy status of parking slots with an impressive accuracy rate.
Traditional methods which depended heavily on sensor technologies, such as infrared or
magnetic sensors, were cast aside for a more cost-effective and reliable beacon-based mech-
anism for detecting vehicle presence. Both instances underline the effective adaptation of
machine learning in enhancing the perception capabilities of devices, which results in man-
aging resources more efficiently, and highlights the potential of improving IoT through ma-
chine learning. Moreover, the part of research also underscores the importance of address-
ing privacy leakage concerns in IoT technologies highlighting the need for robust security
measures to ensure the safe handling of sensitive data within IoT systems that incorporate
LoRaWAN devices.

The research conducted in the Network layer of this dissertation focuses on the integra-
tion of Machine Learning techniques within IoT systems, with a specific emphasis on the
utilization of RFID technology. One of the key challenges faced by RFID technology in
large-scale infrastructures, such as commercial warehouses, is the efficient reading of a vast
number of RFID tags. By harnessing the power of ML models, such as Neural Networks, the
dissertation explores how RFID systems can be optimized for tag number estimation, result-
ing in enhanced performance. These models can effectively estimate the optimal frame size
and tag count in RFID systems that use the ALOHA protocol. The use of Machine Learning
models has elevated the effectiveness of these systems compared to traditional estimation
methods, providing robust performance across many frame sizes and a wide range of data
sets. A key aspect of this integration involves quantization of the ML models. Quantization
significantly reduces the memory requirements of the models, making them more practical
and efficient to use on memory-restricted microcontrollers, which are integral components
of IoT and embedded devices. The findings from this research validate the feasibility of uti-
lizing ML models to enhance the throughput of RFID-based IoT systems, opening doors to
the development of more resource-efficient and effective systems in commercial operations
and beyond.

Within the Application layer, this research places a strong emphasis on the development
of a Smart Toy prototype that leverages Machine Learning algorithms for gesture recogni-
tion and user interaction. By considering the usability context, the dissertation showcases
how ML techniques enhance the educational potential of the smart toy, presenting innova-
tive applications of the Internet of Things in early childhood education. This pioneering
toy integrates ML algorithms and IoT sensing technology, representing a fusion of advanced
technologies in the context of early childhood education. The Smart Toy, a notable achieve-
ment of this research, employs hand movements and gesture recognition to teach young
children about geometry shapes. This functionality is made possible by a 1D Convolutional
Neural Network (CNN), that compares the child’s hand-drawn shape with the one displayed
on the toy’s LCD screen. This unique interactive experience not only captures children’s in-
terest but also enhances their learning process. The results from a pilot user study involving
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preschool-aged children further confirm the viability and effectiveness of the Smart Toy in
educational settings. The Smart Toy was found to be user-friendly, engaging, and successful
in teaching geometry shapes to the children. The successful integration of ML and IoT in
creating interactive and personalized learning experiences signifies their immense potential
in the field of education.

The implications of this research for the field of Internet of Things are manifold. Firstly,
it underscores the potential for enhanced efficiency in data management through the appli-
cation of Machine Learning algorithms. By converting raw data into actionable insights,
IoT devices can operate more effectively and respond proactively to changing environmen-
tal conditions. moreover, ML models can analyze large amounts of data generated by IoT
devices, extracting significant information and correlations. This efficient big data analysis
provides deeper insights into data, mines hidden correlations, and aids precise predictions
based on past observations. Secondly, the study reveals how ML can optimize the perfor-
mance of IoT sensors, improving accuracy, response time, and energy consumption. This
contributes to the reliability and effectiveness of IoT networks and devices. Thirdly, the in-
tegration of ML techniques enables advanced automated decision-making processes in IoT
systems, leveraging past experiences and predictive analytics to make data-driven decisions.
This significantly enhances service delivery and operational efficiency. Furthermore, the re-
search highlights the potential for cost reduction and energy conservation in IoT systems.
For example, in the context of smart parking, ML-based condition estimation can replace
expensive sensors, reducing overall costs while maintaining efficient functionality. Lastly,
the study emphasizes the importance of addressing privacy and security concerns in IoT,
emphasizing the need for robust measures to protect sensitive data and ensure the integrity
of IoT systems. In conclusion, this research opens up new possibilities for improving data
management, sensor performance, decision-making, cost-effectiveness, and security in the
realm of IoT, advancing the field and shaping its future development.

Moving forward, future research in this area should continue to explore innovative ML
algorithms and techniques that further enhance the usability of IoT systems. Additionally, the
development of standardized frameworks and guidelines that integrate usability and security
considerations will be crucial for the widespread adoption and success of ML-enabled IoT
applications. By continuing to bridge the gap between ML and IoT, we can unlock the full
potential of these technologies and create a more connected, efficient, and user-centric IoT
ecosystem. Overall, this dissertation concludes that the integration of ML techniques within
the IoT architecture can significantly enhance the functionality, performance, and usability
of IoT services. By leveraging ML algorithms in the Perception, Network, and Application
layers, IoT systems can achieve improved data perception, efficient communication, and
enhanced user experiences. The findings of this research contribute to the advancement of
ML-enabled IoT systems, highlighting the importance of considering the usability context in
the design and development process.
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tion Method for ALOHA-based RFID system, 2021 6th International Conference on
Smart and Sustainable Technologies (SpliTech), 1–6, 2021.

[99] F. Schoute, Dynamic frame length aloha, IEEE Transactions on Communications, 31,
4, 565–568, 1983.

143



BIBLIOGRAPHY
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32 Ruąera Boškovića, 21000 Split, Croatia; istancic@fesb.hr (I.S.); dcoko@fesb.hr (D.Č.); toperkov@fesb.hr (T.P.)
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Abstract: This study presents the design and evaluation of a plush smart toy prototype for teaching
geometry shapes to young children. The hardware design involves the integration of sensors,
microcontrollers, an LCD screen, and a machine learning algorithm to enable gesture recognition
by the toy. The machine learning algorithm detects whether the child’s gesture outline matches the
shape displayed on the LCD screen. A pilot study was conducted with 14 preschool children to assess
the usability and performance of the smart toy. The results indicate that the smart toy is easy to use,
engages children in learning, and has the potential to be an effective educational tool for preschool
children. The findings suggest that smart toys with machine learning algorithms can be used to
enhance young children’s learning experiences in a fun and engaging way. This study highlights
the importance of designing user-friendly toys that support children’s learning and underscores the
potential of machine learning algorithms in developing effective educational toys.

Keywords: IoT; smart toy; machine learning; early childhood education; geometry; usability;
human–computer interaction

1. Introduction

The Internet of Things (IoT) has emerged as a revolutionary technology that connects
various devices and systems to a network, allowing them to communicate and exchange
data, thus revolutionizing the way we interact with the world around us. The proliferation
of the IoT has ushered in a new era of smart and interconnected systems capable of
improving efficiency, automating processes, and improving quality of life. This technology
has found uses in a variety of industries, including healthcare, agriculture, transportation,
smart cities, and energy [1]. In recent years, the integration of IoT in education has been a
growing trend, offering innovative solutions for teaching and learning [2]. IoT technology
has the potential to create interactive and immersive learning experiences that can improve
student engagement, motivation, and learning outcomes due to the low-cost functionalities
of smart devices [3]. These devices can collect and analyze data to improve educational
quality and help educators make informed decisions [4]. As a consequence, they promote
creativity, critical thinking, communication, and collaboration, leading to the development
of higher-order thinking skills among learners [5]. Furthermore, the IoT can help bridge
the digital divide by providing students with equal access to education regardless of their
location or socioeconomic status [6].

Children, in particular, are benefiting from the incorporation of the IoT in education,
since their daily activities primarily focus on the manipulation of physical materials such
as toys [7]. Various IoT integration methods for child users have been investigated in
this regard. For example, a study presented in [8] sought to improve the vocabulary
learning of foreign language children by using multimodal cues in a task-based learning
system composed of an educational robot and a 3D book powered by the IoT. According
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to the findings of the user study, the researchers believed that the use of multimodal cues
can improve vocabulary learning for children learning a foreign language. The research
presented in [9] focuses on the design and development of an IoT device that teaches
children about smart agriculture and the programming of smart farm systems.

Modern-day children are commonly referred to as digital natives, as they have grown
up with current technology being ubiquitous and seamlessly integrated into their daily
lives [10]. They are known for their natural and intuitive ability to interact with tech-
nology and use digital devices effectively. This proficiency has revolutionized the way
they learn, resulting in new methods and modalities of knowledge acquisition [11]. One
major area that has been impacted by the rise of digital natives is science, technology,
engineering, and mathematics (STEM) education [12]. With the growing importance of
technology in almost every aspect of our lives, including IoT applications, the demand for
skilled professionals in the STEM field has increased significantly. In response, countries
around the world, such as in the European Union, are placing a renewed focus on STEM
education and revising their school curricula to make it more engaging and relevant for
young learners [13,14]. Therefore, to facilitate meaningful and deeper learning in these
areas, future IoT educational applications should be specifically designed to promote the
development of abstract mathematical concepts [11,15].

In this regard, both scientific research and commercial applications have focused on
toys with IoT features such as software and sensors, commonly referred to as smart toys [16].
These toys are characterized by their ability to facilitate two-way interactions between
children and toys, using both tangible objects and electronic components. Smart toys offer
a unique play experience that differs from traditional toys by providing an interactive
environment that promotes general child development [17]. Moreover, as such, they have
the potential to aid in the development of thinking and problem-solving skills, particularly
in relation to abstract mathematical concepts such as geometry [18]. Although geometry
is an essential subject in mathematics, many students struggle to visualize its concepts,
which can impede their ability to learn and apply geometric principles effectively in
the future [15].

Recent studies emphasize that there are currently limited empirical studies on STEM
education in young children [19]. According to a rather novel study, there is little research
on how children interact with IoT-based geometry learning systems and how these systems
can be effectively integrated into educational settings [20]. In general, additional research is
required to evaluate the effectiveness of smart toys in facilitating the learning process [17],
while the authors in [21] suggest that the incorporation of such technology has the potential
to revolutionize education.

This study introduces a novel approach to early childhood education by design-
ing and evaluating the first prototype of a smart learning toy for preschool geometry
education. Section 2 provides a review of the current state of the art in smart toys for
STEM education, highlighting their benefits, limitations, and gaps that the present study
aims to address. Section 3 outlines the materials and methods used for prototype design,
including hardware components and machine learning algorithms for gesture-initiated
feedback. The hardware components include sensors to detect movement and position,
a microcontroller for data processing, and a speaker for feedback delivery. Machine
learning algorithms were tested and utilized to recognize complex gestures that form a
particular geometric shape. Section 4 reports the findings of a pilot user study that in-
volved preschool-aged children interacting with the prototype toy in an experiment session.
The study aimed to assess the usability, level of engagement, and motor aspects of inter-
actions with the IoT smart toy designed to promote geometry learning among preschool
children. Sections 5 and 6 provide a comprehensive discussion and conclusions, respec-
tively, on the design, usability, and performance of the smart learning toy for preschool
geometry education. The study’s findings contribute valuable insights to the field of edu-
cation technology, demonstrating the potential of IoT-based learning systems to improve
early childhood education.
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2. State of the Art

The application of technology to toys and its impact on children’s interaction with
them has become an area of increasing focus for the scientific community due to the vital
role that toys play in the development of children [17]. Smart toys, which incorporate
digital features such as software or sensors, provide a more interactive environment than
traditional toys, fostering the development of cognitive, social, and behavioral skills in
children [16,22]. According to toy manufacturers and marketers, the possibilities of us-
ing smart and connected toys in education appear to offer rich, interactive, innovative,
and mobile learning experiences for preschool children [23]. As such, smart toys have
emerged as a promising tool for STEM education in preschool children [24]. For successful
STEM education, research has emphasized the importance of improving mathematical
skills, programming skills, and problem-solving skills. The design and implementation of
technology for learning cannot take place without taking into account the psychological
aspects of a child’s development that affect their ability to learn and interact with technol-
ogy, on the one hand, and the pedagogical practices that improve those abilities, on the
other [12,15,25]. STEM education for children is based on the principle of introducing
them to programming through a high-level language, which was pioneered by Seymour
Papert [26] with his development of Logo Turtles. This approach is based on Piaget’s theory
of cognitive constructivism [27]. In recent decades, educational technology research has
been influenced by Piaget’s theory of cognitive development and Montessori’s educational
approach, which emphasize the importance of hands-on learning and the manipulation
of objects in the development of logical–mathematical knowledge [27,28]. Studies have
shown that physical manipulation plays a critical role in the development of thinking
skills, enabling the transition between physical and virtual representations and simplifying
abstract concepts for young children [29]. Interactive features such as sound, animation,
and movement-initiated feedback can also provide rich contextual information to enhance
learning and motivate children to complete tasks successfully [11].

A study presented in [17] provides a review of smart toys from the last 30 years,
focusing on toys for children in early childhood and primary school by analyzing and
categorizing smart toys based on their technological and educational capabilities. One of
the major findings of the study emphasizes that, in recent years, smart toys have focused
on special sciences (programming) and some skills of the 21st century (STEM and com-
putational thinking). On the contrary, in the first 20 years, a greater emphasis was placed
on cross-disciplinary skills such as collaboration, emotional thinking, symbolic thinking,
storytelling, and problem solving. We have adopted the smart toy categorizations from this
research. Another novel research study presented in [30] aimed to review 30 computational
toys and kits designed for children aged 7 years and under, including physical, virtual,
and hybrid kits. Qualitative analysis examined the kits’ design, support for exploring com-
putational concepts and practices, participation in projects and activities, and exploration
of other domains of knowledge. The study presents design suggestions and opportunities
to expand the exploration of computational concepts, new modes of expression, and ex-
panded support for children from underrepresented groups in computing. The findings
reveal commonalities between existing kits and suggest ways for designers and researchers
to improve the possibilities for children to create, explore, and play with computing.

Smart toys are now being scientifically researched in the STEM context for preschool
education. For example, the KIBO Robot Demo is an educational robot designed to teach
young children (ages 4 to 8) programming and engineering concepts [31]. The children
can program the robot using wooden blocks with barcodes, learning basic programming
concepts such as sequencing, loops, and conditional statements. The system has been tested
in a variety of settings and has been shown to effectively engage children in programming
and engineering. Research presented in [32] focused on the development of a smart toy
called ABBOT, designed to motivate children to become outdoor explorers. ABBOT is
equipped with sensors that allow it to collect environmental data such as temperature,
humidity, and light levels. The device is also designed to encourage children to participate
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in outdoor activities and learn about their environment by providing feedback and rewards.
The research study presented in [33] described the anthropomorphic design, development,
and testing of a prototype called OBSY, which is an observation learning system aimed
at facilitating the learning of scientific concepts for primary school children in Thailand.
The system consists of a ubiquitous sensor-based device that resembles an octopus with a
mobile web application hosted on the device. Sensors attached to the OBSY device collect
environmental data, which is then interpreted using the web application accessed through
tablet computers. The system was developed through a user-centered design approach and
aims to promote learning science in an engaging and interactive way. The study presented
in [34] described the design and interactive behavior of a tangible augmented reality toy
kit that teaches preschool children about color mixing, mathematics, and geometric 2D–3D
shapes. The game allows children to interact with both physical and on-screen objects
using touch-screen and AR interactions. The researchers conclude that the game has the
potential to improve the learning experience for young children and to promote interest in
STEM fields. Through tangible programming, the study presented in [9] investigated the
use of IoT technology in the smart farming education of children. It involved creating a
tangible programming kit that simulates a smart farming system using sensors and Internet
of Things devices. User testing revealed that the kit was effective in promoting engagement
and learning in young children and has the potential to improve learning in the fields of
agriculture and technology.

Research in [24,35] investigated coding with two commercial smart toy robots, Dash
and Botley, as part of playful learning in the context of Finnish early education. The results
of our study show how Finnish preschoolers aged 5–6 years approached, conducted, and
played coding with the two toy robots. The study’s main conclusion was that preschoolers
used toy robots with coding affordances primarily in developing gamified play around
them by designing tracks for the toys, programming the toys to solve obstacle paths,
and competing in player-generated dexterity, speed, and physically mobile play contests.

A rather recent study presented in [36] examined the effects of didactic approaches
in guiding early childhood children in learning computational logic and programming
concepts. To develop the students’ cognitive skills, a teaching methodology was developed
that utilizes a commercial smart mBot Arduino robot. mBot is a beginner-friendly educa-
tional robot that makes programming and learning robots simple and enjoyable. mBot also
helps develop logical thinking and design skills. The study concluded that the developed
method enhances learning processes and computational thinking abilities.

In recent years, due to the development of smart toys that are enhanced with the
Internet of Things (IoT) and can connect to the Internet, there has been a growing body
of research on cyber security and privacy risks of smart toys. The studies presented
in [37,38] focused on reviewing major smart toy-related children’s privacy risks and the
major mitigations to such risks.

Despite requests from the scientific community to investigate how to best incorporate
new technology into the formal and informal learning contexts of young children, the de-
sign and development periods of new smart toys have not been adequately emphasized,
as highlighted by the research in [39]. Therefore, these authors applied a design and de-
velopment research method to create guidelines for designing and using smart toys for
preschool children. The research examined a smart toy developed in a pilot study, held fo-
cus group meetings with early childhood teachers, created two prototypes, and tested them
with preschool children, teachers, and scholars. The study divided the design guidelines
into three categories: content, visual design, and interaction.

Based on the literature, the use of smart toys in preschool education represents a
promising approach to fostering STEM skills in young children, and, in that regard, learning
geometry at an early age is crucial for the development of spatial reasoning skills. Studies
indicate that it is critical to introduce geometry in the preschool period, when the first
critical geometrical observations are made [40,41]. In that regard, recent studies on gestures
emphasize the body’s significance in spatial and geometric reasoning, highlighting the
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importance of kinetic movement in the genesis and development of abstract geometrical
cognition in early years [42–45].

Aligned with the aforementioned rationale, the present study was designed to ex-
plicate the design, development, and evaluation of a plush smart toy prototype aimed at
facilitating the teaching of geometric shapes to young children. Through the pilot study
user evaluation, we intend to investigate the nature of the children’s engagement with
the smart toy prototype, to test its feasibility, and to gather some initial data on the toy’s
effectiveness. Thus, we will be able to gain valuable insights into the experiences of children
as they use the toy and identify potential areas for design improvement.

3. Materials and Methods
3.1. Toy and Interaction Design

In order to design a smart toy for learning geometry, we chose to integrate IoT sens-
ing technology in conjunction with appropriate machine learning algorithms into a com-
mercially available plush giraffe toy. This allowed us to take advantage of the softness,
familiarity, and flexibility of the design of the plush toy while also providing a dynamic
and engaging learning experience for children. The flexibility of the design of the plush
toy allows for the seamless integration of IoT technology. Sensors and other electronic
components can easily be embedded within the toy while still maintaining the overall
aesthetic and feel of the toy. Plush toys are considered soft and safe for children to play
with, making them an ideal platform for designing interactive toys. Second, plush toys
are often familiar to children, providing a comforting and appealing object to interact
with [46,47]. This familiarity can help children form an emotional connection with their
smart toy, making the experience more personalized and enjoyable. Research has indicated
that animal (plush included) and robot toys are generally regarded as gender neutral,
which provided us with an intriguing opportunity to determine whether or not children
of different genders prefer one toy over another [48]. Plush toys have been applied and
investigated throughout the years of research, as in [39,49–51].

The main hardware components of the smart toy are presented in Figure 1. The specific
functions of the components are elaborated in the rest of this section.

Figure 1. Main smart toy hardware components.
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The proposed interactions with the toy occur in the following manner: Digital repre-
sentations of geometrical shapes are displayed on the LCD screen, followed by an audible
signal. The child is required to map the shape presented on the screen by drawing the
shape above the sensor module detection area using hand movements. This allows the
child to map an abstract geometric shape from its digital representation on screen into its
embodied representation. The machine learning algorithm incorporated in the smart toy
detects whether the gesture outline drawn by the child matches the shape presented on the
LCD screen. This provides immediate feedback to the child, allowing them to understand
if they have correctly identified and drawn the shape. This approach reduces the child’s
cognitive effort and promotes effortless interaction with the system [52]. The use of hand
gestures to interact with the device improves its usability, particularly for young children,
and can contribute to the development of fine motor skills. Fine motor skills are increasingly
recognized as an important aspect of early childhood development and have been linked
to better learning capabilities and overall cognitive development [53]. Current studies on
gestures emphasize the role of kinetic movement in the origin and development of abstract
geometrical cognition in childhood [42,44,45]. The audio and visual feedback provided by
the toy also enriches the learning experience, making it more engaging and enjoyable for
the child. Furthermore, this type of activity can also promote the development of spatial
skills, which are critical to success in STEM fields such as mathematics and science [54].

3.2. Hardware

The main functionality of our proposed system is simple in design (as originally planned)
and is based on a microcontroller with additional modules attached. We considered several
commercially available microcontroller boards for use as the core of the proposed system,
where the minimum requirement was the ability to log data onto a microSD card and perform
real-time acquisition from the utilized sensors. As most of the considered sensors outputted
simple analog signals and did not require any other on-the-fly communication with the
microcontroller, any microcontroller board with at least four multiplexed 10-bit A/D inputs
would be sufficient for the data acquisition task. In a scenario where four analog sensors
are used with 50 readings per second, 400 Bytes would be required for every second of
measurement. This led us to a simple calculation that 10 s of acquisition required at least 4 KB
of RAM. ATMEGA328P-based microcontroller boards are widely available (used mostly in the
Arduino family of microcontroller boards), but only 2 KB of RAM made it nearly impossible
to perform real-time acquisition for a prolonged period. As additional data preprocessing was
considered (and was finally implemented), together with the possibility of ML inference on
the microcontroller itself, a more capable 32-bit microcontroller board was required.

The Teensy 3.6 microcontroller board features an ARM Cortex-M4 MK66FX1M0VMD18
core with 1024 KB Flash and 256 K RAM and clocked at 180 MHz (overclockable at
240 MHz). This computer board is not the fastest microcontroller board available on
the market today (even within the Teensy family of microcontroller boards), but it was
capable of performing all the planned tasks during the development stage of the pro-
posed system. A compatible pinout with the fastest Teensy 4.1 Development Board
(ARM Cortex-M7 at 600 MHz, 7936 K Flash, and 1024 K RAM) made a seamless up-
grade possible, if more complex, and resource-hungry ML were to be implemented dur-
ing future development. Teensy microcontrollers are compatible with the SdFat library
(https://github.com/greiman/SdFat (accessed on 11 April 2023)) that allows extremely
fast file writing, reading, and handling. A SanDisk Class 10 MicroSD card was used for
logging the measured data, but any other class 10 microSD card would be sufficient for
the task.

As feedback to the user, we implemented both audio and visual components. A piezo-
electric speaker (buzzer) could provide limited and short monophonic melodies used for
indicating the start and end of the measurement or the error state within the system. Vi-
sual feedback was provided using a Newhaven 4.3 inch TFT display with an integrated
FTDI FT800 TFT Controller. The display featured a 480 × 272 px resolution, could dis-
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play up to 262 K colors, and interfaced with the microcontroller using SPI, which can
be clocked up to a 30 MHz clock rate. The advanced library provided by Newhaven
(https://github.com/NewhavenDisplay/FTDI_FT800/ (accessed on 11 April 2023)) en-
abled easy integration into the system and the effortless creation of simple geometrical
objects to be displayed together with progress bar objects. The extremely fast SPI interfacing
did not interfere with the measurement process at all as the TFT content was refreshed
only once per second. Additionally, the pushbutton was connected via a long cable to the
interrupt-enabled GPIO pin and used as a trigger for the measurement start.

A small PCB breakout board with size 75 × 44 mm was designed using Kicad 6.0 (https:
//www.kicad.org/ (accessed on 11 April 2023)) and manufactured using an LPKF ProtoMat
S64 CNC machine (https://www.lpkf.com/en/industries-technologies/research-in-house-
pcb-prototyping/products/lpkf-protomat-s64 (accessed on 11 April 2023)), as shown in
Figure 2. The PCB secures the microcontroller board and TFT display in place, and provides
pins for the easier connection of the sensor module and remote switch.

Figure 2. Screenshot of the PCB design of an in-house developed breakout board for Teensy 3.6.
created by KiCad schematic editor

During the development and testing stage of the system, the microcontroller board
was directly connected to the PC using a 480 Mbit/s USB 2.0 interface. This configuration
allowed insight into all raw sensor data, more flexibility when testing different ML models,
and deeper information on the performance of each ML classification algorithm tested.
Model training and inference were performed on a dedicated laptop computer. To be more
precise, the machine features an Intel(R) Core(TM) i7-7700HQ@2.80 GHz processor, 16 GB
of RAM, and NVIDIA GeForce GTX 1050 Ti CUDA capable graphics card and ran a 64-bit
Windows 10 operating system. For more efficient computing with GPU, the NVIDIA CUDA
deep neural network library (cuDNN) was applied. All PC-based code was written for
Python 3.8 with Tensorflow 2.2.0 on top.

A schematic of all electronic components and interfaces between devices is presented
in Figure 3. As the USB 2.0 interface used to connect the examiner PC was relatively long
(≈2 m), the PC could be placed away from the tested device, thus not obstructing the
subject’s concentration or interfering with the measurements in any way. In the develop-
ment stage, the microcontroller board together with all the attached components could be
powered via a USB cable or by its own battery source (via a power bank connected directly
to the Vin and GND pins).
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Figure 3. Electronic components and interfaces between devices.

3.3. Sensing Technology

To locate a hand in space, several possibilities were considered, including visual recog-
nition, capacitive sensors, ultrasonic sensors, TOF sensors, and finally, selected infrared
sensors. Our aim, on the hardware side, was to create the simplest possible gesture recogni-
tion device that could be completely embedded into a plush toy body and could run data
acquisition, ML model inference, and visualization using a single embedded microcontroller.
The whole system is based around the microcontroller rather than a single-board computer
(such as the Raspberry PI) due to power requirements (longer battery autonomy) and faster
boot-up times. Using an RGB (or RGBD) camera as a sensor in real-time was a plausible op-
tion that would require a powerful embedded computer to process data in real-time [55,56].
As an alternative, proximity sensors were primarily selected due to their low price, min-
imal power requirements, and relatively simple 1D output. Ultrasonic distance sen-
sors HC-SR04 (https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
(accessed on 11 April 2023)) initially showed themselves to be a valid choice for the pro-
posed system, where their conical-shaped sensing area enabled the detection and distance
measurement in large volumes. Unfortunately, the use of several ultrasonic sensors in over-
lapping sensing areas showed unsatisfactory performance due to interference and achieved
a useful acquisition rate lower than 10 Hz. The third type of sensor initially considered was
an array of TOF VL53L0X (https://www.st.com/en/imaging-and-photonics-solutions/
vl53l0x.html (accessed on 11 April 2023)) distance sensors. TOF sensors are superior in
tasks involving precise distance measurement and a high refresh rate due to their principle
of operation and small sensing area (which is point-sized); the proposed system would
require a dense array of sensors to reliably detect and track hand movement. Like the
camera in the visual recognition approach, this sensor type was also discarded due to the
overall cost and complexity of the system.

An in-house developed capacitive proximity sensor [57] was selected for the initial
prototype version of the device. Featuring a ≈10 cm sensing range and low power con-
sumption, this presented an adequate candidate for gesture sensing. In order to allow
for gesture recognition in a two-dimensional plane, a set of two sensors was employed.
As presented in Figure 4, two capacitive sensors were mounted on the neck of a plush toy.
This arrangement created a kind of virtual canvas, spreading behind the neck and above
the back of the plush toy, for users to perform their gestures on. This broadened the number
of discernible gestures when compared to a single-sensor scenario.
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Figure 4. Researcher interacting with the first prototype of the device, featuring capacitive proxim-
ity sensors.

One of the most critical parts of the capacitive sensor is its sensing element. The mate-
rial of which it is made as well as its shape and size extremely determine the sensing range
of the device. This is caused by different amounts of ambient capacitance added to the
sensing oscillator. This capacitance is compensated for during the calibration procedure by
adjusting a digital potentiometer in the reference oscillator. The conductivity of the sensing
element greatly influences the charge distribution along its surface. As the exact behavior
of the sensor with different sensing elements is impossible to determine, we decided to use
an experimental approach by switching materials as well as sizes. In the end we opted for a
copper sheet because it allowed for the greatest sensing range. The final size of the sensing
element was also experimentally determined in terms of being large enough to provide an
adequate sensing range but not introducing an enormous amount of ambient capacitance,
which would interfere with the calibration procedure.

The calibration procedure is based on equalizing the frequencies of two oscillators
(sensing and reference) while there are no moving objects present within the sensing range
of the device. As a result, after a successful calibration, the output voltage from the sensor is
at its maximum value. Bringing an object within a sensing range reduces the output voltage
in proportion to the distance from the object. If the device operates in a static environment,
a single calibration run should be sufficient. By default, the calibration is activated during
each power-on or reset sequence. However, if the device needs to be recalibrated for gesture
recognition purposes, this can be performed at the user’s discretion. Geometrical shapes
are displayed on the LCD screen, followed by an audible signal. The user interacts with the
toy by making a gesture in the sensing field of the capacitive sensors, thus mapping the
presented shape. This interaction produces two time-series vectors (one for each sensor)
that are stored on the microSD card.

Another sensor that was considered was an infrared beam sensor, particularly a Sharp
GP2Y0A21YK0F Analog Distance Sensor (https://global.sharp/products/device/lineup/
data/pdf/datasheet/gp2y0a21yk_e.pdf (accessed on 11 April 2023)). This sensor can
obtain measurements up to 80 cm. There are a few similar models that are electrically
compatible but have different ranges, such as GP2Y0A21YK0F, which works up to a 30 cm
distance. All the aforementioned sensors are analog, which means that they yield a signal
roughly in the range of 0–5 V, which can be read using the microcontroller’s integrated AD
converter. The relationship of the measured distance and the output analog signal is not
linear, thus recalculations must be performed to obtain the exact distance. Additionally,
the IR-type distance sensors have relatively large minimal measurement distances (4 cm
for GP2Y0A21YK0F model and 10 cm for GP2Y0A21YK0F model), where readings follow
different non-linear relations and thus are unusable. The sensor was composed of an IR
LED emitter that projects a light beam and a receiver in the form of a simple 1D camera
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that measures the reflected light that is returned from the object. Since the sensor measures
the light reflected by the object, it may be affected by the environmental lighting conditions.
Another aspect that must be considered to obtain a reliable measure is the internal update
period of approximately 40 ms, where the sensor outputs faulty readings during a short
period of recalculation. A solution was proposed of increasing the system refresh rate to
50 Hz and data preprocessing, as described in Section 3.5. The 30 cm and 80 cm IR sensors
were tested in real scenarios, and the readings were compared to select the optimal solution.
The 30 cm version had a shorter minimal distance, thus users’ hands can be closer to the
sensor module, but a shorter maximum distance also showed in practice that some gestures
performed in the larger area over the sensor module can be misinterpreted. On the contrary,
the 80 cm sensor version has a longer minimal distance; consequently, the distance to an
object closer to a sensor module is misinterpreted. A longer maximum distance allowed
the sensor to track gestures performed in larger volumes and was thus selected as optimal
(but not perfect) for our system.

3.4. Data Collection

The scientific literature has extensively investigated the use of machine learning mod-
els for complex hand gesture recognition, and various approaches have been proposed
for conducting preliminary testing. Hand gestures are an important part of nonverbal
communication with other humans and are an integral part of interaction with the environ-
ment [58]. They are characterized by trajectories of the hand key points in the space and
can be recorded by a variety of devices, which can be divided into two types: wearable
and non-wearable. Wearable devices use miniature body-borne computational and sensory
components, such as various inertial sensors placed on hand key points [59] or glove-like
devices that can even track complex finger movements [60]. These types of devices re-
quire wearing cumbersome equipment or cables that connect the device to a computer
and require preparation before use. Non-wearable devices are commonly vision-based
devices [61,62] or employ simple proximity/distance sensors to track the location of the
hand in space [63,64]. The main drawbacks of most vision-based systems are their inability
to track hand position beyond the camera’s field of view, their sensitivity to challenging
lighting conditions (in outdoor applications), and their computational complexity. Time-
of-flight (TOF) cameras are special types of cameras that measure the distance to a large
number of points in space and are commonly employed as input devices to game consoles,
where they can track hand movements and detect some specific gestures [65,66]. Both
devices are complex and require a computer instead of a microcontroller to read and process
measured data. The development of small and simple HCI systems based on proximity and
distance sensors using relatively inexpensive components has created new opportunities
for novel and cost-effective human–computer interface designs [67]. A similar approach
is considered in our research, where the developed sensor module relies on an array of
simple and inexpensive distance measurement sensors.

Building accurate and robust models for complex hand gesture recognition is chal-
lenging due to the diversity and complexity of hand gestures. Therefore, preliminary
testing of machine learning models with collected data is critical to ensuring their reliability
and effectiveness.

Data were collected from eight adult individuals to serve as data for building a
machine learning model. The research employed a non-probability sampling method
known as convenience sampling, which entails selecting study participants who are easily
accessible and willing to participate. In this case, those were academic staff involved in
the research project on a wider scope. All subjects signed an informed consent form in
accordance with the Declaration of Helsinki and approved by the Ethics Committee of
the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture.
Each individual performed gesture movements for around an hour. In general, around
200 gestures (depending on the sensing technology) were gathered per individual and were
later processed, depending on the sensing technology.
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3.5. Data Preprocessing

Raw sensor data were pre-processed before input to ANN to improve the accuracy and
efficiency of the machine learning models. Due to the nature of the sensors used, the raw
data are noisy and inconsistent, making it difficult to extract meaningful information. Data
preprocessing helps to address these issues and prepares the data for analysis through data
transformation, data cleaning, and data reduction. Data transformation converts data into
a more suitable format by performing linear or non-linear scaling and normalization of
numerical values. As a notable example, the IR distance sensor outputs non-linear analog
data that could be transformed into a linear distance [68].

By performing non-linear scaling before feeding data to an ML model, the first layers of
our machine learning model do not have to find relations between non-linear voltage input
and actual linear distance and can focus on resolving hand gestures from transformed linear
distance data. The data cleaning technique removes or corrects errors and inconsistencies
and predicts missing values. This requirement is again presented on the IR distance sensor,
which internally updates readings with a 25 Hz refresh rate while our system is set to a
fixed 50 Hz refresh rate. The faster refresh rate was required as the IR distance sensor
outputs faulty readings during short periods of internal distance recalculation, and there
is the possibility of reading the sensor output during that exact moment. By having
more readings than required, simple data filtering can be performed, and outliers are
simply removed and replaced with mean neighboring values (using a mean filter). The
data reduction technique effectively reduces the size of the dataset while still preserving
important information. As reported in the literature, human self-paced movements are
within the 3.3 Hz bandwidth (ref), thus the system’s 50 Hz sampling rate is excessive
for recognizing complex hand gestures. Additionally, the training and inference times of
any ML model are significantly reduced by reducing the input size. By our conservative
estimation and general experience, a 10 Hz refresh rate was selected as optimal as it
balanced the performance and complexity of the ML model. Data reduction was performed
by resampling 500 inputs per sensor (for a 10 s measurement time) to 100 inputs using
cubic spline interpolation. When data are resampled at a five-fold lower rate, noisy sensor
inputs are filtered, and readings are smoothed, as shown in Figure 5. By resampling the
data to a 1:5 rate, we effectively achieved low-pass filtering and simplification (reduction)
of the ML model. With this approach, we effectively reduced the 50 Hz sensor acquisition
rate to a 20 Hz acquisition rate, which is still suitable to recognize complex hand gestures.
If a lower acquisition rate were to be used, some faster movements may be tracked with
an inadequate number of samples, thus preventing accurate recognition. Additionally,
when the original input vector (4 × 500 samples) is used for ML training with a similar ML
model (only the input size was modified), the categorical accuracy of the test is significantly
reduced to 0.86 and the model size to around 6.3 MB (1.4 MB for resampled inputs), which
may be inadequate for ML implementation on microcontrollers.

An additional pre-processing step was also considered, where only data belonging
to the performed gesture are extracted and forwarded to an ML model. This is usually
conducted by observing the first and the last samples, where the object is detected by
sensors, and extracting all the samples in between. This approach was shown to be
unreliable in practice, as the subject may place the hand in the sensed area long before or
keep it there long after the required gesture is performed. An example of movement is
depicted in Figure 5, where some readings exist throughout the measurement time and do
not represent the gesture performed. Thus, an alternative approach was considered, where
the complete measurement is forwarded to an ML model with the task of recognizing
which gesture was executed at any moment during the allowed measurement time. This
was achieved by relying on 1D convolution, which is described in the next section.
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Figure 5. Comparison of RAW sensor reading and pre-processed data for one sensor during a 10 s
measurement time.

3.6. Machine Learning: Test and Training

Machine learning has a wide range of applications across various industries and
research fields. Some of the most common applications of machine learning today are
image and speech recognition, natural language processing, autonomous vehicles and
robotics, the Internet of Things, and predictive analytics [69–72]. As technology advances
and data become more abundant, the use of machine learning is expected to increase and
be implemented in almost every aspect of life. There are many microcontrollers available
today that have enough processing power and memory to run machine learning algorithms,
with benefits including reduced latency, lower power consumption, and improved privacy
and security [73,74].

An artificial neural network (ANN) is a type of machine learning model inspired by
the biological structure and functioning of the human brain. It consists of interconnected
processing nodes (neurons) that work together to solve a specific problem. Neural networks
are typically arranged in a series of interconnected layers, where each layer is made up
of a set of neurons that perform a specific mathematical function on the received input.
A typical fully connected ANN consists of several types of ANN layers, including input
layers, hidden layers, and output layers. Input layers receive input data, (several) hidden
layers perform computations where the output of one hidden layer is then passed as input
to the next layer, and finally, the output layer produces the final output. Biological neural
networks exhibit similar architecture and learning methods for a variety of tasks, where,
due to computer power constraints and training time limitations, ANN architectures must
be optimized for a specific task. This is usually performed by combining different types
of layers into a specific architecture, such as feedforward neural networks, convolutional
neural networks, and recurrent neural networks. Our ANN is tasked with classifying hand
gestures, and the network input is data acquired from the sensor module. All tested sensor
modules are quite similar and perform distance measurements to the subject hand with
different properties, as discussed in Section 3.3.

Preliminary ML Results

In order to select the most appropriate sensing technology, the collected data from all
sensors were first tested by applying a fully connected neural network constructed using
the Keras API with TensorFlow as the backend. The training data were pre-processed
and normalized. The architecture of the preliminary NN consisted of a sequence of layers
that were stacked on top of each other, starting with an input layer, followed by three
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hidden layers and an output layer. The first hidden layer contained 1024 neurons, with
the activation function used in this layer being a rectified linear unit (ReLU). The second
hidden layer had 512 neurons and also used the ReLU activation function. The third
hidden layer included a dropout layer, used to prevent over-fitting. The dropout rate
was set to 0.2, which means that 20% of the randomly selected neurons in this layer were
ignored during each training iteration. The fourth hidden layer had 64 neurons and used
the ReLU activation function. The final layer was the output layer, which had three,
four, or five neurons (depending on the number of different gestures we tested). It used
the softmax activation function. The softmax function is used to output a probability
distribution over the 3–5 possible output classes, where the highest probability corresponds
to the predicted class label. Due to the fact that this is a multi-class classification problem,
for this experiment, the categorical cross-entropy loss function was applied as the loss (cost)
function and adaptive moment optimization (Adam) as the optimizer.

The highest accuracy of classification was obtained for three gestures, namely, the circle,
square, and pentagon. For each of the sensing technologies, the accuracy of the preliminary
NN model is presented in Table 1.

Table 1. Classification accuracy of the preliminary neural network model for a particular sensing
technology.

Sensing Technology Neural Network Accuracy

Capacitive 72.05%
IR short range 78.33%
IR long range 95.06%

Based on these results, the IR long-range data were further employed for machine
learning utilization in this research.

3.7. The Final Architecture of Machine Learning

The final architecture of the NN model displayed in this investigation is constructed
of eight layers, as depicted in Figure 6. The first is the input to a 1D convolution layer with
32 filters and 16 kernel sizes. The convolution layer is followed by a flattening, which is
then followed by a dense layer with 32 neurons. The dense layer is followed by a dropout
layer with a dropout rate of 0.2 and another dense layer with 32 neurons, which is again
followed by another dropout layer with a dropout rate of 0.1. The last two layers are the
dense layer with 32 neurons and the final output layer. The applied activation functions
were ReLU (in dense layers) and softmax (in the output layer). Our proposed architecture
is a 1D convolutional neural network, where the convolution layer extracts characteristic
features from the signal input and where dense layers try to find relations between the
extracted features to classify signals. The dropout rate (probability of setting output from
the hidden layer to zero) must be included because of the small training dataset, which
prevents the overfitting of the network to a training dataset.

Figure 6. ANN architecture.
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Since the classification of the hand gestures is a multiclass classification problem,
the categorical cross-entropy loss function was applied as the loss function. Another key
aspect of the ANN model architecture that was thoroughly examined is the selection of
optimizers, learning rates, number of epochs, and batch size. Adam provided the most
accurate estimation results on the test dataset, with a 0.0005 learning rate. Optimal training
results were obtained with 100 epochs and a 128 batch size.

ML models were originally trained in all shapes, but the performance of the test
dataset showed unsatisfactory results with a categorical precision of 87.3%. By removing
one gesture from the training and test datasets, the categorical accuracy with the remaining
four gestures increased to 89.8%, which was also unsatisfactory. Finally, by keeping
only three gestures (namely, circle, square, and pentagon), we achieved better categorical
accuracy. After performing several repetitions of the classification, the accuracy ranged
from 93.8% to 98.3%, depending on the repetition. The results in the form of a confusion
matrix for all three models are presented in Figure 7, and do not show which shape or
gesture is to blame for the poor performance of the model with the five gestures in the
training dataset.

Figure 7. Confusion matrix for models that include three shapes (left), four shapes (middle), and five
shapes (right).

We analyzed raw training data from different subjects in search of a solution that
could eventually improve performance. An example of the analysis is presented in the
form of a plot in Figure 8 for all five gesture-shapes for a single sensor and the same subject.
As the system captures raw data in 10 s intervals, useful data (when the user is performing
a gesture) take only a few seconds and can be found anywhere inside the original signal.
As seen from the sample data presented in Figure 8, useful data take only 2 s intervals
per sensor, while the rest of the data are extremely noisy. Relative timings and shapes
of slopes between sensors capturing the same gesture are actual features that have to
be extracted and used for gesture recognition and classification. By visual inspection of
the raw data for several examples (the same person performing the same gesture), some
obvious similarities between signals cannot easily be found. Thus, this non-trivial task was
delegated to our proposed ML model, which can extract those features and decide which
gesture is performed. A more detailed analysis of measured raw data from all four sensors
on several subjects in the training set suggested that shapes 3 and 4 (namely, the triangle
and rhombus) are similar to shape 1 (circle). We presume that acquiring more training
data would improve the performance of a five-shape ML model by allowing it to find
more specific features for each shape and consequently build a better model. Due to the
aforementioned reasons, we removed shapes 3 and 4 from the training and test datasets.



Electronics 2023, 12, 1951 15 of 34

Figure 8. Raw sensor data for five hand gesture shapes recorded with a single sensor.

4. Exploratory Pilot Study

The purpose of this pilot user evaluation was to collect data on children’s experiences
and perceptions of using IoT technology for educational purposes and to identify potential
areas for improvement. The evaluation concentrated on some aspects of usability, levels
of engagement, and motor aspects of interactions with the proposed smart toy for early
childhood geometry education.

Exploratory pilot studies with children are a crucial step in identifying potential issues
in usability testing before conducting a larger usability study. The importance of pilot
testing and small sample sizes in child-related research has been highlighted in several
studies. To design new technologies for children, Druin [75] used cooperative inquiry with
children and found that pilot testing was crucial in refining the design of the technologies.
Similarly, in [76], Druin emphasized the importance of pilot testing when designing mobile
technology for children and highlighted the need to involve children in the design process.
A group size of five–ten participants is a sensible baseline range for usability studies related
to problem discovery, as discussed in [77]. Small sample sizes in exploratory pilot studies
can also be useful for identifying design flaws or other issues that might not be apparent
in larger-scale studies. The small sample size allows for more iterative design processes,
which can lead to better user engagement with technology [78]. Additionally, scientific
references support the use of small sample sizes in exploratory pilot studies with child
participants. For example, in their study of toddlers’ use of visual information from video
to guide behavior, Schmitt and Anderson [79] used a sample size of 16 children, which
allowed for detailed observations of individual children’s behaviors and provided rich data
for exploring how visual information influences children’s actions. Faulkner’s research,
presented in [80], found that a group size of 10 participants will likely reveal a minimum of
82% of the problems. Nielson in [81] also noted that elaborate usability tests are a waste of
resources and that the best results come from testing no more than five users and running
as many small tests as possible.

This study was exploratory in nature, and the objective was to test the feasibility and
gather preliminary data before conducting a larger and more rigorous study.

The evaluation involved a small group of children aged 4 to 7 years old, who were
given the opportunity to interact with the toy and provide feedback on their experiences.
The initial idea was to examine the movements of the child’s hands while interacting with
the prototype toy. The results of the testing provide design guidelines for future interaction
realization and movement-initiated feedback. The collected data and findings will be useful
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for our future research into the design of the toy as well as the performance of the machine
learning model.

In order to conduct the pilot study, the faculty Ethics Committee gave their positive
opinion on the experimental procedure, stating that the proposed scientific research would
be carried out in accordance with the ethical principle of scientific integrity. All parents
signed a consent form before their children participated in the experiment.

4.1. Experiment Design and Procedure

This user evaluation study aimed to assess the usability, levels of engagement, and
motor aspects of interactions with an IoT smart toy designed to promote geometry learn-
ing among preschool children. The study used a mixed-methods approach, combining
quantitative data from pre- and post-test tasks and usability testing with qualitative and
quantitative data from video recordings, questionnaires, and interviews with children.

Based on our analysis of the scientific literature, it was found that most of the studies
combined a few techniques: an interactive Cyberheroes e-book was evaluated with struc-
tured interviews and questionnaires and engaged eight children aged 7 to 9 years [34];
a tangible, interactive learning tool, CyberPLAYce, was assessed with observations, sur-
veys, questionnaires, and audio/video recordings and involved eleven 11- to 12-year-old
children [82]; Word Mania, a fun educational game app for children, was evaluated with
a Fun Toolkit v3 instrument and enrolled twelve children aged 4 to 9 years [83]; a study
looking at STEM in early childhood education involved 14 pre-kindergarten children and
used semi-structured interviews, focus groups, and a questionnaire [84]. Hourcade and
colleagues [85] recommend using age-appropriate language, providing clear and concise
instructions, and using visual aids to support comprehension. Child-friendly data collec-
tion methods, such as observation, video recordings, and non-intrusive sensors, can help to
minimize disruption and enhance engagement [86].

The study was carried out in a controlled laboratory setting, with one-on-one interac-
tion between the researcher, participants, and the proposed smart toy. The experimental
design, along with materials and methods, is further described.

The assessment process was based on a set of criteria that includes several quantitative
and qualitative measures, which are expressed in terms of:

• Time-related aspects of interaction (time taken by the user to draw a shape and overall
interaction duration;

• Hand gestures used to interact with the toy;
• Perceived ease of use (mapping of the particular shape);
• User mapping accuracy per particular shape;
• Engagement;
• Returnance (as one of the endurability dimensions);
• Fun and subjective satisfaction;
• Obtained knowledge.

Several measuring instruments were used to acquire the aforementioned quantitative
and qualitative measures:

• Pre-test and post-test tasks: employed to evaluate the level of information acquisition
as an indicator of the educational value.

• Attitude questionnaires (Smileyometer and the Again-Again table) [87]: used to
measure children’s fun and subjective satisfaction.

• Structured interview: used as an instrument to measure children’s fun and subjective
satisfaction, level of engagement, and their perceived ease of use (mapping of the
particular shape).

• Video recording: used as an instrument to measure motor aspects of interaction
(hand gestures), time-related aspects of interaction, and engagement.
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• Observation checklist: used as an instrument during the assessment process to record
notes, document identified problems, and fill in additional information related to task
completion accuracy.

Figure 9 represents the overall framework of the experiment.
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Figure 9. Overall framework of the experiment.

Laboratory equipment utilized for the experiment was as follows:

• Cardboard geometric shapes and boxes;
• Smart toy for geometry learning;
• Computer for data collection;
• Consent forms for parents/guardians.

Figure 10 gives the graphical representation of the laboratory setup and equipment
applied in the experiment.

Figure 10. Visualization of laboratory setup.
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Experiment Procedure

The experiment procedure was as follows:

• Recruitment: The study employed a convenience sampling strategy, which is a non-
probability sampling method. Convenience sampling entails selecting study partic-
ipants who are readily available and willing to participate. The preschool children
were recruited by the university staff, including non-scientific personnel and personal
research networks, aiming to ensure that the study sample was as diverse as possible.
The study was explained to parents/guardians, who were asked to consent to their
child’s participation. Overall, fourteen children (seven girls and seven boys) aged
from 4 to 7 years old participated in the pilot study. The inclusion criteria included
no previous exposure to the smart toy used in the study, as well as no history of
developmental or learning disabilities.

• Pre-test task: Before interacting with the smart toy, each child was given a pre-test
task to assess their current knowledge of basic geometric shapes. Children were given
30 simple cardboard geometric shapes (namely, 10 circles, 10 squares, and 10 pen-
tagons) of different colors and sizes and were asked to put them in the appropriate
box for each of the shapes. The evaluation was administered orally by the researcher.

• Interaction with the smart toy: Each child had 30 min to play with the toy. The re-
searcher observed the child and documented their level of participation, motor aspects
of interaction, interest, and overall behavior while interacting with the smart toy.

• Data collection: A video camera was used to record the participants during the
experiment. It recorded the duration of the interaction, the accuracy of the completed
task, and any errors made by the participants. It also captured the levels of engagement
and other aspects of interactions that children had with the toy. Furthermore, the data
were also collected by the smart toy in terms of sensor output data obtained from
gesture movements.

• Post-test task: After interacting with the smart toy, each child completed a post-test
task that was the same as the one in the pre-test task. They were again given 30 (new)
simple cardboard geometric shapes (namely, 10 circles, 10 squares, and 10 pentagons)
of different colors and sizes and were asked to put them in the appropriate box (new)
for each of the shapes. The evaluation was administered orally by the researcher.
The pre- and post-test tasks were further utilized to examine the effectiveness of the
smart toy for geometry learning.

• Follow-up interview and questionnaire: The researcher asked close-ended questions
about the child’s engagement with the smart toy, its ease of use, their learning experi-
ence, and their subjective satisfaction while interacting.

• Data Analysis: Analyses of the overall collected data included statistical analysis
while focusing on several aspects, such as fun and subjective user satisfactions, ease
of use, engagement, returnance, and motor aspects of interaction. The pre- and
post-test task results were compared to see if the interaction with the smart toy signifi-
cantly improved geometry knowledge. The results of the questionnaire, interviews,
and video recordings were also analyzed in order to gain insights into the child’s level
of engagement and overall satisfaction with the smart toy.

Experimental materials and methods for pilot testing included several techniques.
Firstly, for the pre-test and post-test tasks, simple cardboard geometric shapes were utilized.
Scientific studies, such as the ones presented in [88–92], have shown that cardboard cutouts
are a valid and reliable tool in user evaluation studies. Simple cardboard geometric shapes
can provide tangible representations of geometric concepts, making them appropriate for
young children’s learning. This method can also be used to establish a baseline to assess the
effectiveness of educational toys and games in promoting geometric learning. These shapes
offer a simple, low-cost, and effective method of assessing children’s geometry skills and
knowledge before and after using geometry learning technology. Secondly, a structured
interview, as presented in Table 2, was used to gain insight into the children’s fun and sub-
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jective satisfactions, as well as their perceived ease of use (mapping of the particular shape)
while playing with the smart toy. During usability evaluations, interviews are another way
to investigate the user experience, as was shown in many user evaluation studies with
children [84,86,93–96]. Post-task interviews allow for the collection of observational and
verbalization data quickly and without the need for tape analysis. Post-task interviews
have the potential to provide benefits at the expense of slightly longer evaluation sessions
with children [86].

Table 2. Structured Interview.

Questions Aspects of Exploration

1. Did you like the game? Fun, subjective satisfaction
2. Which shape was the easiest for you to draw? Ease of mapping
3. Which shape was the hardest for you to draw? Ease of mapping
4. Was the game boring? Fun, subjective satisfaction
5. Was the game difficult? Fun, subjective satisfaction
6. Would you like to play this game again? Fun, subjective satisfaction
7. What else would you like to teach the giraffe? Engagement

Furthermore, to evaluate the children’s experiences in terms of subjective satisfaction,
fun, and returnance, this study used two instruments from the Fun Toolkit: a survey
instrument designed to help researchers and developers gather opinions about technology
from children [87]. The Fun Toolkit has been used in numerous studies [20,93,97–99] to
assess the usability of interactive technology with children, such as educational games,
mobile applications, and interactive toys. It has been found to be a highly effective method
to gain insight into children’s technological experiences and identify opportunities for
improvement in the design of interactive products and services [83,100,101].

Namely, this research employed two instruments from the Fun Toolkit: the Smiley-
ometer and the Again-Again table. The Smileyometer is a simple tool used to measure
children’s subjective experiences with technology by asking them to rate their feelings
using a visual scale of smiley faces. The tool is based on a 5-point Likert scale (as presented
in Figure 11), with responses ranging from 1 (awful) to 5 (excellent) (brilliant) [100].

Figure 11. Smileyometer rating scale.

The Smileyometer has been widely adopted and used in research studies to assess
and measure satisfaction and fun in children’s experiences with technology [20,97,101,102]
because it is simple to use and does not require any writing on the part of children.

In this research, to assess how children felt during the interaction with the toy, they
were asked “Can you show me, using these pictures, how you felt while playing this game?”. Then
they were given Smileyometer rating scale cards to select the face that best suited their
subjective feeling.

Another instrument from the Fun Toolkit used for the child user evaluation in this
study was the Again-Again table. The table is used to assess the user experience by asking
children if they want to repeat an activity again [87]. It has also been used in research
studies [103–106], and has proven to be a reliable survey technique when applied to chil-
dren [86]. In this research, to measure returnance (as one of the endurability dimensions),
we derived the “Again-Again Table” (presented in Table 3) from the original presented
in [100]. The table was filled by the researcher asking the research question: “Would you
like to draw this shape again?”.
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Table 3. The Again-Again Table.

Would You like to Draw This Shape Again?

Yes Maybe No

Circle

Square

Pentagon

Finally, this study used video recording as a tool to enhance three important aspects
of interaction, namely: engagement, time-related aspects of interaction (time taken by
the user to draw a shape, and overall interaction duration), and hand gestures used to
interact with the toy, which were valuable for this research. Over the years, video recording
has been shown to be a useful tool to collect detailed information on children’s real-time
interactions with technology [107,108]. Studies have shown that it is critical to recognize
signs of enjoyment to determine whether the child had a positive or negative experience
during the course of the interaction [97] because children often have difficulty articulating
their experiences and preferences while using technology. In this context, video recording
can be a powerful tool for gathering data and making informed decisions about how to
improve technology for child users [109]. Researchers can identify patterns and trends in
child behavior and movement by analyzing the recordings, which allows them to identify
areas for improvement and optimize the user experience [108].

4.2. Results

Over the course of three consecutive days, 14 children participated in the pilot study.
Among them were seven girls and seven boys. Ten preschool children were 6 years old,
three were 4 and 5 years old and went to kindergarten, and one was 7 years old and is a
first grader.

4.2.1. Objective Aspects of Interaction

The pre-test was designed to assess the children’s knowledge of a variety of geometric
shapes appropriate for their ages in order to study the change after using the proposed
smart toy. The children can touch, feel, and manipulate cardboard cutouts, which provide
a tangible and physical representation of geometric shapes. This enables the children to
grasp and internalize geometric concepts and relationships. Most children do not have a
thorough understanding of all geometric shapes at a young age, so it was important to
examine if they can appropriately distinguish and name them. Table 4 shows how the
children performed in the pre-test stage.

Table 4. The number of correct and incorrect answers given by children in the pre-test stage when
identifying geometric shapes.

Circle Square Pentagon

Correct Answers 100% 99.3% 99.3%
Incorrect Answers 0% 0.7% 0.7%

As can be seen, the children were good at distinguishing circles from squares and
pentagons. However, due to the fact that cardboard geometric shapes were of different
colors and sizes, on two occasions, a square was mistaken for a pentagon and vice versa.

Following the pre-test, the children were taken to a separate area of the laboratory
where the smart toy giraffe was placed, as shown in Figure 10. The entire interaction
process was recorded on video, and the researcher let the child become acquainted with
the toy without intervention or specific instructions. The children were then asked if they
wanted to “teach the giraffe” the geometric shapes they had been playing with in the
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pre-test. Each child had 30 min to interact with the smart toy. The researcher instructed
them to draw (map) the shape from the LCD screen above the giraffe’s back with their
hands as if they were drawing on a canvas or a board. During interaction with the smart toy,
the researcher observed the child and recorded motor aspects of the interaction, their level
of participation, interest, and overall behavior. The researcher labeled each gesture made
by the child as correct or incorrect. This was later verified by analyzing the video recording.
For each shape, the researcher asked the child if they wanted to play a bit more. When the
child expressed a desire to stop playing, he or she was interviewed and encouraged to take
the post-test.

Firstly, four children did not establish the appropriate manner of interaction with the
smart toy. Two of them were aged four and five (kindergarten) and eager to touch and
cuddle the toy. They showed their emotions by smiling. The other two children were
six-year-olds and tried to interact with the toy, however, they did not manage to do so. One
of them did not show interest in the toy. This was especially evident in the fact that the
child did not touch the giraffe at all. The other tried to perform the gestures but gave up
and continued to play with the toy in his own way. This child was interested in the toy and
expressed emotions by smiling.

In total, ten children managed to interact with the toy in a suitable way. The primary
aspect of the interaction observed was the formation of the gesture. According to the
results, five children performed the interaction with a single finger (index finger). Four
children interacted with two fingers (thumb and index finger), while one child used the
entire fist. Children who used one finger had longer interactions because they performed
more gestures, while those who used two fingers or a fist had shorter interactions and
performed fewer gestures, as exhibited in Figure 12. No child interacted with the toy for
the planned period of 30 min. The majority of interactions lasted from around five to
ten minutes. The first-grader engaged with the toy the longest and managed to make a
significant number of gestures.

Finger Two Fingers Fist
The manner in which the gesture is performed
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Figure 12. Interaction duration related to the established manner of the performed gesture.

The time required to form a specific shape was the second aspect of the observed
interaction. Figure 13 shows the distribution of the time required to perform a particular
gesture. There is an evident and reasonable increase in complexity correlated with the time
required to perform a given gesture, with a circle requiring the least time and a pentagon
demanding the most, which was to be expected. In the case of the square shape, there is an
outlier caused by one child’s playfulness, even though the gesture was correctly performed.
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Figure 13. Gesture time per particular shape.

To identify any potential confounding variables in our limited data sample size, we
conducted a search for variables that were correlated with both the independent variable
and the dependent variable. Through our investigation, we discovered that age was
highly positively correlated with the number of user gestures, the number of correct
user gestures per particular shape, and the number of correct user gestures. Specifically,
Pearson’s correlation coefficient for age and the number of user gestures was 0.77, while
for the number of correct gestures for the circle, square, and pentagon shapes, it was
0.74, 0.7, and 0.83, respectively. Additionally, Pearson’s correlation coefficient for age
and the number of overall correct user gestures was 0.77, indicating that age may be a
confounding variable that needs to be controlled for analysis. We therefore calculated
partial correlation coefficients between the number of correct user gestures for particular
shapes and the number of performed gestures, while controlling for the effect of age. We
found strong positive correlations between the number of correct user gestures and the
number of performed gestures for the circle, square, and pentagon shapes, even after
controlling for the effect of age. Specifically, the partial correlation coefficients were 0.942
(p-value = 0.0001), 0.84 (p-value = 0.004), and 0.899 (p-value = 0.001) for the circle, square,
and pentagon shapes, respectively. The statistically significant relationship between the
number of correct user gestures and performed gestures even after controlling for age
suggests that age may not be a significant factor in predicting user performance for these
shapes. This result may have implications for the future design of gesture-based interfaces,
for instance, for older children.

The final part of the assessment of the motor aspects of interaction was the accuracy
of the child’s gesture mapping. This provides a subjective measure of the ease of mapping
while interacting with the toy, which is an important aspect of user experience design.
A gesture is considered correct if drawn on a virtual canvas above the sensors in the
following way:

• A circle is drawn in 360 degrees, without overwriting the previous trajectory;
• The starting vertex for a square and pentagon is the same as the ending one, with-

out repetition of previous edges.

This was evaluated in real time by the researcher during the experiment and validated
by examining the video footage. The results presented in Figure 14 show a somewhat
different and unexpected order of complexity among different shapes. That is, a circle has
a higher failure rate than a square. This is most likely the result of outlining multiple circles
on existing ones. As assumed, the failure rate for a pentagon is the highest.
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Figure 14. User mapping accuracy per particular shape.

4.2.2. Subjective Aspects of Interaction

These results were then compared with the child’s subjective experience related to the
ease of mapping. Based on the answers provided from the interview questions “2. Which
shape was the easiest for you to draw?” and “3. Which shape was the hardest for you to draw?”,
the following results were obtained and are presented in Figure 15.

Circle

50.1%

Square

35.7%All

7.1%
Don not know

7.1%

(a)

Pentagon

50.1%

Square

21.4%

None

14.3%
Don not know

7.1%
Circle

7.1%

(b)
Figure 15. The results of the answers to interview questions 2 and 3. (a) Easiest to draw and
(b) hardest to draw.

As can be seen, the children perceived the circle to be the easiest shape to map,
as opposed to the pentagon, which they perceived to be the most difficult. This result
correlates with the distribution of the time required to perform a specific gesture, with the
circle requiring the least time and the pentagon requiring the most. However, these results
are in contrast to the objective user mapping accuracy, as the square was the most accurately
mapped shape. As was previously mentioned, this is probably due to the fact that a great
number of children drew the circle by outlining multiple circles over existing ones.

Furthermore, the relationship between the perceived difficulty of different shapes and
the actual time required to draw them was examined. The Mann–Whitney U test was used
to compare the time taken to draw the hardest/most time-consuming shape (pentagon) with
the time taken to draw the easiest/least time-consuming shape (circle). The null hypothesis,
which stated that there would be no significant difference in time taken between the two
shapes, was rejected based on the results of the test. The statistic was calculated to be
0.000000 and the p-value was found to be 0.00041, indicating a significant difference in the
time taken between the two shapes. This suggests that the perceived difficulty of the shapes
corresponds to the actual time required to draw them. These findings have implications
for the design of educational materials and activities that involve drawing shapes, as they



Electronics 2023, 12, 1951 24 of 34

suggest that the time required to draw a shape can be used as an objective measure of
its difficulty.

Regarding the results from the children’s subjective impressions of fun and satisfaction,
valuable feedback from the children about their subjective experiences with the smart toy
was obtained. Table 5 provides information on children’s responses to question “Can you
show me, using these pictures, how you felt while playing this game?”.

Table 5. Fun and subjective satisfactions measured with the Smileyometer rating scale.

The Smileyometer Rating Scale Results

Awful Not Very Good Okay Really Good Fantastic

Number of children 0 (0%) 1 (7.1%) 2 (14.3%) 2 (14.3%) 9 (64.3%)

As can be seen, the majority of the children expressed a feeling of “Really good” or
“Fantastic” while interacting with the smart toy. These results indicate that the children
enjoyed the activity and experienced positive subjective satisfaction. This may also imply
that, in future interactions, children are more likely to fully engage in toy play. These
implications are supported by the results obtained from children’s responses to interview
questions “4. Was the game boring?” and “5. Was the game difficult?”, presented in Table 6.

Table 6. The results of the answers to interview questions 4 and 5.

Yes No

Was the game boring? 3 11
Was the game difficult? 1 13

As can be seen, the children perceived the play with the giraffe to be engaging and
easy. Such positive experiences indicate that the toy met expectations, which can be an
important factor in promoting children’s learning, since they are more likely to continue
using the toy. The latter might result overall in greater technology adoption and success.

These implications are in correlation with the results obtained by analyses of video
recordings of the children’s expressions and behavior during the toy interaction. The ma-
jority of the children (12) smiled and were happy while interacting with the toy, one child
danced and others bounced excitably. They were also keen on touching, petting, and ex-
ploring the toy, while at the same time communicating with the researcher. It was also
noticed that some children, four of them, were more concentrated on the task itself rather
than on the toy itself. Although they said they felt good interacting with the toy, they did
not engage in other types of play with the toy apart from the proposed interaction. They
were more interested in the toy’s educational features. When asked, “7. What else would you
like to teach the giraffe?” the majority of children just smiled and were unsure what to say
other than “I don’t know”. However, some children provided rather interesting answers,
such as“I would like to teach her letters”, “I would like the draw hearts”, and one child answered

“I would like to teach her about good behavior.”.
Finally, the results of the returnability aspect based on the responses from the

Again-Again Table 3 are presented in Figure 16.
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Figure 16. Results from the responses from the Again-Again table (Table 3).

The results indicate that the majority of the children would like to play with the toy
again. Furthermore, findings suggest that the children found the square shape to be the
most engaging and interesting to play with, as evidenced by their desire to play with
it again and their preference for drawing the square. This preference may be related to
the objective user mapping aspect, in which the square was the most accurately mapped
shape. It is also worth noting that, despite the children’s subjective assessment that the
circle was the easiest shape to draw, they preferred drawing the square. This suggests that
a child’s interest in the toy was not solely determined by its ease of use. Overall, these
findings suggest that future enhancements to the toy’s design should consider not only
the ease of use but also the toy’s engagement factor. The objective user mapping aspect
can also be considered to increase engagement. As was to be expected, half of the children
would not want to draw the pentagon again. It is possible that the children’s lack of
interest in drawing the pentagon again is related to their level of motor skill development,
as the pentagon has more sides and angles than the other shapes, potentially making it
more difficult to draw. They may also feel less confident or interested in attempting to
draw the pentagon again or it may be that they found the pentagon more challenging to
understand or remember compared to the other shapes. This implication is supported by
the researcher’s observations as well as the video analyses, as none of the children were
familiar with the shape or knew its name and usually referred to it as the “house shape”.

An immediate post-test followed the interaction with the toy. The results of the test are
presented in Table 7. Only the results of the children who interacted with the toy were taken
into account. As can be noticed, the accuracy of recognizing and classifying the pentagon
seems to decline. This was probably an immediate result of the fatigue of one child who
incorrectly classified the pentagon as a square several times, since this child interacted
with the toy the longest and performed a great number of gestures. Overall, due to the
small sample size, a definitive conclusion about the impact of the toy on the children’s
performance in the post-test cannot be drawn. Therefore, in the future, it is important to
ensure that sample sizes are adequate to make accurate claims about the impact of the toy
on children’s educational performance.

Table 7. The number of correct and incorrect answers given by children in the post-test stage for
identifying geometric shapes.

Circle Square Pentagon

Correct Answers 99% 99% 95%
Incorrect Answers 1% 1% 5%
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4.2.3. Machine Learning Performance

Finally, the performance of the neural network in experimental scenarios is presented.
The children performed an overall number of 111 different gestures, and Table 8 provides
insight into the gesture classification accuracy.

Table 8. Machine learning gesture classification accuracy results.

Circle Square Pentagon

Guessed Missed Guessed Missed Guessed Missed

Number of gestures 25 15 19 20 6 26

As can be observed, the classification accuracy is quite low, especially for the pentagon
shape. There are several possible reasons for such a bad performance. To begin with, our
experimental results have shown that children’s gestures differ from adult gestures in terms
of frequency and execution. As demonstrated, children performed gestures primarily with
their index fingers, while the data used to build the model came from adult users who
primarily used their entire fists. Furthermore, of those 111 gestures, half (46, to be exact)
came from a single user, the first grader, who made gestures with his index finger, while
the other 55 gestures were distributed among the other children, indicating an imbalance in
the test set. With that in regard, we later conducted a comparison of raw sensor data from
a child and an adult subject while performing gestures for the same geometrical shape,
as presented in Figure 17.

Figure 17. Comparison of raw sensor data of child and adult subject while performing gestures for a
same geometrical shape.

It can be observed that children’s gestures greatly differ from adult gestures, both
in terms of their frequency and the way they are executed. The adults generally per-
formed gestures with the entire fist, where, as we have seen, the children primarily used
their index finger. Therefore, the feature set used to train the machine learning model
was unable to accurately capture the variation in children’s gestures, leading to a poor
classification accuracy.
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As this was a pilot study, it provided valuable information on the performance of the
smart toy for geometry learning and identified areas for improvement. This information
will be used to guide future design iterations, helping to refine the smart toy and improve
the accuracy of the machine learning algorithm. In this regard, it will be necessary to collect
a large dataset of children’s gestures and train the machine learning model specifically on
this dataset. This can involve collecting data from a range of ages and developmental stages
to ensure that the model can capture the variation in children’s gestures. Additionally, it
may be necessary to develop new feature sets or modify existing ones to better capture
the unique features of children’s gestures. Finally, it may be necessary to test the model
on a separate validation dataset to ensure that it generalizes well to new examples of
children’s gestures.

5. Discussion

Based on the results of the exploratory pilot study, some of the benefits and strong
aspects of this research were the following.

The activity involving drawing shapes was enjoyable and engaging for the majority
of the children. The fact that the square was the most correctly mapped shape and that
children expressed interest in drawing it again suggests that the activity was effective in
promoting learning and skill development related to shape recognition and the mapping of
abstract concepts. It should also be noted that, although the children perceived the circle as
the easiest shape to draw, they still showed a greater preference for drawing the square. This
may indicate that the children found the challenge of drawing the square more rewarding
or satisfying than drawing the circle. The toy was also found to be easy to use, which is
important to ensure that children can use it independently. The positive results obtained
using the Smileyometer rating scale when and during the interview while measuring fun
and subjective satisfaction with technology indicate that the children experienced a high
level of enjoyment and satisfaction, which can have a significant impact on the success of
the smart toy giraffe as an interactive and educational tool. Overall, the results suggest that
the activities involving the smart toy were engaging and challenging and can prove to be
effective in promoting the early learning of geometry of children in preschool.

One of the main benefits was also the deeper insight into the modalities of interaction
that the children had with the toy, as well as the different ways in which the children make
the gestures in contrast to the adults.

The results of our study indicate that age is a potential confounding variable that
needs to be controlled when analyzing the relationship between user performance and the
number of performed gestures for specific shapes. However, even after controlling for age,
a statistically significant positive correlation was found between the number of correct user
gestures and performed gestures for the circle, square, and pentagon shapes. This suggests
that age may not be a significant predictor of user performance for these shapes, which
may have implications for the design of gesture-based interfaces, particularly for older
children. Moreover, it was found that the perceived difficulty of a shape corresponds to
the actual time required to draw it. This finding may be useful for designing educational
materials and activities that involve drawing shapes, as it provides an objective measure
of shape difficulty. The Mann–Whitney U test was used to compare the time taken to
draw the hardest/most time-consuming shape (pentagon) with the time taken to draw the
easiest/least time-consuming shape (circle), and a significant difference in the time taken
was found between the two shapes. These findings contribute to a better understanding of
the factors that influence user performance in gesture-based interfaces and highlight the
importance of considering potential confounding variables in data analysis.

However, there were some limitations to this study. Although the results of the
machine learning algorithm showed satisfactory results in the adult dataset, the same
model performed poorly with child subjects for several reasons. At this stage of the
design process, the recruitment of child participants for the data collection phase was
challenging due to ethical concerns and limited access to child populations. Additionally,



Electronics 2023, 12, 1951 28 of 34

collecting high-quality and representative data was more difficult due to the younger
children’s limited attention spans and potential fatigue when performing a larger series
of gesture movements. These issues should be addressed in future work to improve
the performance of the machine learning model on child data. Furthermore, the setup
consisting of four IR distance sensors arranged in an array creates a relatively shallow area
(that resembles a plane) where measurement can be executed. When children performed
gestures above the sensor area, their movements were often less coordinated and precise
than those of adults. This is the result of their phase of development of fine motor skills,
making it difficult for them to execute gestures using their entire fist or with the same level
of control as adults. As a result, children tend to rely on simpler and more straightforward
gestures that are easier to execute, such as pointing with their index finger. Furthermore,
children may be more prone to unintentional movements or gestures, which can affect the
accuracy of the machine learning algorithm used to detect the outline of the gesture. As
our model is trained primarily on adult users, using the same ML model on child users
showed a significant reduction in accuracy. By analyzing raw data in Figure 17, we can
draw some basic conclusions: adult users activate more sensors while performing this
particular gesture as compared to child users. This could be due to the adult user executing
a larger gesture, the height of the adult user, and the difference in hand surface that reflect
the IR emitted to a sensor. To bring child user accuracy to a level of an adult user, we must
obtain more training data that can help us extract specific features in a signal that are found
in child users. For future work, the following is considered.

In future work, alternative sensors with larger sensing areas can be considered, such
as the VL53L5CX Time of Flight sensor with an 8 × 8 multizone range and 63◦ diagonal
field of view (https://www.st.com/en/imaging-and-photonics-solutions/vl53l5cx.html
(accessed on 11 April 2023)). Similar results may be achieved by implementing one or more
microcontroller-based machine vision cameras such as OpenMV H7 (https://openmv.io/
products/openmv-cam-h7 (accessed on 11 April 2023)) in a multi-vision configuration.
As those cameras are basically machine-vison sensors, when properly programmed, they
output simple hand location information in predefined coordinate space and the overall
complexity of the system can be kept at a reasonable level, requiring minimal setup time
or preparation.

Finally, it will be necessary to collect a large dataset of children’s gestures and train the
model specifically on these data in order to enhance the machine learning model’s accuracy
when classifying children’s gestures. This may involve collecting data from children of
various ages and developmental stages to ensure that the model can capture the variation
in their gestures. It will also be necessary to test the model on a separate validation dataset
to ensure that it can accurately generalize to new examples of children’s gestures.

6. Conclusions

The literature suggests that utilizing smart toys in preschool education has the poten-
tial to foster STEM skills in young children. This study aimed to introduce a prototype
of a plush smart toy as an educational tool for teaching young children about geometric
shapes, given the potential of using smart toys in preschool education and the importance
of studying geometry at a young age for the development of spatial reasoning skills. The
plush smart toy design incorporates a range of hardware components, including sensors,
microcontrollers, an LCD screen, and a machine learning system, which facilitates ges-
ture recognition. By analyzing the outline of the child’s gesture, the machine learning
system can determine whether it corresponds to the shape displayed on the LCD screen.
Among the three sensing technologies tested, namely capacitive, IR short-range, and IR
long-range sensors, the IR long-range technology was found to be the most suitable for the
study, based on the machine learning results. Later, a small exploratory pilot study was
conducted to analyze the nature of the children’s involvement with the smart toy prototype
through user evaluation, test the toy’s practicality, and acquire some preliminary data on
the toy’s effectiveness and feasibility. The results of the exploratory study highlighted
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several benefits and strong aspects of the smart toy prototype. According to the findings of
the study, the smart toy prototype is user-friendly and straightforward to use. The result
also indicates that the smart toy engages children in the learning process effectively, making
it a potentially valuable educational tool for preschool children. Additionally, the study
provided valuable insights into the modalities of interaction between children and the
toy, the differences in gestures made by children compared to adults, and the influence of
age on user performance in gesture-based interfaces. These findings contribute to a better
understanding of the factors affecting user performance and emphasize the importance of
considering potential confounding variables in data analysis. Furthermore, our research
revealed that the perceived difficulty of a shape corresponds to the real time necessary to
draw it. This discovery could be useful in constructing instructional materials and activities
that include drawing shapes because it provides an objective measure of shape difficulty.

However, limitations were identified in the machine learning algorithm’s ability to
recognize children’s gestures and the sensor setup’s capacity to capture the full range
and precision of children’s gestures. The lower accuracy rate with children is due to
the different ways in which they make gestures compared to the adults who were used
in the data collection process, as well as the test set data imbalance. To address these
limitations, future work should consider alternative sensors with larger sensing areas,
for instance, a time of flight sensor or microcontroller-based machine vision cameras. These
technologies can help maintain a reasonable level of system complexity while improving the
accuracy and reliability of the gesture recognition toy for children. Finally, future research
should focus on collecting a larger dataset of children’s gestures and training the machine
learning model specifically on these data to enhance its accuracy and generalizability. This
may involve gathering data from children of various ages and developmental stages to
ensure that the model captures the variation in their gestures and testing the model on
a separate validation dataset to confirm its accurate generalization to new examples of
children’s gestures.
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a b s t r a c t

Development of smart cities is enabled by its core concepts of smart and sustainable mobility, where
Low Power Wide Area Network (LPWAN) such as Long Range Wide Area Network (LoRaWAN) became
one of the most important Internet of Things (IoT) technologies. Due to its low power consumption,
simple setup, and large communication range, LoRaWAN smart parking devices are already employed
to reduce congestion and improve quality of life. This paper studies privacy leakage of LoRaWAN
smart parking communication devices. Namely, when a vehicle as a metallic obstacle obscures the
LoRaWAN smart parking device, the signal strength will be significantly reduced on the receiver side.
Consequently, the variation in the signal strength of LoRaWAN parking systems transmits information
about parking space occupancy, allowing the implementation of a passive side-channel attack at large
distances. Using supervised machine learning techniques based on Neural Network, the attacker can
estimate parking lot occupancy with accuracy up to 97%, while Random Forrest approach reaches the
accuracy over 98%.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Low power wide area networks (LPWANs) such as Long Range
(LoRa), NarrowBand-Internet of Things (NB-IoT), and Sigfox are
emerging as the enabling technology for the development of
smart ecosystems such as smart cities. The potential of LPWAN
technology is immense. Due to its simple set-up, LPWAN is al-
ready being used for monitoring of parking availability, envi-
ronmental monitoring, logistics applications, farming, even pest
control [1]. In addition, LPWAN has its applications in security and
safety critical applications such as home security, alarm reporting,
fire detection, detection of radiation and water leaking, industrial
automation [2].

Mobile edge devices, such as wireless sensor nodes (WSN)
are prone to numerous attacks on the radio communication
channel launched at the physical (PHY) layer or medium access
control (MAC) layer. These attacks range from simple eavesdrop-
ping, jamming attack, to more complex attacks such man-in-
the-middle, spoofing, sybil, or smart attacks [3]. To witness the
successful deployment and usage of IoT devices and systems in
everyday life, the development of IoT systems must be accom-
panied by effective protection of data privacy [4–7]. In many
cases, IoT devices are connected to centralized systems via a
wireless communication channel through which they exchange
critical information, thus potentially exposing attackers to private
data by eavesdropping on the communication channel [8]. If IoT

∗ Corresponding author.
E-mail address: dujic@fesb.hr (L. Dujić Rodić).

devices are incorrectly configured or used, private data can easily
leak during a cyber attack. For example, by collecting data from
an IoT device on electricity consumption or water consumption,
an attacker can learn about person being present at home [7].

Most of today’s privacy research analyzes the existence of
traffic from WSN devices. Since IoT devices are mainly battery op-
erated, they minimize communication overhead and computation
cost, exposing them to privacy leakage. Since LPWAN technology
is already being deployed in scenarios where sensitive informa-
tion is being sent, a number of publications analyzed the security
and privacy guarantees of these networks [9,10]. Unfortunately,
to keep the autonomy of LPWAN devices up to couple of years,
such devices become active only when something happens, which
may lead to privacy leakage. For example, in a scenario where
a water pipe breaks or the status of a parking space changes, a
LPWAN device will send information via a radio channel to trigger
the alarm systems or update real-time parking applications, re-
spectively. To protect against such privacy leakages, mechanisms
for sending messages with a reasonable delay have been pro-
posed, which in some scenarios may have economic reasoning.
On the other hand, some authors suggest inserting dummy traffic,
which may lead to accelerated battery consumption of LPWAN
devices [10,11].

In some research directions, machine learning (ML) has been
used as a tool to counter many attacks and improve network
security, such as authentication, anti-jamming, and access con-
trol [3,12]. Using ML techniques with PHY layer characteristics
such as signal strength, an effective ML-based authentication
mechanism can be achieved [13–15]. To protect IoT devices from

https://doi.org/10.1016/j.future.2022.08.007
0167-739X/© 2022 Elsevier B.V. All rights reserved.
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privacy leakage, some solutions suggest the use of authentication
techniques based on signal strength. If the signal strength is
within a predefined threshold, then the IoT device is considered
as authentic, or vice versa, it is an attacker.

The growing concern about location tracking is just one exam-
ple of how privacy protection has become more complex [16,17].
Recently, a company has been accused of selling people location
data admitted that was acquired without user approval from its
users [18]. Tracking parking lot occupancy can have multiple
privacy implications, ranging from business sensitive informa-
tion such as meeting duration, going or leaving work, to even
personal sensitive information such as being at home. Linking
the identity of a LPWAN device to activity can result in device
de-anonymization leading to privacy leaks, including both user
activity and location [19–21].

Since LPWAN-based smart parking sensor devices are usually
deployed at the floor, when a metallic obstacle such as a vehicle
occupies a parking lot, the signal strength will be attenuated
on the receiver side [22,23], which could be used for electro-
magnetic side-channel attacks. An electromagnetic side-channel
attack is an attack that exploits electromagnetic leakages, where
the adversary measures electromagnetic radiation emitted from a
device and performs an analysis to extract information. Using the
same analogy in distinguishing legitimate device from a spoofing
one based on signal strength, variations in signal strength of a
legitimate LoRaWAN Smart parking device can be exploited to
completely recover parking lot status occupancy. Due to the long-
range nature of LoRaWAN technology, an attacker can passively
eavesdrop the status of a parking lot occupancy from PHY layer
signal strength at a relatively large distance, despite the crypto
primitive being employed on protecting messages at higher lay-
ers. More than 40% of LPWAN market is based on LoRaWAN
technology,1 which is a strong argument for deeper exploration
of privacy issues regarding this technology and one of the main
motivation of research presented in this paper.

In power analysis side-channel attacks, an attacker aims to
passively extract sensitive information from a target device by
measuring a signal strength. In case of encryption algorithm a
side-channel attack include current-consumption of waveforms
which hold the information about secret keys. This paper side-
channel attack that analyzes variations in signal strength that re-
sult from vehicles as a metallic obstacle obscuring smart parking
sensors.

In this paper, five commercial LoRaWAN Smart parking de-
vices were deployed at University parking lots, while three gate-
way devices collected information about occupancy and signal
strength. Prior to measurements, a simulation model of a single
parking lot and one car model was built in Wireless InSite in order
to investigate and visualize the multipath effects and power level
of the received signal in the cases of free and occupied parking
lot. It is found that the variations in signal strength due to vehicle
obscuring parking lot (LoRaWAN sensor device) may result in
side-channel attack that may have implications on personal and
business privacy. Using deep learning algorithms based on neural
networks and random forest, it was shown that the developed
passive side-channel attack can completely recover parking lot
status occupancy with accuracy over 98%.

2. LoRaWAN network and attacker model

LPWANs are designed to enable future Internet of Things ap-
plications. Existing wireless technologies are designed to sup-
port high-throughput applications with either high consump-
tion (Long Term Evolution — LTE, WiFi) or low consumption

1 https://lora-alliance.org/resource_hub/ihs-markit-berlin-2019/

(Bluetooth Low Energy — BLE, ZigBee) of end devices, but with
extremely low coverage. Thus, LPWANs such as LoRa (LoRaWAN)
[24], Sigfox [25], NB-IOT [26] allow battery-operated devices to
communicate low-throughput data over large distances with a
couple of years of lifetime. In this section LoRaWAN is described
more in detail.

2.1. Generic network architecture

Network architecture of the Long Range Wide Area Network
— LoRaWAN system is typical star-of-stars topology, as depicted
in Fig. 1. End devices simultaneously communicate data to one
or more gateway devices, however, unlike traditional wireless
technologies such as Global System for Mobile Communications
(GSM), end devices do not associate with a gateway but instead
with a network server. Namely, the gateway acts as a relay device
that forwards communication to the network server. Thus, the
network server filters out duplicate or redundant messages re-
ceived from multiple gateways. After performing security checks,
network server forwards information to the application server for
further processing.

One of the primary requirements of LoRaWAN is to enable
the battery-operated end devices to function for a few years
without the need to replace the batteries. In LoRaWANs, the
end devices turn on their transceivers or radio communication
hardware only when there is a need to transfer information to
the server. During the rest of the time, the end devices power
off their communication hardware, saving a significant amount of
power. Typically, the LoRaWANmedia access control mechanisms
provide a short duration immediately after the end devices have
transmitted their data (uplink) for any responses back from the
servers. In addition, LoRaWAN divides the end devices into vari-
ous classes depending on their functionalities [27]. For example,
in LoRaWAN, the end device operating modes are classified into
mandatory Class A mode and two optional Class B and Class
C modes. Class A mode is intended for battery operated sen-
sors in which the devices open two receiving slots immediately
after a transmission which may be used to get a response or
acknowledgment back from the base station. Class B and Class C
modes on other hand are intended for powered-devices that are
capable of receiving packets more frequently with low latency
communication. The majority of LoRaWAN technologies rely on
random medium access protocols where the end devices simply
transmit information whenever ready or there is a need.

2.2. Long communication range

LoRaWAN presents one of the most widely adopted LPWAN
technologies. Their ability to provide long range communication
relies on chirp spread spectrum (CSS) [28] modulation technique.
Transmission in sub-1 GHz frequency band allows long range
communication with less signal attenuation and fewer multipath
fading effects. To enable robust communication, LoRaWAN sup-
ports multiple channel communication with retransmissions. For
scalable communication, LoRaWAN supports adaptive data rate
and channel selection to cover various use cases.

2.3. Low cost and scalability

Another crucial goal is to keep the costs of the end devices and
gateways as low as possible. Since most of the complex signal
and data processing is moved over to the network server, the
hardware complexity of the end devices is kept minimal. The
long communication range of LoRaWAN technologies enables a
single base station or gateway to communicate with thousands of
end devices, significantly reducing the infrastructure deployment
costs for the service provider.
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Fig. 1. LoRaWAN architecture of the complete setup with Libelium Smart Parking sensors.

Fig. 2. Structure of a LoRaWAN packet.

2.4. Security and privacy of LoRaWAN communication

LoRaWAN message comprises PHY layer that contains pream-
ble packet, packet header (PHDR), payload (PHYPayload) and
CRCs (PHDRCRC and CRC) as depicted in Fig. 2. PHYPayload com-
prises MAC header (MHDR) which is followed by MAC Payload
and Message Integrity Code (MIC) used to ensure integrity of the
part of the packet. MAC Payload comprises Frame Header (FHDR)
which contains source (DevAddr) and destination address and
frame counter (FCntUp for uplink or FCntDown for downlink),
a Frame Port (FPort) and Frame Payload (FRMPayload) with ap-
plication data. LoRaWAN protocol provides both encryption and
signing of parts of the LoRaWAN packet [29]. This is achieved
by using symmetric keys which are known to end devices, as
well as to Application and Network server, while key distribution
depends on two methods end devices can join the Network. In
the first method end device is equipped with a unique 128-bit
secret key (AppKey), used for derivation of two session keys using
Over-The-Air-Activation (OTAA) protocol. Second method uses
Activation by Personalisation (ABP), where end device is already
equipped with unique pairs of session keys, and there is no need
for key establishment protocol. The first session key is shared
between end device and LoRaWAN Network server (Network
Session Key — NwkSKey), while the second session key is shared
between end device and LoRaWAN Application server (Applica-
tion Session Key — AppSKey). AppSKey is used for encryption of
application payload FRMPayload using AES128 in Counter mode
(CTR), while NwkSKey is used for generating Message Integrity
Code (MIC), i.e., preventing manipulation over payload as well as
over other parts of LoRaWAN packet such as DevAddr, FCntUp
or FCntDown values. AppSKey is used to prevent man-in-the-
middle attack where the network provider acts maliciously and
wants to eavesdrop on all the traffic between end devices and the

application server. It also prevents a potential man-in-the-middle
attacker to passively observe network traffic between end devices
and gateways.

From the aspect of Libelium Smart Parking sensors, parking lot
status (0 or 1) is sent encrypted within the payload (along with
other parameters such as battery state, sequence number, etc.),
making it safe from eavesdropping. A passive observer, that cap-
tures an uplink packet sent from sensors to the gateway cannot
read the content of the encrypted payload. However, by collecting
additional information about signal strength from end devices,
since the signal strength in the presence of vehicle attenuates,
attacker will be able to learn an information about parking lot
occupancy status. This way, although a LoRaWAN packet is sent
encrypted, parking lot occupancy status will be revealed from
observing changes in signal strength.

2.5. Device addressing

Every LoRaWAN device is characterized with an unique iden-
tifier DevEUI, which acts as a MAC address of device. During the
Join procedure, every device is also granted with a temporary
identifier DevAddr issued by a LoRaWAN network, which is used
in uplink message transmission from end device to the gateway.
Since DevAddr can be used by multiple devices simultaneously,2
network server maps the DevAddr with DevEUI using DevAddr
and NwkSKey (Network Session Key). However, it was recently
shown in [30] that an attacker can easily map DevAddr with
DevEUI observing Join procedure that holds DevEUI and matches
it with DevAddr that is sent with uplink message shortly after de-
vice activation. Another method to uniquely identify LoRa device
is to use physical layer fingerprinting [31].

2.6. Attack model

This paper considers a passive attacker that eavesdrops all
public communication from LoRaWAN Smart parking end de-
vices. The attacker has the ability to mount devices (gateways)
at several locations around the parking lot to collect information
about the signal strength received from end devices, device ID
(DevAddr), as well as the timestamp at which the message has
been sent, as depicted in Fig. 3.

Attacker model presented in this research assumes that adver-
sary maps device ID with parking lot, and that the ground truth
about parking lot occupancy is known. This approach corresponds
to a scenario in which an attacker monitors the actual state of
the parking lot for some time to build a machine learning model
(supervised learning) used for parking lot occupancy estimation

2 https://www.thethingsnetwork.org/docs/lorawan/addressing.html
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Fig. 3. Snapshot of RSSI (in dBm) captured at LoRaWAN Gateways that varies
with parking lot occupancy.

Fig. 4. Position of parking lots with LoRaWAN Smart parking sensors and
location of LoRaWAN gateways that captured information from sensor devices.

in the future. Since the observed parking lot allows only access
to university employees, an additional layer of information could
serve as an indicator of ground truth. An adversary could place a
device that captures radio signals from vehicles entering the park-
ing lot. This can be realized by passively monitoring when driver
instructs ramp using his/her keyfob to rise while entering or
leaving the parking lot. Received Signal Strength Indicator (RSSI)
in Bluetooth from smartphone could be used for tracking users
for the purpose of parking lot occupancy [32], or simply installing
a camera that monitors parking lot and transmits information
over Internet to remote servers [33]. Other sources of information
could be used as well, such as access to public cameras placed
on the university campus near the parking lot. After that, simply
by collecting signal strength data from smart parking sensor
device the attacker can estimate parking lot occupancy with high
accuracy.

In LoRaWAN protocol device address (DevAddr) is sent in
clear, whereas its integrity is protected from alternations using
NwkSKey. This allows an attacker to passively collect LoRaWAN
packets and map device ID with an actual parking lot. Moreover,
the ability to convey information over long distances using LoRa
modulation allows the attacker to passively listen to communi-
cation even several hundred meters from the parking lot. This
paper assumes that every parking sensor device is granted with
an unique DevAddr which does not change. As shown in [30]
unique DevEUI can be easily mapped with temporal DevAddr
by observing OTAA Join procedure where DevEUI is transmitted
which is followed by an uplink message shortly afterwards from
end device that holds DevAddr.

Since LoRaWAN gateways act as relays that forward all mes-
sages to network and application server from any legitimate
sensor device, for the sake of simplicity, in this paper three public
LoRaWAN gateways were installed at the University campus that

captured data about signal strength received from five commer-
cial parking sensor devices, as shown in Fig. 4. In a realistic
scenario, the attacker could use its own device to passively listen
to LoRaWAN communication. Also, to learn ground truth about
parking lot occupancy, the data about parking lot status was
forwarded from LoRaWAN network and application server to our
personal InfluxDB database (Fig. 1). Fig. 3 shows a snapshot of
RSSI captured from a single smart parking sensor at LoRaWAN
gateways. As can be seen due to the different position of gate-
ways, their distance from sensors (Fig. 4) and the specificity of
radio channel, a single packet will be received at different RSSI
levels.

3. Related work

Recall, since LPWAN devices are mostly battery operated, they
tend to minimize communication overhead and computation
cost, sending data only when necessary, and minimizing con-
sumption during inactive period. Although some LPWAN devices
are implemented to send data at periodic duty cycle such as
weather station sensors, some LPWAN devices require real-time
message transmission when some event occurs (e.g., water leak-
age, fire alarm, parking status change). Although crypto primitives
are employed on LPWAN message during transmission, event-
driven duty cycle reveals information to a passive observer,
resulting in privacy leakage. In case of smart parking sensor, de-
vices could send information about parking lot occupancy change
only when a car arrives at the parking lot or leaves the parking lot.
For this reason, some solutions introduce dummy packets to ob-
fuscate the traffic, or propose a method for random generation of
dummy traffic [10,11]. To recover from such form of privacy leak-
ages, the authors in [10] suggest to injecting dummy packets into
transmission to obfuscate the traffic. This paper shows that even
injecting dummy traffic into communication will not prevent the
attacker from learning information about parking lot occupancy.
Since vehicle presents an electromagnetic harsh environment, the
signal strength from LoRaWAN device will significantly attenuate
with vehicle present at the parking lot, leading in a passive side-
channel attack. Indeed, the research shows that information from
collected signal strength significantly contributes to prediction of
parking space occupancy.

In general, side-channel attacks were not analyzed in violate
privacy aspects of LoRaWAN communication. In [34] it was shown
how to completely recover the key for encrypting the payload
simply from EM side-channel that results from observing less
than 100 packets. Security features of LoRaWAN v1.1. protocol
were analyzed in [35], focusing on the threats such as RF jamming
attack, Replay attacks, Network traffic analysis as well as Man in
the middle attack. Analysis of LoRa network stack was covered
in [9] where vulnerabilities such as compromising device and
network keys, jamming techniques, replay attacks as well as
wormhole attacks were introduced. In [31] a supervised learning
technique is introduced to distinguish LoRa-based devices from
Radio Frequency signal analysis. As shown, their classification
approach achieves accuracy from 59% to 99% when trying to
identify identical chips, as well as accuracy ranging from 99% to
100% when trying to fingerprint chipset models. Security mecha-
nisms in LPWAN networks have been analyzed in [29], discussing
security vulnerabilities along with possible implications on ac-
ceptance of LPWAN technology. Also, a literature review was
given focusing on IoT security challenges and solutions. Machine
Learning techniques have been introduced to improve security
of IoT devices [3,36]. However, in terms of protecting privacy of
user information, the research was focused on developing solu-
tions against spoofing attacks in form of location authentication.
Several solutions propose the usage of proper ML techniques such
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as Q-learning [13], dFW and IAG algorithms [15], SVM [14] and
Deep Neural Networks (DNN) [37], where PHY-layer features such
as signal strength can be used to prevent spoofing and enable
lightweight authentication.

In a general, efforts have been taken to solve the problem
of classification and prediction of a free parking space by em-
ploying ML and DL techniques in a variety of ways. For instance
Neural Networks (NN) have been used for in prediction of fu-
ture occupation of parking space such as in [38,39]. Researches
in [38] have exploited the data concerning the availability of
a free parking state depending on the duration of a particular
occupancy status. Therefore, they have deployed a long term and
short term occupancy prediction system based on neural network
that achieves good performance with only a 0.004 Mean Absolute
Error (MAE). They concluded that temporal changes of parking oc-
cupancy status was appropriately encompassed by the NN model
that can provide an rather precise occupancy prediction up to
thirty minutes ahead. Authors in [39] have utilized a DL neural
network for classification of a free parking space. Their model is
based on images of a parking lot and it achieves a exceptionally
good classification with 93% accurately classified occupancy sta-
tus for a particular data set. Work presented in [40] proposed an
occupancy prediction model using a deep neural network model
which includes various data sources such as weather conditions,
traffic conditions as well as parking meter transactions. Using
Graph-Convolutional Neural Networks (GCNN) model is able to
extract the spatial relations of traffic flow in large-scale net-
works and further captures the temporal features by applying
Recurrent Neural Networks (RNN) along with Long-Short Term
Memory (LSTM). Evaluation of the model’s performance was done
on a case study for the downtown area in Pittsburgh and it
achieved mean absolute percentage error (MAPE) of 10.6% when
predicting block-level parking occupancy half an hour in advance.
Researches in [41] have explored the use of deep convolution
neural networks, namely ResNet, based on the two different data
sets containing parking lot images. The have been able to obtain
an high accuracy rate raining from 97, 36% up to 99, 82% for
the test set and have optimized the increase of the learning
error that occurs when the network becomes deeper thus pro-
viding swifter training. Rather recently, researches in [42] have
proposed a parking space detection system that uses parking
lot images captured under different weather conditions as input
and detects the empty slots in a particular images. They have
employed combination of canny edge detection as well as LUV
based color variation detection methods to accurately derive the
edges for each parking slot. Over a 942 images showing 37,680
parking spaces were used and Random Forest classifier has been
utilized achieving accuracy of 98.31% compared to the existing
methods. Authors point out to RF good ability to solve the over-
fitting problem with regards to training data and conclude this
to be the reason of its accuracy. Not long ago, work presented
in [43] provided a comparative analysis of Multilayer Perceptron,
K-NN, Random Forest, DecisionTree, and Voting Classifier for the
prediction of parking space availability. Data set used for the
analysis was obtained by collecting the measurements of sensors
deployed in city of Santander, Spain and it contained information
about parking spot ID, day of the week, parking duration and
status. Algorithms were evaluated in terms using K-fold cross-
validation and numerical results obtained for Accuracy, Precision,
Recall and F1-score. Authors conclude that the simpler algorithms
such as DT, KNN and RF outperform more complex algorithms
like Multilayer Perceptron, achieving higher prediction accuracy,
giving better information about the prediction of parking space
occupancy that can be compared.

The novelty presented in this paper is given in the rather
unique version of sensing the occupancy status based on the RSSI

Fig. 5. Simulation scenario of a parking system equipped with receiver sensor
device and transmitter antenna placed at the top of the building.

and SNR values in contrast to other sensing methods. As shown,
this allows the attacker to form a passive side-channel attack that
eavesdrops information about signal strength from LoRaWAN de-
vices from large distances and learns information about parking
lot occupancy. It will examine the use of a traditional Machine
Learning technique, i.e. Random Forest in oppose to a Neural
Network model for classification of a free parking space showing
privacy leakage of LoRa smart parking communication devices.

4. Methods

4.1. Simulation model and analysis

To show how signal attenuates in scenarios where vehicle ob-
scures LoRaWAN parking sensor device, the parking was modeled
and analyzed in Wireless InSite [44], a high fidelity simulation
software that uses ray-tracing method for the calculations of
Electromagnetic (EM) propagation phenomena in complex envi-
ronments. This simplified model is used here to explore the effect
of multipath propagation channel on the sensor’s received power
in occupied and free parking states.

Multipath channel can be visualized with a great number of
propagation paths coming to the receiver with different time
delays and powers. This is due to the multiple reflections, diffrac-
tions and transmissions through the surrounding obstructions.
When a Dirac impulse is applied at the input, the complex
channel impulse response is identical to the output and given by:

h(t) =

∑
n

Anδ(t − τn), (1)

where An is the complex gain, and τn the propagation time delay
of each multipath component n, depending greatly on the elec-
trical properties of surrounding obstructions and the electrical
length of the propagation paths, respectively. The simulation
model depicted in Fig. 5 consists of an asphalt (with electrical
properties ϵr = 5.72 and σ = 0.0005 S/m from the Wireless
InSite’s database for 1 GHz) parking 30 m x 30 m in size and a
simple metal car model (cca 3.6 m x 1.2 m x 1.2 m). Transmitter
antenna on top of a building (made of concrete, ϵr = 7.0 σ =

0.015 S/m) is an omnidirectional antenna with gain of 9 dBi, at
a height of 15 m and output power of 20 dBm at f = 868 MHz,
whereas the receiver antenna is directional and positioned 5 cm
above the ground with half power beam width (HPBW) of 120◦

and gain of 0 dBi.
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Fig. 6. Time of arrival, as well as Received signal power at the receiver side in
case of free and occupied parking lot.

In the simulation scenario, one receiver is placed under the
car, representing the parking sensor, as shown in Fig. 5. The
impulse response for that receiver is given for the cases with
and without car model above the sensor, representing a free
and occupied parking lot, as shown in Fig. 6. The ray tracing
method depicts the paths of the radio wave propagation from the
transmitter on the top of the building to the sensor where the
signal over the larger propagation paths comes into the receiver
with higher delays. The power of the received responses is at
least 20 dB higher when there is no car model above the receiver
antenna. It can also be noticed that in the free parking lot case
of non obstructed line-of-sight (LOS) propagation there are just
two paths (LOS and path diffracted over the edge of a building),
while in the case when the car is parked, a spreaded response
with lower received power is obtained due to multiple reflections
under the car (propagation paths depicted in Fig. 5). This clearly
indicates that the vehicle placed over a parking sensor device
deteriorates the signal strength at the receiver side, indicating
that drop in signal strength could indicate parking lot occupancy
from a passive eavesdropper.

4.2. Experimental setup

In order to collect the necessary data about parking space
occupancy, it was decided to place five Libelium Smart Parking
sensors3 devices at a parking zone around the faculty. The devices
are equipped with magnetometer and radar sensor device, placed
at the surface and in the center of the parking space.

Libelium Smart Parking sensors devices detect the change of
occupancy status (car arrival or departure) and send the infor-
mation via radio channel that employs LoRa radio capabilities
as a communication peripheral to transmit the information of
occupancy status.

Collection of data from the sensors was employed by the use
of three LoRaWAN gateways that were positioned within the
radio range of the sensors. These gateways are distinguished by
their position from the sensors as well as environment setting as
presented in Fig. 4.

First gateway was placed 4 meters from the ground and at
a distance of approximately 30 meters from the sensors on the
first floor within faculty facilities, i.e. indoor. The second gateway
was indoor as well, but on the fifth floor of the faculty building
positioned 15 meters from the surface and about 75 meters away

3 https://development.libelium.com/smart-parking-technical-guide/

from the sensor. Position of the third gateway was outdoor and
rather high on the top floor (ninth floor) of the faculty building
on an approximately 145 meters from the sensor and about 30
meters distance from the ground. GW1 was installed indoor near
the Libelium Smart Parking sensors to observe possible changes
in RSSI levels from a small distance during changes in parking lot
occupancy. GW2 was placed indoor as well; however, the main
difference between GW1 and GW2 is that the signal travels from
the sensors to GW2 through numerous obstacles/walls that can
deteriorate the signal quality, and it can be interesting to see
the impact of vehicle presence (along with other obstacles) on
signal changes. Finally, GW3 was placed outside, with minimal
obstacles of radio signal traveling from sensors to the gateway,
other diffraction originating from vehicle presence and the edge
of the building. Table 1 summarizes used hardware and software
in this paper. Gateways GW1 and GW3 are Raspberry Pi based
gateways with iC880 A LoRaWAN concentrator, while GW2 is also
Raspberry Pi based gateway with RAK31 concentrator. For both
GW1 and GW3 gateways, an 868MHz omni-directional fiberglass
antenna with Gain 10dBi was utilized, while for GW2 CXL 900-
6LW 868MHz omni-directional antenna with Gain 8dBi was used.
Installed gateways are public LoRaWAN gateways connected to
The Things Network that were installed for the purpose of con-
necting multiple LoRaWAN sensors devices (indoor and outdoor
weather sensors, air quality sensors, smart water meters, along
with data from Libelium Smart Parking sensors devices). To pos-
sibly collect data from LoRaWAN sensors at even larger distances,
omnidirectional antennas could be replaced by directional ones
and thus compensate for a sufficient level of power to detect
occupancy. All gateways were configured to forward data to The
Things Network (TTN) LoRaWAN provider where the Libelium
Smart parking sensor devices have been registered. To collect
ground truth about parking sensor occupancy, as well as signal
strength data at which data is received from every sensor de-
vice (including timestamp), TTN allows data forwarding using
numerous integrations, such as MQTT used in this research, for
further storage and analysis. Furthermore, all data from Libelium
parking sensor devices was forwarded to a designated private
server equipped with Node-Red and InfluxDB database that al-
lows data extraction in csv format which is suitable for further
data processing and machine learning. Overall, in a ten month
period, 130984 raw data was gathered from all of the five sensors
and onward exported into csv format for subsequent process-
ing using the InfluxDB. Collected data provided the information
about occupancy (0 for free parking space, 1 for the occupied), a
timestamp of the TTN gateways reception of the data, information
about Received Signal Strength Indicator (RSSI) in dBm and Signal
to Noise Ratio (SNR) for each gateway as well as Sensor and
Gateway ID.

The dedicated computing machine for the employment of
exploration of Machine Learning techniques had the following
specification: Intel(R) Core(TM) i7-7700HQ@2.80 GHz processor,
16 GB of RAM and NVIDIA GeForce GTX 1050 running on 64 bit
Windows 10 operating system. To achieve better computing per-
formances with the GPU, Deep Neural Network NVIDIA CUDA
library (cuDNN) was utilized. The Keras 2.3.1. Python library
was employed which operates on top of a source build upon
Tensorflow 2.2.0 with CUDA GPU support for different batch sizes.

4.3. Data analysis

Analysis of the data collected from Libelium Smart Parking
sensors was carried out to discover potential data correlations,
uncover anomalies, point out to essential approaches regarding
data pre-processing and target possible Machine Learning algo-
rithms for the required estimations. Therefore it was necessary
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Table 1
List of used hardware and software.
Hardware Software

Sensors LoRaWAN GW ML machine

5 x Libelium 2 x RPi with iC880A and 10dBi ant. Intel i7-7700HQ@2.80 GHz Keras2.3.1.
1 x RPi with RAK831 and 8dBi ant. 16 GB of RAM cuDNN

NVIDIA GeForce GTX 1050

Fig. 7. Bar graph representing the total amount of free and occupied parking space for sensor five and GW1, and for sensor 2 and GW3 respectively.

to discover the characteristic properties of the data which unveil
how is parking lot occupancy related to the signal strength. The
analyses was carried out separately for a specific sensor and a
specific gateway since it was noticed that the gateways have not
received the same amount of data and what is more, not in the
same timestamp.

The first obtained result underlined the skewness of the data
set, since it was observed that the parking spaces are less fre-
quently to be occupied than free. This imbalance amongst free
and occupied space is a consequence of the nature of the parking
place, since it is based on the University grounds, and for that
reason usually free in the night time or during the weekend.
The class ratio ranges from 81.6%:18.4% up to 89.2%:10.8% in
favor of free space. The smallest imbalance in class ratio is for
sensor five and Gateway 1 (GW1), and largest for sensor 2 and
Gateway 3 (GW3) (as can bee seen on Fig. 7 (a) and (b)), with
average ratio between classes being around 85%:15%. The second
result gave the insight into how are the values of Received Signal
Strength and Signal-to-Noise Ratio associated with occupancy
status. It was necessary to identify if the specific value of RSSI (or
SNR) correlates with the free and occupied parking status from
the same sensor and gateway. Therefore, the probability density
function for RSSI (as well as SNR) for diverse occupancy status
were plotted to gain the needed information.

As is depicted in Figs. 8 (a) and (b), there is a large amount of
overlapping regarding the distribution of a specific RSSI or SNR
value from GW1. It can also be noticed that higher RSSI and SNR
status could be implying a free parking state. The same applies for
SNR values from GW1 and GW2 and all of their sensors. However,
the overlapping starts to decrease for GW2. Moreover, the data
gained for GW3 quite differ than the ones from GW1 and GW2,
especially for the ones from sensors 2, 3, and 4. As is presented
in Figs. 8 (c) and (d), GW3 exhibits the least amount of overlap-
ping in the distribution of RSSI and SNR values for a particular
occupancy state. It can also be seen that lower RSSI and SNR
values are associated with occupied parking space, whilst higher
values indicate a free parking status for GW3. This diversity of
obtained results for a specific gateway could be attributed to their
remoteness from a particular parking sensor. As was presented in
the Section 4.2, the GW1 is closest and GW3 it furthest away from
the parking sensors. This observation indicates that the channel is

influencing RSSI and SNR more heavily in oppose to the changes
of occupancy state if the gateway it to close to the parking sensor.

Finally, variations of RSSI and SNR have been examined in
relation to the change of occupancy status. It was perceived that
when there is no change in parking status, the RSSI and SNR
values change very slightly or not at all. In contrast, a considerable
change in values of RSSI and SNR was noticed when there is a
change in parking status. This can be observed in Fig. 9 which
depicts histograms of differences of SNR values when parking
lot continues to be free and when parking space becomes free
formerly being occupied for the data from sensor 2 and GW3.

Unlike the measurements results collected in larger amount
of time for different car types and positions related to sensor
under the car, the simulation results in previous Section depict
the occupied and free parking lot for just one car type and fixed
position during very short time (in nanoseconds). The impulse
channel response, Fig. 6, shows time delays and power levels
of each propagation path, creating the fundamental image of
received signal variation in occupied and free parking lot. The
measurement and simulation results show good agreement as the
significant power drop and spreaded response are obtained for
occupied parking lot, in both cases (e.g. a drop of cca 20 dB in
simulation and in measurements for GW3 cca 15 dB, Fig. 6 and
Fig. 8 c), respectively; and spreaded SNR values in Fig. 9.

Taking all the above gained data insights into account, the
following conclusions can be drawn: (a) Change of parking sta-
tus affects RSSI and SNR values, (b) distance of the gateway
to the parking sensor determines the strength of correlation
between the change in parking occupancy and RSSI and SNR,
(c) the suitable Machine Learning technique(s) must be able to
grasp complexity of association between data, (d) Adequate data
pre-processing must take into account the previously noted im-
balance ratio and provide a reasonable approach for further data
utilization.

5. Models

Data analysis presented in Section 4.3 has exposed an imbal-
ance amongst data collected from the experiment, which further
pointed out the selection of ML methods for classification. There-
fore, two algorithms were employed, namely, Random Forest
and Neural Network. Random Forest has been chosen due to its
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Fig. 8. Probability density function of RSSI and SNR values alterations for diverse sensors and occupancy status from GW1, GW2 and GW3, respectively.

Fig. 9. (Left) Differences of SNR values when parking lot continues to be free, (right) Differences of SNR values when parking space becomes free formerly being
occupied for sensor 2 from GW3.

accurate estimations done on large data sets that have missing
data as well as for its effectiveness in balancing classification
errors for unbalanced data sets [45,46]. What is more, Random
Forest is swifter than other state-of-the-art classifiers on account
of its parallel architecture [47]. With regards to Neural Net-
works, their non-linearity and universal approximation capability
to grasp complicated input–output relationships amongst data
in which raw underlying properties cannot be independently
expressed [48] makes them a suitable candidate for classifying
parking occupancy. Since NN are discriminative models, they
are able to achieve a robust non-linear discrimination in high-
dimensional spaces [49] and have been proven to be effective for
classification [50].

What is more, researches in [51,52] have exploited the in-
formation about RSSI obtained from BLE beacon devices to get
information about parking status by employing ML techniques.
Namely, researches in [51] obtained 98% and 99% accuracy in
parking slot estimation in contrast by utilizing DNN and Convo-
lutional Neural Network (CNN) respectively. Experimental results
form study [52] have shown that Random Forest achieves high
detection accuracy of around 90.7% in contrast to other tested
classifiers like k-NN, SVM and Naive Bayes.

In accordance with the above reasoning, Random Forest and
Neural Network have been utilized for detection of parking lot
occupancy status based on signal strength data.
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Table 2
Snapshot of a data frame for each sensor data used for the models.
Time GW1-RSSI GW1-SNR – GW3-RSSI GW3-SNR Month Day Hour Day of Status

– the week

2019-12-13 14:57 −95.0 5.5 – −117.0 −3.8 12 13 14 4 1
2019-12-13 14:58 −98.0 6.5 – −119.0 −2.0 12 13 14 4 1
– – – – – – –
2020-09-06 17:21 −83.0 7.0 – −109.7250 5.41308 9 6 17 6 0
2020-09-06 19:21 −81.0 8.5 – −109.7250 5.41308 9 6 19 6 0

5.1. Data preparation

Real world raw data that is generated from sensors and appli-
cations often suffer from skewed data distribution, which poses
a challenge for applying an appropriate ML technique for further
data utilization, especially in the classification domain [53]. When
regarding binary classification an imbalanced data set usually has
a higher number of instances of one class, called the majority
class, where the other one is denoted as the minority class. This
is a frequent scenario in applications such as medical diagnosis
prediction of rare but important diseases or detection of bank
fraud, detection of network intrusions or risk management and
prediction of failures of technical equipment [54]. Traditional
classification algorithms are biased toward the negative class in
imbalance scenarios since training classifiers on such data causes
over-fitting the majority classes [55]. What is more, classifier
can predict everything as major class and ignore the minority
class and miss-classify a rare event, such as medical diagnosis, in
cases of cancerous cell detection, which could lead to very serious
health risks [54]. In the past decade, various approaches have
been developed to manage the classification of imbalanced data,
where the majority of the techniques have been based on sam-
pling, ensemble methods as well as cost-sensitive learning [56].
The sampling approaches are generally divided into two wide cat-
egories: under-sampling and oversampling, where the idea is to
alter the distribution in the training data to overcome the overall
imbalance of data set [57]. To accomplish a balanced data set,
under-sampling removes instances from the some majority class,
in contrast to oversampling where the minority class instances
are increased [55].

As was discussed in Section 4.3, the data collected from Li-
belium Smart Parking sensors exhibited skewness of the data
set, since it was observed that the parking spaces are less fre-
quently to be occupied than free, with average ratio between
classes being around 85%:15% in favor of free parking. Therefore,
a oversampling approach was taken to cope with the imbal-
ance among classes. A specific method has been applied, namely,
the Synthetic Minority Oversampling Technique (SMOTE). It was
designed to synthetically generate new instances via linear in-
terpolation amongst two near positive class samples to provide
new information to the learning algorithm and thus improve
its predicting of the minority class [57]. SMOTE was introduced
by Chawla et al. [58] and it has been broadly utilized for class
imbalance problems in recent years since it significantly prevents
the occurrence of overfitting effectively because it does not just
copy positive class samples [59].

The principle of SMOTE is as follows:
Let us presume that for the given data set, the number of

samples that need to be increased is M . For each data sample X
from the minority class, distance from the other samples of that
class are calculated and then K nearest neighbors are searched.
Then, M randomly selected sample y1, y2, . . . , yM are taken from
K nearest neighbors (Notice that K > M). Finally, interpolated
new samples for each yi are generated using formula:

zi = X + rand(0, 1) × (yi − X), i = 1, 2, . . . ,M, (2)

where X is the random data sample from minority class,
rand(0, 1) is randomly selected number from interval (0, 1), and yi
represents the ith of the M nearest neighbors of the data sample
X [59].

Data utilized in our learning algorithm was arranged as fol-
lows: For every sensor, all data about RSSI, SNR, and occupancy
status from all three gateways were associated. The models were
built and tested for each sensor separately. Moreover, it was
decided to incorporate the Time variables into the data, since
Time variables can encompass effects like temporal dependence
and seasonality, giving a deeper insight into occupancy history.
Therefore, for each sensor, hour, day, month, and day of the week
for a specific occupancy were included as a feature. A snapshot of
the data frame is presented in Table 2. It can be observed from
the table, some of the missing data was added. As was previously
noted, gateways have not received the same amount of data and
not in the same timestamp. To resolve the issue of missing data
from a particular gateway in a particular timestamp, data was
added in the following manner. For each occupancy status at
each gateway, mean values were calculated for Received Signal
Strength and Signal-to-Noise Ratio, and then the missing values
were replaced with this mean value.

For Random Forest, data from each of the sensor data was split
into train and test set, using Python scikit-learn library and train-
test-split function. Due to the nature of our data, the split was
done in 70%:30% ratio, where 70% of data was taken for training
and 30% for testing, with the target values being occupancy status
and all other values where given as input. After splitting, the
training data was balanced using SMOTE and used for building
the Random Forest model.

In the pre-processing of data for Neural Network models, the
data was normalized since diverse variables have different value
scale and after divided into training and test set in the same
manner as for the RF model scenario. Finally, the training set was
balanced with SMOTE and split into training and validation in
80%:20% ratio, where 80% of data was taken for training and 20%
for validation.

5.2. Evaluation metrics

Performance of the classifiers has been evaluated in terms of
evaluation of their different characteristics. Therefore, Accuracy,
Area under the Receiver Operating Characteristic Curve Accuracy
(ROC AUC) and F1 score, were used for evaluation. Mathemati-
cally, the evaluation metrics derive as follows:

• Let TP and TN be the number of positive and number of
negative class that a correctly classified, respectively. Let FP
and FN be the number of positive and negative class that
are miss-classified, respectively. Accuracy is the proportion
of correct predictions that the model makes is given by the
formula:

Accuracy =
TP + TN

TP + FP + TN + FN
, (3)
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Fig. 10. Architecture of RF model for the implementation of side-channel attack.

• F1-Score calculated as from the Precision (Pr) and Recall
(Rcl) as their harmonic mean using formula:

F1 score = 2 ·
Pr · Rcl
Pr + Rcl

, (4)

where Pr = TP/(TP + FP) and Rcl = TP/(TP + FN) [60].
• A ROC graph is a probability curve that illustrates a relative

trade-off between TP and FP over a range of various thresh-
olds of a classification model. A good classifier should have
the ROC curve positioned as close as possible to the upper
left corner of the diagram, in contrast to a poor classifier
whose ROC curve is set along the main diagonal [61].

• AUC gives a measure of how much a ROC curve leans near
the perfect classification point, that is, the point (0,1) on
the ROC plot, i.e., the ability of the classifier to differentiate
classes [62].

5.3. Random forest

Random Forest as an ensemble learning Machine Learning
approach to classification and regression was first introduced by
Breiman [63] in 2001. It has successfully been utilized in many
research and application domains and has become a standard
in non-parametric classification and regression ML technique for
making predictions based on different types of variables with-
out making any prior assumption of how they are associated
with the target variables [64]. Its application ranges from bioin-
formatics [65], intrusion detection systems [66] computer vi-
sion [67], as well traffic accident detection [68] and DDoS attack
detection [69].

Formally, RF can be defined as a classifier constructed out of
a collection of tree-structured classifiers {ck (x, Tk)} , k = 1, ..., L,
where Tk are independent identically distributed random samples
(vectors) and for a input x, each of the trees casts a unit vote
for the most popular class [70] as depicted in Fig. 10. The trees
are generated using a bagging approach, that is by producing
random samples of training sets through replacement, where
some samples can be taken several times and others may not be
taken at all [71]. For a given training set T constructed classifiers
{ck (x, Tk)} cast a vote and make the bagged predictor and for each
y, x in the train set the votes from classifiers for which the Tk did
not contain y, x are stored as out-of-the- bag classifiers [63].

Data used for building our Random Forest model was de-
scribed in Section 5.1 and for every sensor the model was built
and evaluated separately. One of the main advantages of RF is
its good performance and relatively simple implementation [72],

Table 3
Hyper-parameters for Random Forest grid search.
Hyper parameter Values

n_estimators 50, 100, 150, 200, 500
criterion gini, entropy
max_depth 3, 5, 7, 9, 10, 20
max_features auto, sqrt
min_samples_split 2, 4, 6, 10

but one must regard hyper-parameters and tuning strategies to
achieve the best possible classification accuracy. Structure of each
individual tree and likewise the structure and size of the forest
(e.g., the number of trees (n_estimators)) as well as the level of
randomness (e.g. max_features) can be controlled using hyper-
parameters [73]. Therefore, a hyper-parameter grid search was
done using the GridSearchCV class from scikit-learn library with
five-fold cross validation to select the best hyper-parameters. This
search was done for each sensor and the tested hyper-parameters
are presented in Table 3.

Gini impurity parameters are ‘‘gini’’ and ‘‘entropy’’. This cri-
teria is used to assess and measure the merit of the split at
each decision node [74]. The maximum depth of the tree is
determined with max_depth parameter, whereas the minimum
number of samples required to split an internal node is tuned
with min_samples_split. For each of the sensors, the grid search
gave different results for tuning, resulting in the best hyper-
parameters for a particular sensor. Results are presented in
Table 4 and out-of-bag samples were used to estimate the gen-
eralization accuracy.

Results and discussion
Finally, for each of the sensors Random Forest model was

trained based on the above presented hyper-parameters, with
the data described in Section 5.1 and evaluated with previously
described Evaluation Metrics. Result for each sensor are given in
Table 5 and Fig. 11.

As can be observed from the Table 5, Random Forest model has
achieved respectable results with regards to all of the five sensors
when tested on the test set and with regards to all Evaluation
Metrics. High Accuracy score for all sensors indicate overall good
model performance, whereas high F-score implies that the model
is able to distinguish between classes exceptionally well. This is
a rather important result, since the test set was not balanced and
kept the original class distribution. Moreover, the obtained results
are rather consistent with the result from Data Analysis Sec-
tion 4.3, since the best overall results are obtained for Sensor 2
and Sensor 4, achieving Accuracy of 98.3% and 98.5% respectfully.
As was previously pointed out, these were the sensors which had
the least overlapping in RSSI and SNR values for a specific state
of occupancy. Furthermore, ROC curves presented in Fig. 11 and
their respectful AUC values show remarkable performance of the
model at all classification thresholds. Yet again, it can be seen that
the best results are obtained for Sensor 2 and Sensor 4 achieving
AUC score of 99.5% and 99.4% respectfully, confirming the model
good ability of distinguishing between classes.

To further confirm the obtained results and reasoning about
the correlation between the change in parking occupancy and
RSSI and SNR, one final computation was done, i.e. calculation
of feature (variables) importance. Feature importance rates how
important each feature is for the decision a tree makes. It results
in a number ranging between 0 and 1 for each feature and all
feature importance sum up to 1, where 0 means ‘‘not used at all’’
and 1 means ‘‘perfectly predicts the target’’ [74]. These results are
presented in Table 6. As is shown in the table, the most important
features are RSSI from GW1, followed by SNR values from GW3
and RSSI from GW3. These results confirm the importance and
strength of RSSI and SNR values in obtaining the information
about parking occupancy.
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Fig. 11. ROC curves for Sensor 1, 2, 3, 4 and 5 respectfully for Random Forest model.

Table 4
Result of grid search of Hyper-parameters for a particular sensor.
Sensor n_estimators criterion max_depth max_features min_samples_plit

Sensor 1 100 gini 20 sqrt 2
Sensor 2 200 entropy 20 sqrt 2
Sensor 3 200 entropy 20 auto 4
Sensor 4 150 gini 20 sqrt 2
Sensor 5 150 gini 20 auto 2

Table 5
The results for Random Forest model.

Test

Acc. F-Score AUC

Sensor 1 0.970 0.902 0.990
Sensor 2 0.983 0.923 0.995
Sensor 3 0.978 0.900 0.995
Sensor 4 0.985 0.939 0.995
Sensor 5 0.962 0.891 0.988

5.4. Neural network

Neural Networks or Artificial Neural Networks (ANN) can be
described as computational models and architectures that mimic
true functionality of biological neural networks [75]. Today, ap-
plications of ANN range from science, engineering, agriculture,
mining, business, technology etc. [76]. Generally, the neural net-
work is comprised out of an input layer, an output layer, and at
least one hidden layer between the input and output with inter-
connections [75] (output from a neuron in one layer represents
the input to a neuron located in the next layer), as depicted in
Fig. 12.

An artificial neuron can be mathematically defined as non-
linear mapping that is applied to a weighted sum of its input
values and a bias, producing an output ŷ according to formula:

ŷ = σ

(
m∑
i=1

wixi + b

)
; (5)

m represent the number of inputs, xi represents the inputs, and
wi are the weights. Weights are assigned based on the inputs
relative importance with regards to the other inputs, where as
the bias provides a constant value to the mapping which can
be crucial for a successful learning [72]. The non-linear mapping
σ (.) is called the activation (or transfer) function and it controls
the output of the neuron by keeping it within acceptable values,
usually between [0, 1] or between [−1, 1] [77].

Neural network architecture presented in this research, has
two hidden layers, whereas ReLU was used in the hidden layer
and Sigmoid in the output layer. As an input layer, information
regarding Sensor ID, RSSI and SNR values captured via three
LoRaWAN gateways, timestamp of the event (month, day of the
week, hour) were used. An exit layer will predict parking occu-
pancy status (0 if free or 1 if occupied).

As the parking space occupancy is a binary classification prob-
lem, in this paper, the Binary Cross-Entropy Loss function was ap-
plied with the different optimizer combinations since the model
will eventually predict a 0 or a 1 [75]. Optimizer aim to help
the model to converge and minimize the loss or error func-
tion [72]. Neural network model designed for this research em-
ployed Stochastic Gradient Descent (SGD), Root Mean Square
Propagation (RMSProp) and Adaptive Moment Optimization
(Adam) as optimizers. It is also important to determine the best
learning rate in the model i.e., how much the model need to be
changed in response to the estimated error each time the model
weights are updated. With a high learning rate it may not enable
find global minimum and the model might not converge at all,
whereas with low learning rates model might take to long to
converge [72]. Table 7 summarizes the hyper-parameters utilized
for building the model.

Results and discussion
The best results for hyper parameters were obtained for learn-

ing rate 0.001 and 0.01 and 100 epochs for Adam optimizer,
summarized in Table 8.

As can be seen, the highest Accuracy and AUC were obtained
for sensors (parking lots) 2, 3 and 4. Yet again, this is consistent
with the reasoning presented in Data Analysis Section 4.3. As can
be seen, Adam optimizer utilized for data from Sensor 2, 3 and
4 gave an Accuracy on the test set of 97.3%, 97.5% and 97.7%
respectfully. What is more, for Sensor 3 and Sensor 4 high AUC
score of 98.9% are achieved, indicating that the NN model differ-
entiates classes very well. Finally, these results are also consistent
with the result for the Random Forest model, which obtained the
highest accuracy and AUC score for Sensor 2. Fig. 13 depicts the
learning curve of the model on the training and validation set
for Sensor 4 along with Accuracy plot regarding Adam optimizer
using the learning rate 0.001 with 100 epochs. It is worth noting
that the Accuracy plot in both Training and Validation sets seems
to be overlapping, while the learning curves are not over-fitting.
What is more, very good results were obtained with a high
F1 score of 99.6% on train data, as well as 90.6% on test data,
indicating that although the test set was unbalanced, the model
was still able to distinguish classes rather well.

Furthermore, Sensor 5 achieves lowest Accuracy and AUC
score of 94.9% and 97.8% respectfully, once more results be-
ing consistent with the ones obtained with the RF model and
conclusions from Data Analysis. Finally, ROC curves depicted in
Fig. 14 exhibit the performance of Neural network model for
Adam optimizer for all parking sensors. As can be seen, the model
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Table 6
Feature importance rate for each of the five sensors.
Sensors GW1 GW2 GW3 Month Day Hour Day of

RSSI SNR RSSI SNR RSSI SNR the week

Sensor 1 0.31 0.02 0.17 0.06 0.04 0.13 0.27 0.03 0.16 0.04
Sensor 2 0.23 0.02 0.09 0.07 0.18 0.22 0.03 0.04 0.09 0.04
Sensor 3 0.21 0.02 0.07 0.04 0.20 0.26 0.07 0.04 0.06 0.03
Sensor 4 0.25 0.02 0.07 0.07 0.13 0.31 0.02 0.04 0.07 0.04
Sensor 5 0.26 0.03 0.03 0.03 0.08 0.17 0.05 0.08 0.22 0.08

Table 7
Hyper parameters selected for neural network model performance
testing.
Hyper parameter Values

Number of neurons First layer—256, Second Layer—128
Learning rate 0.001 , 0.01
Number of epochs 50, 100
Batch size 64
Optimizer Adam, SGD, RMSProp

Table 8
Best results obtained for NN model.

Training Test

l. rate Acc. F-Score AUC Acc. F-Score AUC

Ad
am

Sensor 1 0.001 0.987 0.987 1.000 0.961 0.880 0.988
Sensor 2 0.001 0.996 0.996 1.000 0.973 0.886 0.985
Sensor 3 0.01 0.993 0.993 1.000 0.975 0.882 0.989
Sensor 4 0.001 0.995 0.995 1.000 0.977 0.906 0.989
Sensor 5 0.01 0.978 0.978 0.997 0.949 0.859 0.978

Fig. 12. Design of Neural Network model for the implementation of side-channel
attack.

is obtaining a high True Positive Rate (TPR) while maintaining
a low False Positive Rate (FPR), providing excellent classification
results for both classes of parking occupancy.

6. Model performance comparison

Comparison between the Random forest and Neural Network
model in terms of accuracy has been assessed for every sensor
using a repeated stratified k-fold cross-validation with 10 folds
and five repeats based on the previously described test set. As
elaborated in [78], the test data set, from now labeled as original
set, is divided into k-subsets (here k being 10), in which the class
distribution is approximately the same as the one in the original
set. Among these k-subsets, one is kept and used as a validation

for testing, the other k-1-subsets are utilized as training sets.
The cross-validation procedure is then executed k-times, where
each of the k-subsets is employed only once as the validation
set. In the end, the k-results are averaged to provide an overall
error estimate. Commonly, the stratified 10-fold cross-validation
is adequate for estimating accuracy since the scientific literature
has shown that it has a relatively low bias and variance [79].
Results of the cross-validation for each of the sensors it presented
in Fig. 15, depicting a box and whisker plot of distribution of
classification accuracy scores for both Random Forest and Neural
Network model.

As can be seen, the results indicate that there is no major
difference between accuracy in classification of the presented
models. To confirm this observation, we have conducted the Di-
etterich’s 5 × 2-Fold Cross-Validation method (commonly known
as 5 × 2-cv paired t-test) presented in his research given in [80],
for statistical performance comparison of the given models. This
test involves running a five replications of 2-fold cross-validations
in the following manner for the case presented in this research.
The original set is divided into two sets, namely X1 and X2, where
|X1|:|X2| = 50%:50%. The RF model and the NN model are trained
on X1 and onward tested on X2. Let RFAx1 and NNAX1 be the
accuracy in classification obtained for RF and NN model on the
X1 set respectfully. The performance difference measure is given
by:

PMX1 = RFAx1 − NNAX1 . (6)

This process of computation if done once more but this time the
X2 is used for training and X1 set for testing, obtaining the second
difference performance measure

PMX2 = RFAx2 − NNAX2 . (7)

These calculations enable us to derive the mean and variance of
differences as:

PMAVG =
PMX1 + PMX2

2
, (8)

s2 = (PMX1 − PMAVG)2 + (PMX2 − PMAVG)2. (9)

Variance of differences is calculated for each of the 5 replications
and utilized to derive the t statistic as follows:

t =
PMx1√

5
1
5

∑
s2i

i=1

. (10)

Under the H0 hypotheses that there is no statistically significant
difference between the RF model and NN model, the t statistics
will approximately follow a t distribution with 5 degrees of free-
dom. Accepting H0 hypotheses, for a given level of significance,
would show that the differences in the estimated performance
metrics is a coincidence. Contrary, if H0 is discarded, it can be
concluded that the differences in the performance metrics occurs
because of the models do not have equal performance. A signifi-
cance level α = 0.05 has been chosen enabling the computation
of p-value using the t-statistic. If the p-value is smaller than
α the null hypothesis would be rejected. Thus, the calculated
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Fig. 13. (Left) Learning path of model with training and validation loss, (right) Accuracy plot for Sensor 4, Adam optimizer with the learning rate of 0.001 and 100
epoch.

Fig. 14. ROC curves obtained on the test set for Sensor 1, 2, 3, 4 and 5 respectfully for Neural Network model.

Fig. 15. Distribution of classification accuracy scores for both Random Forest and Neural Network model from repeated stratified 10-fold cross-validation.

Table 9
Results of Dietterich’s 5 × 2-Fold Cross-Validation statistical test
for RF and NN model for all five sensors and significance level
α = 0.05.
Sensor p-value t-statistics value

Sensor 1 0.190 1.515
Sensor 2 0.464 0.793
Sensor 3 0.159 1.655
Sensor 4 0.264 1.259
Sensor 5 0.167 1.618

critical t-value is t5,0975 = 2.571, which is obtained using the
scipy.stats.t.ppf() function in Python. If the absolute values of the
t- statistics are greater than the critical t value, then the results of
the test are statistically significant. Table 9 summarizes obtained
results for the 5 × 2-cv paired t-test for all of the five sensors.

As can be observed from the results presented in the Table 9,
it can be concluded that the RF and NN model have the same
performance.

Computational complexity
Computation complexity of Machine Learning algorithms has

been the focus of research in the scientific community for a long
time, emphasizing on how much the performance of a certain

ML algorithm is application and implementation dependent [81–
83]. However, for commonly utilized algorithms, like Random
Forest and ANN, and their widely applied architectures, training
complexities are known. On the assumption that we have n
instances, each described by m attributes, where n ≫ m, for k
neurons, for e epochs and M trees, training complexity for RF is
O(M · m · n · log(n)) and for ANN it is O(e · m · n · k) [81]. Due to
the fact that for each sensors, RF has different architecture, a per-
formance comparison in terms of classification run-time has been
done by obtaining the actual run-time (time elapsed between the
beginning and the end of classification) of both models for each
of the five sensors. As was elaborated in Section 4.2, for better
computing performances with the GPU, Deep Neural Network
NVIDIA CUDA library (cuDNN) was utilized. For every sensor, a
test set containing 1000 sample has been employed and given
to the models. Then the time elapsed between the beginning
and the end of models execution on GPU (in seconds) has been
measured and averaged on 100 repetitions. The obtained results
are presented in Table 10 indicating that for a trained model
of RF and NN, classification of parking space occupancy can be
obtained in real time. What is more, models exhibit consistency
in run-time across all of the five sensors.
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Table 10
Classification run-time of each sensor for both RF and NN model.
Sensor Random forest Neural network

Sensor 1 0.1191 s 0.0843 s
Sensor 2 0.1165 s 0.0841 s
Sensor 3 0.1172 s 0.0978 s
Sensor 4 0.1163 s 0.0958 s
Sensor 5 0.1174 s 0.0913 s

7. Discussion

7.1. Limitations of the proposed approach

The proposed solution uses train-then-test methodology,
where the attacker uses supervised learning technique to create a
machine learning model for every parking lot from the collected
data about signal strength. A machine learning model discussed
within this study would require the attacker to passively collect
information about LoRaWAN packet signal strength from parking
sensor devices at every LoRaWAN gateway, but also observe true
parking lot occupancy in the moment of signal capture. However,
once the model about parking lot occupancy is created, the
attacker could use only information from signal strength to esti-
mate parking lot occupancy, resulting in side-channel attack that
could have implications on personal and business privacy. With
that regard, it has to be pointed out that results that are obtained
from this study are limited to a particular parking space from
which the data was collected. Therefore, future work has to exam-
ine other scenarios for different parking spaces within the context
of utilization of the proposed models. Other limitations of this
study is the current overall equipment utilization. First one is the
usage of only omnidirectional antennas. This aspect can be further
extend by exploring the deployment of directional antennas at
greater distances. Furthermore, multiple scenarios regarding the
observance points (eg. the efficiency of the methods while using
a single GW vs. multiple GWs, close GW vs. distant to the sensor
gateways) are beyond the scope of this paper and are planed
for future work. The main objective of research presented in this
paper was to investigate the possibility of detecting parking lot
occupancy based on privacy leakage of LoRaWAN smart parking
sensor devices. Therefore, we have utilized all available equip-
ment to obtain the highest possible accuracy that can be achieved.

7.2. ML model comparison without the time variables

Researches referenced in the related work have emphasized
the importance of time-related variables for achieving good pre-
diction or detection accuracy of a parking status. This was a strong
argument for inclusion of these variables into models presented
in this research. Due to the fact that the observed parking lot
within this research is based on University grounds, this might
imply that the presented methods are prone to be driven by an
occupancy pattern rather than by leakage of knowledge due to
the usage of LoRaWAN. However, feature importance rate for each
of the five sensors discussed for the Random Forest model have
indicated that this might not be the case after all. Therefore, one
final model performance comparison has been undertaken and
that is the comparison in achieved accuracy of detection without
the time variables.

In this scenario, variables month, day, hour, day of the week
were removed from the data frame, leaving only data about the
signal strength and signal to noise ratio. In order to obtain com-
parable results to previous models, the same formerly elaborated
Hyper parameters for RF and NN model were considered. Results
of hyper-parameter tuning and detection accuracy of Random
Forest model are presented in the Tables 11 and 12 and for
Neural Network model in Table 13. As can be observed from the

tables, results remain consistent. The Random Forest model is
not influenced by time variables with the exception for sensor 5.
These results remain in accordance with the Data analyses and
calculations of the feature importance. Furthermore, detection
accuracy remain very high for the RF model. However, NN models
performance has decreased especially for sensor 1 and sensor 5.
This indicates that the information about time had an influence
in accuracy detection for sensors 1 and 5.

Overall, it can be noticed that Sensor 2 and Sensor 4 have
gained slightly better overall accuracy for both ML models with
and without the time variables. The reason for this is due to
the multipath propagation scenario which is more favorable for
Sensor 2 and 4, than for others. When we compare the RSSI
results of Sensor 5 in Fig. 8 (a) with Sensor 2 in Fig. 8 (c)
be noticed that the difference between the most probable RSSI
values for occupied and free parking states is higher in the case of
Sensor 2 than in the case of Sensor 5. Additionally, the probability
density curve is more distinct in Sensor 2 case, which may also
lead to better accuracy.

7.3. Possible use-case scenarios

The idea of applying Machine learning algorithms to extract
information about the surrounding world from signal strength
measurements can be expanded for other uses. Researches pre-
sented in [84,85] show a correlation between RSSI and soil mois-
ture. This correlation was exploited within researches [86,87]
implying that an underground LoRa beacon device that mea-
sures signal strength could serve as a soil humidity indicator.
In addition, RSSI from LoRa-enabled devices was used for device
fingerprinting localization [88], but also for secure key genera-
tion [89]. Recently, it was shown that signal strength measure-
ment can serve as an additional parameter to parking lot sensing
occupancy [22,23,90]. Signal strength in LoRa-based devices could
also be used for device localization, such as location authentica-
tion [12] to prevent spoofing attacks, as well as other location
tracking applications [91].

7.4. Possible mitigation of side-channel attack

In the proposed side-channel attack, the attacker detects ve-
hicle presence by measuring signal strength from smart parking
sensors at several points (using multiple gateways). To mitigate
the detection of vehicle presence in the parking lot based on
signal strength, several obfuscation techniques could be intro-
duced, similar to those introduced in location privacy attacks.
In several papers, to prevent privacy localization attacks end
devices are attached a random power value during transmission
of encrypted packets [92]. Since LoRaWAN as a standard allows
end devices to transmit packets at different transmission powers,
a similar scenario could be used by changing transmission power
while parking lot is free and occupied (within power range).
Therefore, instead of randomly changing the transmission power
to prevent from a localization attack, transmitting packets at
different strengths during the free (smaller power) and occupied
(higher power) parking state could prevent the attacker from
denoting occupancy level status. Such a modification in transmis-
sion power could result in overlapping the distribution of RSSI
and SNR for the free and occupied parking lot, contrary to the
scenario given in Fig. 8. Other scenarios may include obfuscation
techniques that include identity and time obfuscation [93,94]. A
silent period could be introduced where smart parking sensors
are kept silent for a predefined time period (e.g., half a day),
collecting information about parking lot occupancy status. After
a silent period, smart parking sensors would send logged frames,
which may have economic reasoning (commercial parking lot).
Other solutions could introduce using pseudonyms (e.g. DevAddr)
that change with every new packet transmission from, which in
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Table 11
Result of grid search of Hyper-parameters for a particular sensor without time variables.
Sensor n_estimators criterion max_depth max_features min_samples_plit

Sensor 1 50 entropy 20 auto 2
Sensor 2 100 entropy 20 sqrt 2
Sensor 3 100 gini 20 auto 4
Sensor 4 50 gini 20 auto 2
Sensor 5 200 entropy 20 auto 2

Table 12
The results for Random Forest model for a particular sensor
without time variables.

Test

Acc. F-Score AUC

Sensor 1 0.94 0.81 0.974
Sensor 2 0.97 0.87 0.994
Sensor 3 0.962 0.82 0.967
Sensor 4 0.974 0.89 0.974
Sensor 5 0.917 0.75 0.94

Table 13
Best results obtained for NN model without time variables.

Test

l. rate Acc. F-Score AUC

Ad
am

Sensor 1 0.0001 0.903 0.742 0.964
Sensor 2 0.01 0.961 0.84 0.972
Sensor 3 0.01 0.937 0.75 0.949
Sensor 4 0.001 0.957 0.839 0.975
Sensor 5 0.001 0.903 0.739 0.931

combination with variations in transmission power could not link
pseudonym to the physical smart parking sensor. Another solu-
tion uses the insertion of ghost sensors surrounding legitimate
smart parking sensors that transmit dummy traffic pretending
to be legitimate sensors, whereas the attacker cannot distinguish
between dummy and legitimate traffic, resulting in the inability
to make decisions about the occupancy of the free and occupied
parking lot from the signal strength.

8. Conclusion

This paper exploits the privacy implications of a drop in signal
strength when a vehicle obscures LoRaWAN smart parking sensor
devices, thus revealing information about vehicle presence (oc-
cupied parking lot), allowing the implementation of side-channel
attack that passively collects data from large distances.

The results of EM propagation phenomena in complex en-
vironments (parking lot) using high fidelity simulator Wireless
InSite shows that vehicle placed over parking sensor deteriorates
the signal strength at the receiver side, which could serve as
an indicator of parking lot occupancy. Three LoRaWAN gateways
were placed in University building, and five smart parking sensor
devices were deployed on University parking lot, capturing 130k
of data during the period of 10 months. Separate analysis carried
out for a specific sensor and a specific gateway indicated that the
change of parking lot status affects RSSI and SNR status, implying
that a suitable Machine Learning algorithm could be implemented
for parking lot occupancy detection from signal strength. After
balancing the data set it was shown that based on the Signal
Strength, it is possible to correctly detect parking lot occupancy
status of a particular parking space with high accuracy — 98% by
using supervised learning based on RF and NN. Using Dietterich’s
5 × 2-Fold Cross-Validation statistical test for RF and NN model
for all five sensors and significance level α = 0.05 it was shown
that models have the same performance.

Future work will comprise the exploration of minimum
ground truth data that needs to be collected in order to ob-
tain highly accurate classification. Moreover, further exploration

regarding transfer learning based approaches will be done in
order to adapt the trained model to other parking spaces. We plan
to extend our analysis of privacy leakages in depth by focusing
on other most prominent LPWA technologies, such as NB-IoT
and Sigfox. In addition, future work will include research with
directional antennas placed at greater distances.
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Abstract: In the last two decades, Radio Frequency Identification (RFID) technology has attained
prominent performance improvement and has been recognized as one of the key enablers of the
Internet of Things (IoT) concepts. In parallel, extensive employment of Machine Learning (ML)
algorithms in diverse IoT areas has led to numerous advantages that increase successful utilization
in different scenarios. The work presented in this paper provides a use-case feasibility analysis of
the implementation of ML algorithms for the estimation of ALOHA-based frame size in the RIFD
Gen2 system. Findings presented in this research indicate that the examined ML algorithms can
be deployed on modern state-of-the-art resource-constrained microcontrollers enhancing system
throughput. In addition, such utilization can cope with latency since the execution time is sufficient
to meet protocol needs.

Keywords: Internet of Things; RFID tags, RFID reader; Machine Learning; tag estimate method;
microcontroller

1. Introduction

The Internet of Things (IoT) has become a pervasive environment in which smart
objects interact and exchange information by sensing the ambiance of their surroundings.
One of the major technologies that enable IoT is Radio Frequency Identification (RFID),
which can utilize Wireless Information and Power Transfer (WIPT) in its applications
that include access control, parking management, logistics, retail, etc. [1]. In large-scale
infrastructures, such as commercial warehouses, reading RFID tags, such as ultra-high-
frequency ones, comes at a high cost and can involve a large volume of data [2]. In general,
RFID presents radio technology that acts as a communication medium between a reader
and the tag, with a unique identifier used for communication [3]. In general, the RFID tag
is distinguished by the presence or absence of the battery [4]. Passive tags are self-powered
and communicate using the same RF waves emitted by the reader antennas, known as
backscattering technology [5]. Among the existing technologies, passive Gen2 technology
is considered the most attractive in IoT applications due to its simple design, flexibility,
cost and performance [6,7]. Gen2 as a standard is used on the physical and MAC levels
to establish reliable communication between the reader and a tag. Readers must provide
sufficient power to energize tags and respond to the necessary information since they are
not equipped with batteries. The energy levels that tags can extract are quite low and,
therefore, cannot afford energy-efficient MAC schemes [8]. In general, the MAC of RFID
is random, and there are two widely used methods to achieve it: the first is a binary tree,
and the second is the ALOHA-based protocol [4]. In the binary tree protocol, continuous
YES/NO communication is achieved between a reader and tags, while with the ALOHA
protocol tag initiates communication with a request from the reader [9–11].

One of the commonly utilized ALOHA-based protocols is the Dynamic Framed Slot-
ted ALOHA (DFSA) since it has the most prominent performance, which is the highest
throughput. DFSA belongs to a group of time division multiple access (TDMA) protocols,
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where communication between a reader and tags is divided into time frames, which are,
in turn, divided into time slots [12]. The beginning of the interrogation process in DFSA
is induced by the reader’s announcement of the frame size [6]. This is performed by the
reader sending a QUERY command and the value of the main protocol parameter Q for
the tags [13]. The value of Q is an integer ranging from 0 to 15 that sets the frame size at
L = 2Q. From there on, all tags that are being interrogated will occupy a randomly selected
position in the frame (commonly known as a slot) and will onward reply back to the reader
when their slot is being interrogated. Based on such an access control scheme, three diverse
scenarios may happen: (a) only one tag is in the slot (the successful slot), (b) no tags in the
slot (empty slot) and (c) numerous tags have taken the same spot (collision) [6]. The overall
number of successful, empty and collision slots is denoted with S, E and C, respectively.
An example of an interrogating frame is exhibited in Figure 1.

successful slots

empty slots
collision slots

Q

i

L = 2

Figure 1. An example of an interrogating frame of frame size L = 2Q. i represents the size of a
particular part of the frame.

Therefore, the frame size is equal to the sum of successful, empty and collision slots,
i.e., L = E + S + C. According to the previous notation, the throughput is defined using
Equation (1) as :

η =
S
L

. (1)

therefore, the main goal in DFSA systems is to increase the number of successful slots S
within the frame size L. As tags are fitting their slots randomly, previous studies [14] show
that the maximum throughput will reach its maximum value of approximately 37% when
the size of the frame equals the number of tags. In usual situations, the number of tags is
unknown and has to be estimated in order to set an adequate frame size and, consequently,
achieve maximum throughput.

Aiming to improve the throughput of RFID systems, the research presented in this pa-
per utilizes Machine Learning classifiers as an approach for efficient tag number estimation.
The performance of the ML algorithms is compared with state-of-the-art solutions, specifi-
cally the Improved Linearized Combinatorial model (ILCM) for tag estimation (elaborated
in [8]). The study presented in this paper shows that ML classifiers, which use the maximum
of the available information gathered from Monte Carlo simulations, can be implemented
in standard, mobile RFID readers. What is more, they outperform the state-of-the-art model
achieving better throughput. The advances result in achieving optimal performance in tag
identification by the reasonable processing time and energy requirements. The paper is
structured as follows: Section 2 gives an insight into some commonly applied methods
for tag number estimation and provides more detail on the ILCM model. Section 3.1 gives
details on the experimental setup and elaboration on the Machine Learning models and
the ILCM model used on a particular set of data, continuing with model performance
analyses and comparison. Section 5 examines the feasibility and mandatory means for the
efficient deployment of ML models on microcontrollers. Overall, an articulate conclusion
that emphasizes the obtained results is provided in Section 6.

2. Related Works

Over the past few years, various methods and approaches have been employed
for tag estimation. In [15], Vogt presented a method based on Minimum Squared Error
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(MSE) estimation by minimizing the Euclidean norm of the vector difference between the
actual frame statistics and their expected values. The number of empty, successful and
collision slots is taken into account. However, the predicted values are calculated under
the assumption that the tags in each slot have independent binomial distributions, which
leads to unreliable findings. In the research presented by Chen in [14], the authors apply
probabilistic modeling of the tag distribution within the frame, which they consider to be a
multinomial distribution. By doing so, they obtain the tag number estimation. For each
slot, binomial distributions provide occupancy information. However, it does not consider
the fact that the number of tags in the interrogation area is limited [16]. An improvement
of the previous model was given by research in [17], although this improvement tends
to have a high computational cost of implementation for genuine RFID systems [16].
Furthermore, a study presented in [18] offered a unique tag number estimation scheme
termed ‘Scalable Minimum Mean Square Error’ (sMMSE), which enhanced accuracy and
reduced estimation time. The efficient modification of the frame size is derived from two
principal parameters: the first one puts a limit on the slot occupancy, whereupon frame
size needs to be expanded, and the second determines the frame size expansion factor. In
the research presented in [19], the authors provided an in-depth analysis of some of the
most relevant anti-collision algorithms, taking into account the limitations imposed by
EPCglobal Class-1 Gen-2 for passive RFID systems. The study classified and compared
some of the most important algorithms and optimal frame-length selection. Based on their
research results, the authors point out that the maximum-likelihood algorithms achieve the
best performance in terms of mean identification delay. Finally, the researchers concluded
that the algorithm performance also depends on the computation time for estimating the
number of tags.

A study presented in [20] introduced a new MFML-DFSA anti-collision protocol. In
order to increase the accuracy of the estimate, it uses a maximum-likelihood estimator that
makes use of statistical data from many frames (multiframe estimation). The algorithm
chooses the ideal frame length for the following reading frame based on the anticipated
number of tags, taking into account the limitations of the EPCglobal Class-1 Gen-2 stan-
dard. The MFML-DFSA algorithm outperforms earlier suggestions in terms of average
identification time and computing cost (which is lower), making it appropriate for use in
commercial RFID readers. The rather novel research given in [21] proposes an RFID tag
anti-collision method that applies adjustable frame length modification. The original tag
number is estimated based on the initial assumption that the number of tags identified in
the first frame is known. The authors present a non-linear transcendental equation-based
DFSA (NTEBD) algorithm and compare it to the ALOHA algorithm demonstrating the
error rate for experimental results to be less than 5% and improved tag identification
throughput by 50%. The authors of [22] present an extension for an anti-collision estimator
based on a binomial distribution. They have constructed a simulation module to examine
estimator performance in diverse scenarios and have shown that the proposed extension
has enhanced performance in comparison to other estimators, no matter if the number of
tags is 1000 or 10,000.

As can be observed, the previously mentioned algorithms tend to have high compu-
tational costs since they are commonly funded by calculating probabilities. This might
present an issue for standard microprocessors that are not adjusted to perform computa-
tions of factorials that produce large numbers. To solve the issue, a diverse method for
tag estimation has been introduced by researchers in [8], namely the Improved Linearized
Combinatorial model. Their approach bypasses the conditional probability calculations by
doing them in advance. Further, the estimation model is uncomplicated and provides an
effective tag estimation n̂ based on linear interpolation given by Equation (2):

n̂ = kS + L, (2)
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where coefficients k and l are derived from Equations (3) and (4), respectively:

k =
C

(4.344L− 16.28) +
(

L
−2.282−0.273L

)
· C

+ 0.2407 · ln(L + 42.56), (3)

L = (1.2592 + 1.513L) tan(1.234L−0.9907 · C). (4)

In the event of no collision, the formula gives n̂ = S, whereas for cases when k <
0, k must be set to 0. Following the tag estimation, the Q value is calculated using
Equation (5) as

Q = round(log2(n̂− S)). (5)

The results obtained by the authors have indicated that the ILCM shows comparable
behavior to state-of-the-art algorithms regarding the identification delay (slots) but is not
computationally complex. An extension of their study was performed in [23] by presenting
a C-MAP anti-collision algorithm for an RFID system that has lower memory demands.

3. Materials and Methods
3.1. Machine Learning Classifiers for Tag Estimation

The IoT surroundings rich with sensor devices that are interconnected have also
yielded the demand for the more efficient monitoring of sensor activities and events [24].
To support diverse IoT use-case scenarios, Machine Learning has emerged as an essential
area of scientific study and employment to enable computers to automatically progress
through experience [25]. Commonly, ML incorporates data analyses and processing fol-
lowed by training phases to produce “a model”, which is onward tested. The overall
goal is to expedite the system to act based on the results and inputs given within the
training phase [26]. For the system to successfully achieve the learning process, distinc-
tive algorithms and models along with data analyses are employed to extract and gain
insight into data correlation [27]. Thus far, Machine Learning has been fruitfully applied
to various problems such as regression, classification and density estimation [28]. Specific
algorithms are universally split into disjoint groups known as Unsupervised, Supervised,
Semi-supervised and Reinforcement algorithms. The selection of the most appropriate
ML algorithm for a specific purpose is performed based on its speed and computational
complexity [27].

Machine Learning applications range from prediction, image processing, speech
recognition, computer vision, semantic analysis, natural language processing, as well
as information retrieval [29]. In a problem like the estimation of the tag number based on
the provided input, one must consider the most applicable classifiers that can deal with a
particular set of data. Currently, classification algorithms have been applied for financial
analyses, bio-informatics, face detection, handwriting recognition, image classification,
text classification, spam filtering, etc. [30]. In a classification problem, a targeted label
is generally a bounded number of discrete categories, such as in the case of estimating
the number of tags. State-of-the-art algorithms for classification incorporate Decision
Tree (DT), k-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Random Forest
(RF) and Bayesian Network [31]. In the last decade, Deep Learning (DL) has manifested
itself as a novel ML technique that has efficiently solved problems that have not been
overcome by more traditional ML algorithms [26]. Considered to be one of the most
notable technologies of the decade, DL utilizations have obtained remarkable accuracy in
various fields such as image and audio-related domains [26,32]. DL has the remarkable
ability to discover the complex configuration of large datasets using a backpropagation
algorithm indicating in what manner the machine’s internal parameters need to be altered to
calculate and determine each layer’s representation based on the representation of previous
layers [33]. The essential principle of DL has been displayed throughout growing research
performed in Neural Networks or Artificial Neural Networks (ANN). This approach
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allows for a layered structure of concepts with multiple levels of abstraction, in which
every layer of concepts is made from some simpler layers [26]. Deep Learning has made
improvements in problem-solving with regards to discovering intricate configurations
of large-sized data and thus has been applied in various domains ranging from image
recognition, speech recognition, natural language understanding, sentiment analysis and
many more [33]. Machine Learning classifier performance has been extensively analyzed in
the last decade [34–37], providing a systematical insight into the classifiers’ key attributes.
Table 1 provides a comparison of the advantages and limitations of commonly utilized
ML classifiers.

Table 1. The advantages and limitations of commonly utilized ML classifiers [34–37].

ML Classifier Advantages Limitations

DT Solves multi-class and binary problems;
Fast

Prone to overfitting; Sensitive to outliers

Can handle missing values; Easily inter-
pretable

k-NN Solves multi-class and binary problems;
Easy to implement

Sensitive to noisy attributes; Poor inter-
pretability
Slow to evaluate large training sets

SMV Solves binary problems; High accuracy Training is slow; High complexity and
memory requirements

Durable to Noise; Excellent to model non-
linear relations

RF Solves multi-class and binary problems;
Higher accuracy compared to other mod-
els

Can be slow for real-time predictions;
Not very interpretable

Robust to noise

Naive Bayes Solves multi-class and binary problems;
Simple to implement; Fast

Ignores underlying geometry of data; Re-
quires predictors to be independent

ANN Solves multi-class and binary problems;
Handles noisy data

Prone to over-fitting on small datasets;
Computationally intensive

Detects non-linear relation amongst data;
Fast

Tag number estimation can be regarded as a multi-class classification problem. Amongst
many classifiers, Random Forest has been considered a simple yet powerful algorithm for
classification, successfully applied in numerous problems such as image annotation, text
classification, medical data etc. [38]. RF has been proven to be very accurate when dealing
with large datasets; it is robust to noise and has a parallel architecture that makes it faster
than other state-of-the-art classifiers [39]. Furthermore, it is also very efficient in stabilizing
classification errors when dealing with unbalanced datasets [40]. On the other hand, Neural
Networks offer great potential for multi-class classification due to their non-linear archi-
tecture and prominent approximation proficiency to comprehend tangled input–output
relationships between data [41].

Discriminative models, such as Neural Networks and Random Forest, can model
the decision boundary between the classes [42], thus providing vigorous solutions for
non-linear discrimination in high-dimensional spaces [43]. Therefore, their utilization for
classification proposes has proven to be successful and efficient [44]. Both algorithms
are able to model linear as well as complex non-linear relationships. However, Neural
Networks have a greater potential here due to their construction [45]. On the other hand,
RF outperforms NN in arbitrary domains, particularly in cases when the underlying data
sizes are small, and no domain-specific insight has been used to arrange the architecture
of the underlying NN [21]. Although NN is an expressively rich tool for complex data
modeling, they are prone to overfitting on small datasets [46] and are very time-consuming
and computationally intensive [45]. Furthermore, their performance is frequently sensitive
to the specific architectures used to arrange the computational units [21] in contrast to
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the computational cost and time of training a Random Forest, requiring much less input
preparation [45]. Finally, although RF needs less hyper-parameter tuning than NN, the
acquisitive feature space separation by orthogonal hyper-planes produces typical stair or
box-like decision surfaces, which can be beneficial for some datasets but sub-optimal for
others [46].

Following the stated reasoning, Neural Network and Random Forest have been
applied in this research for tag number estimation based on the scenarios that occur
during slot interrogation.

3.1.1. Experimental Setup

To obtain valuable data for model comparison, Monte Carlo simulations were per-
formed to produce an adequate number of possible scenarios that may happen during the
interrogation procedure in DFSA. Detailed elaboration of the mathematical background
of the Monte Carlo method that has been applied for this research has been elaborated in
research prior to this one and presented in [11]. The selected approach for Monte Carlo sim-
ulations of the distribution of tags in the slots follows the research performed in studies [8]
and [23]. Simulations were executed for frame sizes L = 4, 8, 16, 32, 128 and 256, i.e., for
Q = 2, 3, 4, 5, 7 and 8, where the number of tags was in the range of [1, 2Q+2] (this range
was chosen based upon experimental findings elaborated in [23]). For each of the frame
sizes and the number of tags, random 100,000 distributions of E empty slots, successful
slots S and collision slots C were realized and are presented in Table 2.

Table 2. Snapshot of the obtained data.

Q L S C E N (Number of Tags)

2 4 2 1 1 6
2 4 0 3 1 15

. . . . . . . . . . . . ... . . .
8 256 79 122 55 401
8 256 18 229 9 943

Data obtained from the simulations were given to Neural Network, Random Forest
and the ILCM models for adequate performance comparison and analyses of the accuracy
of tag estimation.

All of the models and simulations were performed on a dedicated computer for such
tasks. To be precise, the machine has an Intel(R) Core(TM) i7-7700HQ@2.80 GHz processor,
16 GB of RAM and NVIDIA GeForce GTX 1050 Ti with 768 existing cores running on a
64-bit Windows 10 operating system. Furthermore, to realize more efficient computing with
the GPU, the Deep Neural Network NVIDIA CUDA library (cuDNN) [47] was applied.
The Keras 2.3.1. Python library was employed, which operates on top of a source built
upon Tensorflow 2.2.0 with CUDA support for different batch sizes.

3.1.2. Neural Network Model

In general, a Neural Network is made out of an artificial neuron and layer: the input,
the hidden layer (or layers) and the output layer are all interconnected [26], as exhibited in
Figure 2.
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3rd hidden  layer1st hidden  layer
2nd hidden  layer

Output layer 
(number of tags)

Input layer

Q

S

L

C

Figure 2. Architecture of the Neural Network model.

Aiming to imitate the behavior of real biological neurons, the course of learning within
a NN unfolds through uncovering hidden correlations amongst the sequences of input data
throughout layers of neurons. The outputs from neurons in one layer are onward given as
inputs to the neurons in the next layer. A formal mathematical definition of an artificial
neuron given by Equation (6) is as follows.

Definition 1. An artificial neuron li is the output of the non-linear mapping θ applied to a weighted
sum of input values x and a bias β defined as :

li(x) = θ(ωix + β), (6)

where ωi represents the matrix of weights and is called an artificial neuron.

The weights are appointed considering the inputs’ correlative significance to the
other inputs, and the bias ensures a consistent value is added to the mapping to ensure
successful learning [48]. Generally, the mapping θ is known as the activation (or transfer)
function. Its purpose is to keep the amplitude of the output of the neuron in an adequate
range of [0, 1] or [−1, 1] [49]. Although activation functions may be linear and non-linear,
usually the non-linear ones are more frequently utilized. The most recognizable ones are
ordinary Sigmoids or the Softmax function, such as the hyperbolic tangent Φ(x) = ex−e−x

ex+e−x ,
in contrast to Rectified Linear Unit (ReLU) function: θ(a) = max(0, a) [33]. The selection
of a particular activation function is based on the core problem to be solved by applying
the Neural Network [50].

The architecture of the NN model displayed in this research is constructed of five
layers, as depicted in Figure 2. The first one is the input layer, followed by three hidden
layers (one Dropout layer), and the final is the output layer. Applied activation functions
were ReLU (in hidden layers) and Softmax (within the output layer). Data used for the
input layer were number Q, frame size L and the number of S successful, E empty and C
collision slots. The number of tags that are associated with a particular distribution of slots
within a frame is classified in the final exit layer.

The data were further partitioned in a 70% : 30% ratio, with 70% of the data used for
training and the other 30% for testing, with the target values being the number of tags,
and all other values were provided as input. The training data were pre-processed and
normalized, whereas target values were coded with One Hot Encoded with Keras library
for better efficiency. By doing so, the integer values of the number of tags are encoded
as binary vectors. The dropout rate (probability of setting outputs from the hidden layer
to zero) was specified to be 20%. The number of neurons varies based on the frame size,
ranging from 64 to 1024 for the first four layers.

Since the classification of the number of tags is a multi-class classification problem,
for this research, the Categorical Cross-Entropy Loss function was applied as the loss
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(cost) function with several optimizer combinations. Another important aspect of the NN
model architecture was thoroughly examined, and that is the selection of optimizers and
learning rates. Optimizers attempt to help the model converge and minimize the loss or
error function, whereas the learning rate decides how much the model needs to be altered
in response to the estimated error every time the model weights are updated [48]. Tested
optimizers were Root Mean Square Propagation (RMSProp), Stochastic Gradient Descent
(SGD) and Adaptive Moment Optimization (Adam). Adam provided the most accurate
estimation results and was onward utilized in the learning process with 100 epochs and a
0.001 learning rate.

3.1.3. Random Forest Model

At the beginning of this century, L. Breiman proposed the Random Forest algorithm,
an ensemble-supervised ML technique [51]. Today, RF is established as a commonly
utilized non-parametric method applied for both classification and regression problems
by constructing prediction rules based on different types of predictor variables without
making any prior assumption of the form of their correlation with the target variable [52].
In general, the algorithm operates by combining a few arbitrary decision trees and onward
aggregating their predictions by averaging. Random Forest has been proven to have
exceptional behavior in scenarios where the amount of variables is far greater than the
number of observations and can have good performance for large-scale problems [53].
Studies have shown RF to be a very accurate classifier in different scenarios, it is easily
adapted for various learning tasks, and one of its most recognizable features is its robustness
to noise [54]. That is why Random Forest has been used for numerous applications such as
bioinformatics, chemoinformatics, 3D object recognition, traffic accident detection, intrusion
detection systems, computer vision, image analysis, etc. [11,53].

A more formal definition of Random Forest is as follows. A Random Forest classifier
is a collection made out of tree-structured classifiers, namely {r(x, Θk), k = 1, ..., L}, where
Θk are independent random vectors that are identically distributed for an input x, every
tree will toss a unit vote for the most favored class [55], as shown in Figure 3.

Training dataset (N instances)

Bootstrap 
Samples

Decision  
Tree  
growing

Majority voting

Tree 1 Tree 2 Tree N


Figure 3. Visualization of the Random Forest classification process.

The bagging approach is used for producing the tree, i.e., by generating random slices
of the training sets using substitution, which means that some slices can be selected more
than once and others not at all [56]. Given a particular training set S, generated classifiers
{r(x, Θk)} toss a vote, thus making a bagged predictor and, at the same time, for every pair
y, x from the training set and for every Θk that did not contain y, x, votes from Θk are set
aside as out-of-the-bag classifiers [51]. Commonly, a partition of samples is on the training
set by taking two-thirds for tree training and leaving one-third for inner cross-validation,
thus removing the need for cross-validation or a separate test set [56]. The user is the
one defining the number of trees and other hyper-parameters that the algorithm uses for
independent tree creation performed without any pruning, where the key is to have a low
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bias and high variance, and the splitting of each node is based on a user-defined number of
features that are randomly chosen [52]. In the end, the final classification is obtained by
majority vote, i.e., the instance is classified into the class having the most votes over all
trees in the forest [54].

Aiming to produce the best classification accuracy, in this research, hyper-parameter
tuning has been performed by utilizing the GridSearchCV class from the scikit-learn library
with five-fold cross-validation.

This is performed following the above reasoning for making a structure for each
particular tree. By controlling the hyper-parameters, one can supervise the architecture
and size of the forest (e.g., the number of trees (n_estimators)) along with the degree of
randomness (e.g., max_features) [52]. Therefore, for every frame size, the hyper-parameters
presented in Table 3 were tested, resulting in a separate RF model for each of the frame
sizes, as presented in Table 4.

Table 3. Tested Hyper-parameters for Random Forest.

Hyper Parameter Values

n_estimators 50, 100, 200, 500
criterion gini, entropy

max_depth 3, 5, 10, 20
max_features auto, sqrt

min_samples_split 2, 4, 6, 10

Table 4. Grid search results of RF Hyper-parameters for a particular frame size.

Frame Size n_Estimators Criterion max_Depth max_Features min_Samples_Plit

L = 4 50 gini 5 auto 2
L = 8 50 gini 5 auto 2
L = 16 100 gini 10 auto 4
L = 32 100 entropy 20 sqrt 2
L = 128 500 gini 20 sqrt 2
L = 256 200 gini 20 sqrt 4

4. Results and Comparison

For ILCM, Neural Network and Random Forest, the same data were used to make
a comprehensive performance comparison. To provide a comprehensive classifier per-
formance comparison, several measures were taken into account. First, to compare the
performance of each classifier as a Machine Learning model, the accuracy measure was
taken (since it is a standard metric for evaluation of a classifier), this being the categorical
accuracy. Categorical accuracy is a Keras built-in metric that calculates the result by finding
the largest percentage from the prediction and then compares it to the actual result. If
the largest percentage matches the index of 1, then the measured accuracy increases. If
it does not match, the accuracy goes down. Our experimental results point out that RF
has out-preformed the NN model in the classification task, as shown in Table 5, but this
measure alone is not enough to determine which of the two ML models would be preferred
for utilization in the scenario of tag estimation. Therefore, due to the nature of the problem
of tag estimation, we have considered Mean Absolute Errors (MAE) and Absolute Errors
(AE) as measures of classifier performance (see Equations (7) and (8), respectively). An
accumulated estimation error will degrade the whole performance [57], meaning that
the overall smaller MAE and AE for a classifier would determine the overall estimator
efficiency, i.e., better system throughput. For the approximated number of tags n̂ and the
exact number of tags n, MAE is defined as:

MAE =
1
m

m

∑
i=1
|n̂(i) − n(i)|. (7)
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For every frame size, AE was calculated as:

AE = |n− n̂|. (8)

Table 5. Classification accuracy of NN, RF and the ILCM model for a particular frame size.

Frame Size
ACCURACY

NN ILCM RF

L = 4 33.54% 23.55% 33.59%
L = 8 28.56% 27.28% 28.22%

L = 16 24.05% 23.27% 24.37%
L = 32 19.78% 17.06% 19.54%

L = 128 11.25% 4.42% 12.12%
L = 256 5.74% 2.8% 9.46%

As can be noticed from Table 5, as frame size rises, the accuracy decreases for all of the
three compared models. Furthermore, Random Forest seems to outperform other classifiers
for the most challenging task for L = 256. Furthermore, ILCM performed similarly to NN
and RF for smaller frame sizes.

On the other hand, the results presented in Table 6 indicate that the Neural Network
model produces error rates comparable to RF, although RF has better accuracy. What is
more, for the largest frame size, NN will have an overall smaller MAE, as can be seen from
Table 6 for frame sizes L = 128 and L = 256. Overall, both Machine Learning classifiers
perform substantially better than the ILCM model.

Table 6. MAE of NN, RF and the ILCM model for a particular frame size.

Frame Size
MAE

NN ILCM RF

L = 4 2.23 2.182 2.23
L = 8 2.56 2.61 2.5
L =16 3.57 4.31 3.69
L = 32 5.23 6.98 5.324

L = 128 11.27 17.38 11.93
L = 256 16.06 27.29 18.19

This observation is further emphasized in the calculations of Absolute Errors of
classification for RF, NN and the ILCM model. AE was derived for every frame size, and
the histograms presented in Figure 4 provide a pictorial comparison of the errors. As can be
seen from Figure 4a, for smaller frame sizes, the NN model performs quite complementary
to the RF model, but for the largest frame size, the NN (see Figure 4c) will have an overall
smaller AE. These histograms are consistent with the MAE results from Table 6, confirming
that the NN classifies values n̂ nearer to the true values of the number of tags n. This
observation is important for estimating the length of the next frame because the closer the
estimated number of interrogating tags is to the actual number of tags, the better the frame
size setting. Incorrect estimates of the total number of tags result in lower throughput.
Results from this analysis show that, in comparison to the RF model, the NN model is
generally “closer” to the real tag number.



Electronics 2022, 11, 2605 11 of 20

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Differences

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Random Forest
Neural Network

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Differences

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

ILCM
Neural Netwrok

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Differences

0.00

0.05

0.10

0.15

Fr
eq

ue
nc

y

Random Forest
Neural Network

(c)

Figure 4. Comparison of absolute errors for Neural Network, Random Forest and ILCM model for
frame sizes (a) L = 8, (b) L = 16 and (c) L = 256.

The overall goal is to reach maximum throughput, and this cannot be achieved if
the frame size adaptation is inadequate. The development of an effective and simple tag
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estimator is burdened by the variables that must be taken into account, i.e., the frame size,
the number of successful slots, and the number of collisions or empty slots. As was stated
in Section 2, the major drawbacks of current estimators lie in their estimation capabilities,
computational complexity and memory demands. Therefore, to achieve a better setting of
the next frame size, the focus of the estimation should be on the variable that contributes
the most to the overall proficiency of the system [23]. Based on the obtained results, one
final measure was performed, i.e., a comparison of throughput for the NN model, ILCM
and Optimal model. The Optimal being used as the benchmark is the one where the frame
adaptation was set by the known number of tags. Results of the comparison are presented
for the scenario of frame size L = 32 realizations and are exhibited in Figure 5. As can
be observed from Figure 5, the Neural Network model is close to the optimal one and
outperforms the state-of-the-art ILCM model. This is particularly shown as the tag number
increases, as can be seen in Figure 5b.
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Figure 5. Comparison of throughput for the NN model, ILCM and Optimal model for the scenario
of frame size L = 32 realizations. (a) Throughput for the NN model, ILCM and Optimal model;
(b) Throughput for the NN model, ILCM and Optimal model for a larger number of tags.

Based on the result of this examination of the performance of classifiers and compar-
ison to the ILCM model, architectures of the Neural Network models were selected for
further utilization.
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5. Mobile RFID Reader—Implementation Feasibility
5.1. Current State-of-the-Art

In recent years, there has been an evident effort to enable the execution of Neural Net-
works on low-power and limited-performance embedded devices, such as microcontrollers
(MCU) and computer boards [58]. The most common benefit that this approach can bring
is not needing to transmit data (e.g., radio) to a remote location for computation. With
the local implementation of ML capabilities on the MCU-like devices, everything can be
executed on a device itself, thus saving the power and time that would be used for data
transmission. The sensitivity of the data collected and sent to the remote device also raises
concerns about expected security. With this approach, IoT devices that locally run trained
ML models significantly reduce the amount of data exchanged with the server through
secured or unsecured communication channels. While keeping most of the collected data on
the local embedded system, some of the aforementioned privacy concerns are reduced [59].
Researchers are increasingly working on adapting existing embedded Machine Learning
algorithms or applications on MCU-like devices, which were previously only possible on
high-performance computers [60–62].

Led by the idea of implementing ML on embedded systems, several IT industry giants
have released support for such devices. As a notable example, Google has released the
TensorFlow Lite platform, which enables the user to convert TensorFlow Neural Network
(NN) models, which were commonly trained for high-performance computers (e.g., Per-
sonal Computers), into a reduced model that can be stored and executed on compatible
resource-constrained machines [63]. With a similar idea, Microsoft has published EdgeML,
which is also designed to work on common Edge Devices [64], and even reported to
work on 8-bit AVR-based Arduino (which holds only 2 KB of RAM and 32 KB of FLASH
memory) on common single-board computers, such as the Raspberry Pi family. Such
an example is that the same ML model (e.g., produced by TensorFlow Lite library), of
course, if device resources allow it, can be executed on a microcontroller (running on Arm
Cortex-M7 MCU at 600 MHz and only 51KB RAM) and computer board (e.g., Raspberry
Pi4B running on quad-core Cortex-A72 1.5 GHz and 4 GB RAM). Power consumption and
possible autonomy on batteries, which is a common requirement for some IoT devices,
prefer microcontroller implementation (typical 3 A/5 V for RaspberryPi4 vs. 0.1 A/3.3
V typical for Arm Cortex-M7-based MCU), and for this reason, the following text is fo-
cused on ML implementation on microcontrollers with comments on implementation on
computer boards. Some semiconductor manufacturers have notably supported the effort
to implement ML capabilities in MCU devices. STM has released X-Cube-AI with deep
learning capabilities on STM 32-bit microcontrollers [65]. An open-source library Micro-
controller Software Interface Standard Neural Network (CMSIS-NN), published by ARM
enables today’s most popular series of Cortex-M processors’ execution of ML models [66].
Another interesting example can be seen by third-party microcontroller board manufacturer
OpenMV [67]. They produce an OpenMV microcontroller board (based on Arm Cortex-M7
MCU), which is a smart vision camera that is capable of executing complex machine vision
algorithms for a low-cost device (typically below 80 USD). The common bottleneck of
current microcontroller boards that run deep CNN is a relatively low amount of RAM,
which stores NN weights and data. OpenMV H7plus board overcomes this limitation by
adding another 32 MB SDRAM in addition to 1 MB RAM, which already came embedded
with the microcontroller itself. Additional RAM, in turn, enables the microcontroller to
store and run several complex NN models, a task that is commonly impossible on standard
MCU-s and can be executed on more complex computer boards, such as the Raspberry
Pi family of computer boards. Today’s increasing demand for ML-enabled embedded
end-devices, constant improvement in computing power and affordability would introduce
new industry standards for smart cities and smart homes.
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5.2. Experimental Setup

Common microcontroller boards, as compared to dedicated Personal Computers, are
exceptionally bad with floating number calculations (in terms of execution times) as they
are designed to work flawlessly with peripheral components rather than execute complex
calculations. TensorFlow library can be configured to use 32-bit floating-point data types
in a model for both data and weights, which generates a large model. MCU-compatible
models implement an approach where integer numbers (8-bit or 16-bit) are used instead of
floating-point numbers in calculations, which would considerably decrease the model size
but dramatically increase execution speed. The original model (with 32-bit or 64-bit weights)
can be executed on a microcontroller, of course, if the model size is small enough for the
microcontroller’s available RAM, but the full power of TFLiteConverter will not be used.
TensorFlow Lite library for microcontrollers allows us to optimize a pre-trained Neural
Network model to a selected microcontroller and implement it on the device. This ability is
possible only with smart quantization, which, in turn, approximates 32-bit floating-point
values into either 16-bit float-point values or 8-bit integer values. In some scenarios (such
as in most complex models presented in this work), there is an evident loss in inaccuracy,
which is, on the other hand, greatly compensated by a reduction in memory requirements
and improvement in execution times. Finally, for some models, quantization makes all
the difference if the model can or cannot be run on a memory-restricted microcontroller.
TFLiteConverter, which is part of the TFLite library, can offer several optimization options;
float16 quantization of weights and inputs that cut the original model size in just half, with
a barely visible reduction in accuracy, dynamic range quantization where weights are 8-bit
while activations are floating-point and computation is still performed in floating-point
operations (optimal trade-off for some low-performance but still capable computer boards).
The third optimization option showed to be ideal for low-power microcontroller devices,
with forces of full integer quantization, where weight and activations are both 8-bit and all
operations are integers. The aforementioned quantization is slightly more complicated than
the other approaches, as the converter is required to be fed with a representative dataset
before the quantization of the whole model. The data shown in Table 7 provide a simple
insight into the accuracy decrease due to the performed quantization for models used in
our paper.

Table 7. Model accuracy before and after quantization.

Original Model Quantized Model

Model L = 4 33.33% 32.72%
Model L = 8 28.53% 27.58 %

Model L = 16 23.11% 22.04%
Model L = 32 19.00% 12.08%
Model L = 128 8.03% 4.08%
Model L = 256 6.71% 3.03%

It can be observed that a decrease in accuracy is observable for the two most complex
NN architectures (L = 128 and L = 256), while for the least complex NN architectures (L = 4
and L = 8) the loss due to quantization is merely measurable. The loss inaccuracy for the
two most complex architectures is possibly the result of output quantization where more
than 256 classes are possible (notably 512 for L = 128 and 1024 for L = 256).

After the quantized model is created, a file containing the model that the microcon-
troller will understand is created. The Linux command tool xxd takes a data file and outputs
a text-based hex dump, which we copy-paste as a c array, and add to a microcontroller
project source code (as an additional header file).

5.3. MCU hardware

The Teensy 4.0 microcontroller board features an ARM Cortex-M7 processor with an
NXP iMXRT1062 chip clocked up to 600 MHz without additional cooling (faster stable
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speeds are possible with an additional heatsink). To our knowledge, this computer board
is the fastest microcontroller board available on today’s market that can be used out-of-
the-box [68] for complex calculations. When running at 600 MHz, Teensy 4.0 consumes
approximately 100 mA current (at 3.3 V supplied voltage), considerably more than some
common microcontrollers, such as the Arduino AVR family, but significantly less than any
desktop computers or computer boards. The Teensy 4.0 microcontroller features 1024K
RAM (of which 512K is tightly coupled) available for storing local data. The ML model is
stored in FLASH memory during programming, after which it is read in whole or segment-
per-segment into the RAM (this option is library dependant and tweakable). Another
microcontroller board in the ML domain that was considered was AMR M3-based Arduino
Due, which sports an Atmel SAM3X8E microcontroller clocked at 84 Mhz and offers a
significantly smaller amount of RAM (96 KB) [69]. Considerably lower amounts of available
RAM for this microcontroller can make it unusable in executing more complex ML models,
where constant reading data from slower FLASH memory can lead to significantly longer
execution times. The third microcontroller board that was initially considered was the
popular STM32F103C8T6 (known as “blue pill”), which is also based on the Arm Cortex-M3
microcontroller. This board clocks 72 MHz but holds only 20 KB of RAM and 64 KB of
FLASH memory, which makes holding and execution of most of our opposed NN models
impossible citexcube. All three devices that have been tested are presented in Figure 6.

Figure 6. Devices used in the test: Teensy 4.0 (left), Arduino DUE (center) and Raspberry Pi4 (right).
Source: Own photo.

To provide better insight into the microcontroller’s performance in executing proposed
NN models, the same quantized TensorFlow models were tested on a common computer
board. A Raspberry Pi 4B computer board was used, which holds a quad-core Cortex-
A72 1.5 GHz SOC with 4 GB of RAM, and runs Raspian desktop OS with kernel version
5.10. With simplicity in mind, all coding for the microcontroller side was performed in
Arduino IDE [70], which offers a simple and intuitive interface and the availability of
numerous additional libraries for a project extension. The ML model was implemented to
the project by adding a hexdump file as an additional header file, which is then converted
into a binary format and transferred to the microcontroller’s FLASH memory during
programming. The Raspberry Pi computer uses a simple Python script with an additional
TFLite interpreter library.

Several proposed model architectures on the Teensy 4.0 microcontroller board were
trained that have been considered as the optimal solution for executing the proposed NN
models. The presented analysis aims to indicate the real limits of the NN architecture that
can be fluently run on selected hardware. ANN layers’ configuration was kept intact, while
the complexity of the model was achieved by increasing the number of neurons in the third
and fifth layers. By utilizing a microcontroller-integrated timer, the average ANN execution
time has been measured on the microcontroller. Another interesting piece of information
obtained was the quantized model size and amount of RAM commonly assigned for storing
global variables after initial programming. Please note that microcontrollers usually do
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not possess the possibility of measuring free RAM space during execution, as compared
to computers. The used library offers some tweaking of tensor size, which may reduce
or increase available RAM size and consequently affect execution time, but we kept this
option on default for all tested models and all devices. It is recommended to keep at least
10 % of available RAM for local variables for stable performance. The results for all six
models’ execution times and model size on Teensy 4.0 ARM Cortex M7 microcontroller,
Arduino DUE ARM Cortex M3 microcontroller and the Raspberry Pi4 computer board are
listed in Table 8.

Table 8. Model performance on Teensy 4.0 MCU, Arduino DUE and Raspberry Pi4.

Frame Size Model Size Execution Time (ms)

(Bytes) Teensy 4.0 Arduino DUE Raspberry Pi4

L = 4 4320 22 897 143
L = 8 5152 32 1284 159

L = 16 6592 48 1983 173
L =32 13,824 120 4928 187

L = 128 75,776 692 29,615 270
L = 256 283,264 1669 111,374 648

5.4. Discussion

As can be observed from Table 8, increasing the number of neurons in hidden layers
(notably hidden layers 3 and 5) and in output layers increases the model size and prolongs
execution. As an example, comparing models for L = 4 and with the model for L = 16, which
have exactly twice as many neurons as in layers 3 and 5, the total model size increases by a
factor of 1.5, while the execution time on the Teensy 4.0 microcontroller observes an increase
of 2.2. The last presented model (L = 256) features an increase in model size by a factor of
65 and in execution time by a factor of 75, as compared to the simplest model (L = 4). It is
worth mentioning that the last model represents an example of the most complex ANN
model that our microcontroller can hold, where after importing it to the microcontroller,
only 13% of the RAM was free for local variables. We also observed that increasing the
depth and/or increasing the number of neurons per layer of an NN poses a significant
memory demand, which can be afforded only by high-end edge devices (e.g., Raspberry
Pi). The average execution time for the most complex exemplary model was 1.7 ms, which
is surprisingly fast for this type of device and can offer real-time performance. The ARM
Cortex M3-based Arduino DUE behaved similarly to the Teensy 4.0 microcontroller with
significantly longer execution times (41 times slower on the simplest model and 67 times
slower on the most complex model). The execution of the most complex model took
111 ms, which makes it impractical for some real-time scenarios. Execution times on
the Raspberry Pi4 computer varied greatly (due to non-real-time OS architecture) and
surprisingly showed to be much slower for less complex models (up to L = 32). For more
complex models, Raspberry Pi was able to benefit from its enormous computing power, and
the most complex model executed in 0.6 ms, which, when compared to Teensy 4.0, is not
significantly better to persuade us to use computer boards instead of the microcontroller.
This once more proves that if the loss in accuracy due to quantization is acceptable, the
only real limitation is available RAM and FLASH memory on the used microcontroller.

In some scenarios, RF can offer better or comparable results to deep NN with only
a fraction of the execution time required on MCU [71]. As the aim of our study was to
increase throughput, which is achieved by better estimating the number of interrogating
tags, which is best performed by the NN model, only the NN model was considered for
implementation on the microcontrollers. Additionally, NN models can offer numerous
optimization and quantization possibilities, which is worth further investigation.

Based on the overall result, one final observation is made. As can be noticed in
Figure 5, the η for ILCM and NN is quite different. Such diversity is a result of the
ILCM’s interpolation, even though it contributes to lower computation complexity. When
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examining the worst case for both models, i.e., frame size L = 256, the Neural Network
model reaches ηNN = 0.2498 in contrast to ηILCM = 0.2265. This results in a difference
of 0.0233, which is approximately 6 successful slots per given frame. The reader setting
determines the execution time per frame and such a time cost needs to be compared with
the time for a successful tag read, i.e., successful slot time. Based on empirical evidence
from research studies, such as the ones in [72], the time for standard reader setting in a
general scenario is 3 ms. Therefore, the read tags that are marked as Neural Network
computational burden are equal to 1.7 ms/3 ms = 0.57.

5.5. Limitations to the Study

There are a few noteworthy limitations to this study. First, this study is based on data
obtained from Monte Carlo simulations. Although simulated data are not the same as
experimentally measured data, the Monte Carlo method creates sampling distributions
of relevant statistics and can be efficiently implemented on a computer. What is more,
the method allows the creation of the desired amount of sample data. The number of
sample data used for training and testing ML algorithms is a crucial parameter when
testing algorithms’ performance. Furthermore, by using data obtained by Monte Carlo
simulations, this research has remained consistent with the methodology presented in
research [8] regarding the ILCM model.

Secondly, more frame sizes could have been considered to obtain better insight into
models’ performance and as such, they can be considered in future work. Thirdly, other
Machine Learning classifiers cloud be employed, tested and compared to the utilized
Random Forest and Neural Network.

Finally, as one of the aims of this study was to find a model that can be executed in
resource-constrained microcontrollers, we were bounded by the relative “simplicity” of
the proposed models (e.g., the model presented in this research is based on multilayer
perceptron), while more complex NN models were not considered at this moment (e.g.,
recurrent networks, convolutional network), which is also planned for future work.

6. Conclusions

The research presented in this study aimed to explore how broadly utilized Machine
Learning classifiers can be applied for tag number estimation within ALOHA-based RFID
systems to increase the systems’ throughput. The strengths and weaknesses of each of
the models are explored on a particularly designed dataset obtained from Monte Carlo
simulations. The state-of-the-art algorithm, namely the Improved Linearized Combinatorial
Model (ILCM) for tag estimation, is used to compare the performance of the ML algorithms,
namely Neural Network and Random Forest.

The obtained results demonstrate that the Neural Network classifier outperforms the
ILCM model and achieves higher throughput.

Furthermore, this study tested to see if ML classifiers can be deployed on mobile
RFID readers, aiming to maximize tag identification performance with suitable energy
and processing demands. Experimental results show that the NN model architecture can
be executed on resource-limited MCUs. These results imply that the conventional RFID
readers may be equipped with Machine Learning classifiers that use the maximum of the
available information acquired from Monte Carlo simulations. The overall results prove
that the execution time on MCU is enough to meet protocol needs, keep up with the latency
and improve system throughput.

Author Contributions: Conceptualization, L.D.R., I.S. and P.Š.; methodology, L.D.R., I.S. and P.Š.;
software, L.D.R. and I.S.; validation, L.D.R., I.S., P.Š. and K.Z.; formal analysis, L.D.R. and P.Š.;
investigation, L.D.R. and I.S.; resources, L.D.R., I.S. and K.Z.; data curation, L.D.R.; writing—original
draft preparation, L.D.R., I.S., P.Š., K.Z. and T.P.; writing—review and editing, L.D.R., I.S., P.Š., K.Z.
and T.P.; visualization, L.D.R., T.P. and I.S.; supervision, P.Š. and T.P. All authors have read and agreed
to the published version of the manuscript.



Electronics 2022, 11, 2605 18 of 20

Funding: This research was funded by by the Croatian Science Foundation under the project “Internet
of Things: Research and Applications”, UIP-2017-05-4206.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
RFID Radio Frequency Identification
WIPT Wireless Information and Power Transfer
DFSA Dynamic Framed Slotted ALOHA
TDMA Time-Division multiple-access
ILCM Improved Linearized Combinatorial model
ML Machine Learning
DT Decision Tree
k-NN k-Nearest Neighbour
SVM Support Vector Machine
RF Random Forest
DL Deep Learning
ANN Artificial Neural Networks
NN Neural Network
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
Adam Adaptive Moment Optimization
RMSProp Root Mean Square Propagation
MAE Mean Absolute Errors
CMSIS-NN Microcontroller Software Interface Standard Neural Network
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Abstract
This paper presents a systematic review of the literature on Tangible User Interfaces (TUIs) and interactions in young
children’s education by identifying 155 studies published between 2001 and 2019. The review was based on a set of clear
research questions addressing application domains, forms of tangible objects, TUI design and assessment. The results
indicate that (i) the form of tangible object is closely related to the application domain, (ii) the manipulatives are the
most dominant form of tangible object, (iii) the majority of studies addressed all three stages of TUI development (design,
implementation and evaluation) and declared a small sample of young children as a major shortcoming, and (iv) additional
empirical research is required to collect evidence that TUIs are truly beneficial for children’s acquisition of knowledge.
This review also identifies gaps in the current work, thus providing suggestions for future research in TUIs application
in educational context expected to be beneficial for researchers, curriculum designers and practitioners in early years’
education. To the authors’ knowledge, this is the first systematic review specific to TUIs’ studies in early years’ education
and is an asset to the scientific community.

Keywords Child · Early years’ education · Interactions · Interfaces · Tangible User Interface (TUI) · Systematic review

1 Introduction

Rapid development of technologies in the twenty-first cen-
tury has had an enormous impact on children’s models,
methods and forms of learning. Contemporary children are
considered to be digital natives since they were born and
raised in the technology driven world. Hence, numerous
countries have recognized the importance of application of
technologies in education and have renewed primary school
curricula for early years’ education. Mobile phones, tablets,
computers are “doorways” into the digital world but many
of them are not always suitable for children, especially
for the young ones since they are commonly designed by
adults and for adults. Thus the design and development of
interactive technologies that are suitable for children should
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consider aspects of child’s development that affect their
abilities to learn and interact with the technology. In general,
Tangible User Interfaces (TUIs) may be the most suitable
bridge between the physical form and digital information
since they can remove a clear line between them. As such,
TUIs are one of most natural ways by which children can
interact with technology, especially the one which supports
learning. Considering that TUIs are an emerging field of
research, the theoretical contributions of this original study
are twofold — the research provides a critical overview of
the current state of research efforts in TUIs application in
learning and teaching process for young children as well as
addresses knowledge gaps in the field that inquire further
investigation.

1.1 Tangible User Interfaces

We have been raised in overwhelming dominance of Graph-
ical User Interface (GUI) and Windows-Icon-Menu-Pointer
(WIMP) paradigm and interaction style were our every-
day objects have been mapped and presented as symbols
on a screen. To move beyond the dominant model of GUI
bound, new lines of research begun to explore relation-
ships between physical representations and digital infor-
mation, which led Ishii and Ullmer to propose the term
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Tangible User Interfaces (TUIs) in the 1997 [1]. Accord-
ing to the authors, TUIs aim to make computing truly
ubiquitous and invisible, augmenting the real physical
world by coupling digital information to everyday physical
objects and environments. Further, in 1999 Dourish pro-
posed “embodiment” as the basis for a new foundational
approach called Tangible Computing [2] which empha-
sizes the material manifestation of the interface and the
embedding of computational devices in the environment.
It can be noticed that the property of physical embodi-
ment makes one of the essential distinction between TUIs
and GUIs.

The strength of the approach is confirmed by numerous
studies emphasizing TUI’s broad applicability to various
contexts and applications for instance to support people
in mindfulness practices [3], to support social engagement
between children with or without autism in free play set-
tings [4], to convey and communicate emotions [5], to
engage readers in tangible storytelling [6], to support com-
puter animation production processes [7], to realize tangible
interactive installations [8], to support participation in col-
laborative urban planning [9] as well as to support privacy
management [10]. Besides, developments in tangible user
interfaces and embodied interaction with focus on their
current and potential use in the field of healthcare have
attracted a lot of attention, such as designing playful tangi-
ble interactions in rehabilitation in general [11] along with
cognitive rehabilitation [12] and bimanual rehabilitation
[13] in particular. Apart from design efforts of employment
of tangible interaction in dental treatment [14], tangible
interfaces open new perspectives for applications oriented to
visually impaired users [15] , and individuals with complex
communication needs [16].

Furthermore, several literature reviews have addressed
TUIs in different application domains such as the review
of the existing research on tangible user interfaces for
enhancing the social interactions of elderly people [17],
the systematic review of tangible interaction applied to the
Internet of Things (IoT) [18], the systematic review of the
existing literature regarding tactile and haptic interfaces
dedicated to individuals with autism spectrum disorder [19],
the literature review on tangible programming languages
designed to program educational robots [20], the review
of tangible interfaces for improving the effectiveness of
interactive business process management support [21],
along with the systematic review of tangibles entirely made
of transparent or translucent materials [22].

1.2 Current state of tangible interaction in education

It has been shown over the last years that traditional computer-
aided learning is also influenced by novel user interfaces,
like the tangible ones. Namely, tangible objects have a

historical role in children’s play and learning activities.
Manipulative materials like wooden blocks, and jigsaw puz-
zles enable children to explore scientific and mathematical
concepts such as number, shape and size [23, 24]. Today
there is a growing presence of specially designed edu-
cational toys named STEM Toys that promote learning
science, technology, engineering and mathematics (STEM)
through play, considering that research has revealed that
TUIs have the potential to efficiently support activities that
foster meaningful and deeper learning in STEM [25].

Many researchers have suggested that TUIs have poten-
tial for supporting learning and teaching process for instance
by expanding learning opportunities [26], by transform-
ing traditional pedagogical approaches [27] as well as by
increasing playfulness of learning and reflection in chil-
dren on the one hand [28] and attention to the activity in a
learning environment on the other [29]. It has been exposed
that physical learning environment engages all senses and
supports an overall child development since she/he gets
a direct feedback from TUIs while solving the task [30].
Studies have indicated that the use of TUIs support social
interaction through collaboration [31], considering collab-
oration as an essential skill in the advancement of digital
equity. Storytelling, as one such collaborative endeavour,
can be made more concrete by the use of TUIs thus helping
children to develop communication skills and express them-
selves freely [32]. Indeed, collaborative design processes
have been identified as the best approach to re-purposing
traditional classrooms for active learning classrooms use
[33]. Also, tangible interactions can also support learning
in informal environments by designing informal learning
experiences [34].

Exploratory research has revealed that TUIs provide
learning aids due to the added haptic dimension and the
better approachability to the shared space that can be used
in supportive circumstances [35]. The ability to integrate
digital technology into physical objects has generated excite-
ment over the potential to create new educational materials
[36] so-called digital manipulatives [37]. In [38] authors
have pointed out that combining digital information with
physical artefacts enables hands-on activity to be enhanced.
The manipulative properties of physical objects enhance
passage between physical and virtual representations thus
sustaining a transition between stages in the reasoning pro-
cess [27]. Research has suggested that digitally enhanced
manipulatives, perceived as easy and fun to use [39], have to
be designed in a usable and enjoyable way especially when
designing for children [40]. Incorporation of well-known
elements of play into TUIs have proven to be an integral ele-
ment of design for playful learning [31]. This is in line with
the research in evolutionary psychology which shows that
through play children practice the skills they will use later
in life [33].
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Research involving tangible interaction and children
has been often focused on how tangibles might enhance
children’s engagement in learning [41] or can support or
improve learning [42]. The work in [35] explored how
TUI could augment non-verbal communication to provide
significant interaction improvements among the children
and the teachers. Moreover, TUI have successfully been
developed to edutain children in various learning contexts.
Research conducted in [43] has shed light on the idea
how tangible objects could serve as an excellent means
to materialize the sense of tangibility in pre-schoolers’
multimedia learning. Dealing with an application of
ubiquitous music in school, [44] have studied tangible
music interfaces for in-classroom music learning through
a fairy tale; at the same time TUIs for multisensory
storytelling at school were in the focus of the research
conducted in [26]. A number of studies have been focused
on tangible interfaces for improvement of programming
skills and education [45, 46]. Also, TUIs hold promising
potential in educational settings as assistive technologies for
children with disabilities, such as tangible reading systems
for children with dyslexia [47], tangible interface based
application for teaching tactual shape perception to visually
impaired children [48] and application for stress free health
assessment of young children [49].

When considering theoretical work on tangible interfaces
used to promote learning, O’Malley and Stanton Fraser
report [50] has offered summary of the available research
literature along with outlined argumentation for learning
with TUIs. Their report also presents a first attempt to
provide some relevant implications for design and use as
well as for policy and practice. A decade ago, Mazalek
and van den Hoven [51] presented mapping of the tangible
interaction framework space and pointed out that most of
existing frameworks focus dominantly on the conceptual
design of tangible systems, but hardly any of them provide
concrete steps or tools for building tangible interactions.

An Analytic Framework on Tangibles for Learning advo-
cated by Marshall [52] has offered a more empirically
grounded framework to facilitate design. Six perspectives
that need to be taken into consideration when discussing
learning with respect to TUIs have been suggested: possi-
ble learning benefits, typical learning domains, exploratory
and expressive activity, integration of representations, con-
creteness and sensory directness and effects of physicality.
Drawing on existing classifications of TUIs and learning
theories, Markova and colleagues [53] have developed a
Classification Scheme for Tangible User Interfaces, extend-
ing existing taxonomies to include concepts that are of
special relevance to learning, in particular the type of learn-
ing that TUI supports, the type of interaction between the
learner and the digital world and the type of object manipu-
lation. Aiming to bypass the lack of theoretically grounded

guidance for TUI designers as to what design choices might
have significant impacts on learning, Antle and Wise [54]
have built on previous efforts to address the need for a
structure to think about TUI design for learning by con-
structing the Tangible Learning Design Framework. The
framework is compiled from a taxonomy of five elements
that need to be considered when relating TUIs features,
interactions and learning, specifically physical objects, dig-
ital objects, actions on objects, informational relations and
learning activities.

Acknowledging the fact that designing tangibles for chil-
dren is unique from other design problems and processes,
Antle [55] designed theChild Tangible Interaction (CTI)
framework. This domain specific framework, consisting
of five dimensions of Space for Action, Perceptual Map-
pings, Behavioral Mappings, Semantic Mappings and Space
for Friends, shows how the benefits of tangible and spa-
tial systems to stimulate cognitive development could be
employed. More recently, Antle and colleagues [56] made
an attempt to introduce a foundation for designing tangi-
bles for children, while the study conducted by Manches
and O’Malley [36] have summarized key debates which
could contribute to the development of effective tangible
technologies for children’s learning.

In the light of the aforementioned considerations, it is
clear that the state of current research on TUI application
in education is not in its infancy. Although there are a few
published studies which have reported attempts to different
systematization, the field still lacks a systematic review
of the literature which reveals existing approaches and
applications that underlie research on TUI applicability in
the learning and teaching domain. The study presented in
this paper focuses on children ageing from birth up to the
age of eleven in accordance with the first three Piaget’s
stages of cognitive development [57] since in the fourth
stage the child has already developed hypothetic-deductive
reasoning.

2Method

The systematic review reported in this paper aims to
identify, assess and analyse representative academic lit-
erature on tangible interactions and interfaces that sup-
port young children’s learning with a view: (i) to pro-
vide an overview of the current state of research efforts
and (ii) to address knowledge gaps that inquire further
research. This study does not describe, critique, or evalu-
ate research methods employed in the reviewed studies, and
the research questions which have driven this study do not
include looking at for example learning outcome or moti-
vation or psychological or sociological aspects of children’s
interaction.
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Besides, it should be pointed out that in the scope of
this review the research was not confined by a specific
definition of TUIs. This is due the constant evolvement of
TUIs design space [30] as well as uncertain and dynamic
nature of the physical-digital links of tangibles [58]. Also,
tangible interaction includes a larger scope of systems
and interfaces that are not restricted to controlling digital
data via manipulation of tangible objects [59], like for
example touch screen tablets since touch gestures are also
a kind of “tangible” interface. Consequently, and in line
with Tangible Computing and TUI’s concepts, we shall
take the broadest property and criteria of TUIs to be the
physical embodiment of digital information or functionality.
However, we shall propose a definition of the term form
of tangible object, in this study referring to design and
distinctive appearances i.e. embodiments through which the
interaction with TUIs occurs. According to the aim of the
review, clear research questions, for the most part focused
on structural aspects of identified studies, have driven this
review:

– RQ1: Which form of tangible object is studied in
selected publication?

– RQ2: What application domain the study was con-
ducted in?

– RQ3: How is form of tangible object related to
identified application domain?

– RQ4: Which evaluation approach is considered in TUI
application in concrete educational scenario?

Relevant scientific publications were selected following
the three-step guideline approach for systematic reviews
proposed by Kitchenham [60]. It is suggested that it should
be conducted in three phases covering planning, conducting
and reporting the review.

2.1 Planning the review

The most important steps regarding the development of
a review protocol were specified and are depicted in the
following. First, the set of terms used to search for the
primary studies related to TUIs that support young children
learning was specified resulting in the following searching
string:

(“child*” AND [(“tangibl*” OR “touch”) AND
(“interaction” OR “interface*”)])

The truncation method was used to cover all variations of
the keywords; for example, keyword “child*” was used to
search for literature that included the word “child” as well
as “children”. It was searched for studies that have those
specific terms in the publication title, abstract and the list of
key words, since these were assumed to be relevant for this
study.

Second, the resources to be searched were identified.
Specifically, a number of leading databases in the field were
searched: (i) Web of Science (WoS), an integrated platform
of multidisciplinary databases of bibliographic information;
(ii) Scopus, a source-neutral abstract and citation database
of peer-reviewed literature; and (iii) ERIC, a database of
indexed and full-text education literature and resources.

Third, taking into account the research objectives, the
general criteria that defines the time frame for the study
along with the type of studies that are relevant was
considered. To identify all relevant peer-reviewed academic
literature, the search was not limited to a specific time
period. Besides, a number of criteria was specified to select
appropriate studies for inclusion:

– studies that report on tangible or touch interfaces and/or
interactions,

– studies that address research in education,
– studies that report on young children ageing from 0 to

11 years,
– studies that describe design, implementation and/or

evaluation of TUIs,
– studies which are based on theories of learning that

provide theoretical background as to how TUIs support
learning, and

– studies that are published as peer-reviewed publications
written in English

The following exclusion criteria was defined and studies
meeting these criteria were excluded:

– studies not published as peer-reviewed journal articles
and conference papers (for example, book reviews,
book chapters, reports etc.),

– studies that mention child and/or children but are
actually focused on children with special needs (for
example, children with dyslexia),

– studies that involve diverse sample groups of partic-
ipants (for example, research on tangible installation
which included adults and children),

– studies that mention tangible/touch user interfaces or
interactions but their main focus is engineering (for
example, design of electronic components of a tangible
system), and

– studies in which a main focus is in the psychological or
sociological aspect of interaction (for example, studies
that are focused on users’ behaviour while interacting
with TUI).

Fourth, to minimize bias, two researchers were working
autonomously in the selection of relevant literature. In
such double-check process, the individual selections were
compared and common agreement on the final selection
reached. To ensure that the results were up to-date, daily
e-mail alert was activated about new entries.
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2.2 Conducting the review

For the purpose of this review, the literature search with the
specified searching string was conducted in a month period,
during March of 2020, and was not limited to a specific time
frame. The search of literature, done through the search of
the Web of Science Core Collection database, resulted in
724 publications that were then refined by exclusion of the
research areas not relevant for this review, such as veterinary
sciences, electrochemistry, anthropology and the like.

After the refinement, 490 peer-reviewed publications
(journal articles and conference papers) written in English
that included tangible or touch interfaces and/or interactions
along with the word “child” or “children” in the publication
title, list of keywords and/or abstract (i.e. the filter “topic”
was selected) were kept for further analysis. Text of the
selected publications was screened to ensure the relevance
of the content in terms of the inclusion criteria. Accordingly,
the qualified publications were retained and unrelated ones
were excluded thus leaving for further detailed analysis 215
studies. Full text was subsequently read and summarized.
Further publications were excluded because they fulfilled
some of the aforementioned exclusion criteria concluding
with a total of 132 primary studies.

In addition, the same procedure was applied to the search
of ERIC and Scopus databases. In total 249 peer-reviewed
publications written in English that included specified
items from the search string in the list of publication key
words were identified. Note that the user interface of each
database varies, leading to certain adjustment in the use of
database filters. Text of the identified studies was screened
and inclusion criteria applied in consequence leaving 54
publications. Full text was read and the exclusion criteria
applied concluding with a total of 30 primary studies.

Among the total of 162 selected primary studies (132
publications from the WoS along with 30 from the ERIC
and Scopus databases), seven were theoretical publications
related to the field, bringing to a close a total of 155 primary
studies included in this review. The flow diagram shown in
Fig. 1 visualizes steps of the review.

Identified theoretical literature was not reporting system-
atic reviews of relevant past literature that aim to investi-
gate tangible/touch interfaces or interactions that support
young children’s learning at large. Those studies were rather
focused on specific topics, like the review of the current
state of the art of game technologies that support pre-
kindergarten and kindergarten child development [61], the
review of computer technology, including TUIs, in math-
ematics education [62], the study which reviewed current
findings on using touch screen tablets in supporting early
literacy development [63], the study that summarized key
debates about representation advantages of manipulatives
[36], the research that focused specially on knowledge gaps

in hands-on learning with physical and computational mate-
rials [64], the editorial of a journal special issue which
addressed tangible interaction and children [65] and finally
the study which qualified unique design principles and
approaches of Froebel and Montessori [66].

3 Results

3.1 Overview of the reviewed studies

When considering the final selection of a total of 155
primary studies few aspects could be emphasized. The first
one concerns the history of publishing related to the selected
research where a clear trend starting in 2001 can be followed
until 2019 (see Fig. 2). The majority of studies has been
published in the last decade (in particular, 122 out of 155). It
seems that lately the interest in the research subject of TUIs
application in education for young children has increased
significantly.

The second aspect is related to the type of selected
primary study, namely publication source. Specifically, the
review has identified 82 peer-reviewed journal articles
along with 73 peer-reviewed conference papers (refer to
Table 1). It is interesting to observe that the vast majority
of studies was not published in education-specific journals
or presented at education conferences. This is noteworthy
because it suggests that most of the work on this topic
is occurring somewhere else besides education, mostly
computer and information science.

3.2 Findings with respect to each research question

The key findings of assessed and analysed 155 studies are
summarized in Table 3 provided in Appendix. The studies
are chronologically sorted, presenting first the most recent
identified research. Aside from general information related
to the selected publications (author(s), publication year
and journal), the table also offers insight into objective of
the study. Perception of diversity of application domains
of TUIs usage in young children’s education along with
application of different forms of tangible objects is also
provided. Finally, the last column depicts information if the
studied TUIs have been elaborated and presented in terms of
their design, implementation and/or evaluation. To examine
selected studies, and in line with the set objectives and
research questions, a number of different analysis has been
conducted. In the following, our findings with respect to
each research question are presented.

RQ1: Which form of tangible object is studied in selected
publication?

Detail analysis of selected publications enabled us to
determine the main feature of TUI by which identified
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Fig. 1 Flow diagram of the publication selection process

studies could be differentiated. In line with previously
proposed definition of the term form of tangible object,
three distinctive embodiments through which the interaction
happens, specifically manipulatives, tabletops as well as
tablets, could be distinguished.

Manipulatives are tangible objects from the physical
world which the user controls through direct manipulation
thus giving physical form to digital information. The
information is transferred from these objects to digital parts
in various ways. Some systems use Bluetooth technology
like Follow Your Objective (FYO), a tangible programming
platform for programming robot’s behaviour [46]. Others
use radio frequency identification of physical objects (i.e.
RFID tags) like the edutainment tool Magic Stick that

helps children learn about new objects by providing their
names associated by visual representations regarding these
objects [68]. On the other hand, tangible object placement
codes have been used in T-Maze, a tangible programming
tool for children for building programs by manipulating
a collection of wooden blocks [69]. If the manipulative
objects are computationally enhanced they are called
digital manipulatives [37]. They are usually built on
educational toys and materials such as blocks, balls and
Montessori-inspired educational materials such as Digital
Montessori-inspired Manipulatives, Digital MiMs (ibid.)
illustrated in Fig. 3a. Digital MiMs are computationally
enhanced building blocks systems that support learning of
abstract concepts by maintain coincident and synchronous
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input/output behaviour, meaning that manipulation and
simulation occurs at the same space (on the building blocks
themselves) and in real-time.

Tabletop is digitally enhanced desk or table on which the
digital information is displayed on the table’s surface. Users
control computational processes through the use of their
hands by touching the tabletop surface, if the tabletop has a
touchscreen, or by moving physical objects on the tabletop
surface. It differs from other forms of tangible objects be-
cause it allows multiple users at the same time. The posi-
tion of objects on the tabletop is detected by different tech-
nical methods such as RFID antenna or fiducial marker

recognition. One such RFID tabletop is TangiSense [70], an
interactive table based on a multi-agent system that allows
users to associate information with behaviour to manipulate
tangible objects. Alternatively, fiducial markers are spe-
cially designed graphical symbols which allow easy identifi-
cation and location of physical objects and have been used in
for instance reacTable shown in Fig. 3b, a tabletop tangible
interface for music improvisation and performance [58].

Tablet is a mobile computing device with touch screen
display acting as the input and output device at the same
time. To give an example, a tablet can be used to interact
with virtual characters in a cultural learning environment

Table 1 Number of
publications analysed in this
review by journals and by
international conferences

No. of publications Percentage (%)

Journal

Personal and Ubiquitous Computing 12 7

Interacting with Computers 4 3

Journal of Computer Assisted Learning 4 3

International Journal of Arts and Technology 4 3

Other (less than four publications per journal) 58 37

Total 82 53

Conference

Int. Conf. on Interaction Design and Children 30 13

Int. Conf. on Tangible, Embedded and Embodied Interaction 11 7

Int. Conf. on Human-Computer Interaction 4 2

(only one or two publications per conference) 38 25

Total 73 47
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Fig. 3 a Digital Montessori-inspired Manipulatives [37]. b reacTable [58]. c Tablet pictorial interface [67]

like in [67]. The study investigated the potential of a
pictorial interaction approach to engage children in a game-
based learning experience. Interaction takes place on a touch
screen tablet linked to a desktop computer on which the
characters are displayed as illustrated in Fig. 3c.

RQ2: What application domain the study was conducted
in?

Application domains are areas which have been explored
when employing TUIs in children’s education, facilitation
and development of learning skills, engagement as well as
problem solving. In line with authors’ originally presented
research domains, analyses of full texts enabled the dis-
tinction of fourteen domains ordered alphabetically in the
following (refer also to Table 3): Art, Collaboration, Com-
munication, Geography, History, Literacy, Mathematics,
Models of Interaction, Oral hygiene, Problem solving, Pro-
gramming, Science, Storytelling, as well as Symbols, symbol
mapping, embodied metaphors. Among traditional learning
domains such as Art, Mathematics, Science, Literacy or Sto-
rytelling, several ontologically distinct areas like Collabo-
ration, Models of interaction and Symbols, symbol mapping,
embodied metaphors have been identified. Studies which
explored Collaboration aimed to research how learning sys-
tems with tangible interfaces should be designed (or how
they impact collaborative learning activities) utilizing infor-
mation and communication technologies to enable systems
to enhance learner’s collaborative exploration. Studies con-
sidering Symbols, symbol mapping, embodied metaphors as
an application domain tended to investigate how young chil-
dren can learn about new objects with the use of TUIs that
enable them to associate an object to it’s digital representa-
tion. Finally, publications addressing Models of interaction
explored the role of physical action with particular attention
to forms of touch-based interaction in children’s learning as
well as interface complexity impact on children’s gestures.

RQ3: How is the form of tangible object related to
identified application domain?

This review revealed that the form of tangible object
is closely related to the application domain implying that
the application domain directly influences the selection

of the form (see Fig. 4). Manipulatives are the most
dominant form of tangible object and seem to have a broader
range of use since they are used in almost all application
domains, specifically in 104 studies out of 155 (i.e.
67%). When considering Art, Programming, Storytelling,
Literacy, Science and Problem solving, they seem too have
a rather dominate role. This is due to physical and spatial
affordances of manipulatives. As stated before, children
develop cognitively from physical engagement in reasoning
with materials in real-world settings.

On the other hand, considering Collaboration or Math-
ematics as application domains, it can be noticed that all
the three forms of tangible objects have been used with
no distinctive advantage given to a specific form. If we
discuss Mathematics as application domain in the identi-
fied studies, it can be seen that the form of tangible object
has been closely related with a specific learning topic: alge-
bra, arithmetic, number line and/or cardinality, time and
orientation as well as geometry. For instance, if the learn-
ing topic is geometry, manipulatives are the usual form of
tangible object [71, 72], whereas if the learning topic is
for example number line/cardinality, tablets are the most
frequently used forms [73, 74]. This implies that the learn-
ing topic shapes the form of tangible object when it comes
to the design of TUI for Mathematics. With regard to
Collaboration, all three tangible objects have been used
and explored in identified research, pointing out the bene-
fits of tangible interaction. Namely, multi-touch technology
such as tabletops stimulates and increases children social
interaction [75] while manipulative gamified objects pro-
mote children’s cooperation and control over their learning
process [76]. Furthermore, studies indicate advantages of
using tablets in encouraging children’s collaboration in a
shared digital space [77]. Finally, in the studies that consid-
ered the Models of interaction, there is a dominant usage of
tablets, what is consistent with study’s research goal such as
handwriting recognition [78] as well as complexity [79] and
usability [80] of the user interface.

RQ4: Which evaluation approach is considered in TUI
application in concrete educational scenario?
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An assessment of evaluation settings employed in the
studies identified in this review provided some useful
results. Out of 155 publications, 118 have addressed, in
more or less detail, all three stages of TUI development —
design, implementation and evaluation. This makes 76% out
of all identified primary studies. The results of an additional
analysis regarding an evaluation settings engaged in those
118 publications are briefly presented in Table 2.

Again, publications are chronologically sorted, present-
ing first the most recent research. Apart from authors and
publication year, the table also provides information about
the application domain and the form of tangible object. In
addition, main findings related to the applied evaluation set-
tings are classified into four categories: educational settings,
research time period, sample size as well as participants age
(years).

The choice of adequate educational setting is rather
important aspect of each study and should be carefully
considered since it affects children’s behaviour during the
research. The results expose that most of the research was
done in formal settings like schools and kindergartens,
specifically 72.9% of the studies, while only 22 out of
118 studies were conducted in informal settings, like
laboratories or museums. Besides, it is worth mentioning
that ten studies did not specify in which educational settings
the research was conducted. Considering the research
time period, the results show very diverse time sessions:

41 studies were conducted as an experiment, 11 were
completed in 2-day time interval, 12 studies were done for a
period of weeks, 10 for a period of months and only two for
a period of years. In some publications it was not explicitly
pointed how long the research lasted since it was consisted
of “study/test sessions” with no specific information about
the time frame. Evidently there is a need for more long-
term research since the focus so far is on short-duration
applications.

The sample size of children who participated in the
research ranges from 1 up to 162. The histogram presenting
the distribution of sample size range of participants is shown
in Fig. 5. The majority of research (52 out of 118) had only
up to 20 participants in the study, with standard deviation of
σ = 32.6 and mean value μ = 31.45.

When it comes to participant age, the results vary since
some studies tend to focus only on kindergarten children,
while others incline to include older age groups. The mean
age of children is μ = 7.13 and standard deviation σ = 2.1.
Although the majority of work does not usually elaborate
on the age groups, it has been noticed that the age group
of children tend to depend on the application domain (refer
to Fig. 6). As is depicted, in application domain such as
Mathematics or Problem solving, range of participants age
is wide in contrast to Collaboration or Models of interaction
domains which were focused on a more specific age group
of children.



Pers Ubiquit Comput

Table 2 Evaluation settings in 118 publications which address all three stages of TUI development

Publication Application
domain

Form of
tangible
object(s)

Educational
settings

Research
time
period

Sample
size

Participants
age
(years)

Almukadi et al. (2019) Geography Manipulatives Formal Sessions of 12 min 50 9–11

Micheloni et al. (2019) Art Manipulatives N/A 2 weeks 51 6–11

Salman et al. (2019) Mathematics Manipulatives N/A 30 min 4 3–5

Chilcañán
Capelo et al.
(2018)

Programming Manipulatives N/A 1 experiment 10 5–6

Garcia-Sanjuan
et al. (2018)

Collaboration Tablet Formal 2 days 80 9–10

Jurdi et al. (2018) Collaboration Tab/Man/TTop Formal 3 × 18 min 80 9–10

Chen Wang (2018) Literacy Manipulatives Formal 30 min 18 10

Burleson et al. (2018) Programming Manipulatives Formal 5 week 9 6

Caceres et al. (2018) Programming Manipulatives Formal 1 day 15 5–8

Patel (2018) Art Manipulatives Informal 2 days 19 1–4

Verish et al. (2018) Science Manipulatives N/A N/A N/A N/A

Chou et al. (2018) Literacy Manipulatives Informal Exhibition N/A N/A

Di Fuccio Mas-
trobert (2018)

Storytelling Tablet / Manipu-
latives

Formal N/A 59 7–8

Pedersen et al. (2018) Programming Manipulatives Formal 14 months 108 5–10

Van Camp et al. (2017) Programming Manipulatives N/A 1 experiment 34 5–6

Akkil et al. (2017) Literacy Tablet N/A N/A N/A N/A

Cho et al. (2017) Literacy Manipulatives Formal 1 experiment 36 5–6

Kang et al. (2017) Literacy Tablet Informal N/A N/A 7–8

Root et al. (2017) Programming Manipulatives Informal 1 experiment 3 4–8

Sinha Deb (2017) Oral hygiene Manipulatives Informal Formal 1 experiment 40 + 40 5–10

Yanikoglu et al. (2017) Models of interaction Tablet Formal 1 + 1 year 20 + 24 7

Zhang et al. (2017) Storytelling Manipulatives Formal N/A N/A 4–7

Sedaghatjou
Campbell
(2017)

Mathematics Tablet Formal 3 months 1 5

Marichal et al. (2017) Mathematics Manipulatives Formal 2 × 10 min 19 5–6

Volk et al. (2017) Mathematics Tablet Formal 7 months 124 9

Lee et al. (2017) Art Manipulatives Formal 2 experiments 16 4–7

Gennari et al. (2017) Collaboration Manipulatives Formal 5 experiments 19 9–10

Martı́n-SanJosé
et al. (2016)

History Tabletop Formal 1 experiment 128 7–11

Velamazán (2016) Mathematics Manipulatives Informal Formal N/A 12 4–6

Santos et al. (2016) Collaboration Manipulatives Informal N/A N/A 8–10

Lee (2016) Literacy Tablet N/A 2 experiments 56 7–8

Wang et al. (2016) Programming Manipulatives Informal 1 experiment 11 6–8

Yannier et al. (2016) Science Manipulatives Formal 2 experiments 67 4–8

Sylla et al. (2016) Literacy Manipulatives Formal 3 months 20 5

Kubicki et al. (2016) Mathematics Tabletop Informal 3 years 68 6

Van Huys-
duynen et al.
(2016)

Collaboration Manipulatives Formal 66 × 15 min 80 4–11

Gallacher et al. (2016) Art Manipulatives Informal 1 experiment 63 4–9

Schwartz et al. (2016) Science Tabletop Informal Public poster session N/A N/A

Nacher et al. (2016) Problem solving Tablet Formal 4 days 49 2–6



Pers Ubiquit Comput

Table 2 (continued)

Publication Application
domain

Form of
tangible
object(s)

Educational
settings

Research
time
period

Sample
size

Participants
age
(years)

Almukadi Boy (2016) Literacy Manipulatives Formal 2 experiments 9 5–8

Baykal et al. (2016) Problem solving Manipulatives Formal 1 experiment 8 2–4

Soleimani et al. (2016) Storytelling Manipulatives Formal 3 days 12 8–11

Kubicki et al. (2015) Symbols, sym-
bol mapping,
embodied
metaphors

Tabletop Formal 1 experiment 16 3–5

Silva et al. (2015) Problem solving Manipulatives Formal 1 experiment 7 N/A

Van Dijk et al. (2015) Models of interaction Tabletop Informal 1 experiment 31 8–11

Soleimani et al. (2015) Storytelling Manipulatives Formal 3 days N/A 8–10

Bertolo et al. (2015) Mathematics Tablet Formal 1 experiment 28 11

Garcia-Sanjuan et al. (2015) Problem solving Manipulatives Formal Several sessions 60 2–5

Dantas et al. (2015) Storytelling Manipulatives Formal 1 experiment 18 5–6

Sylla et al. (2015) Storytelling Manipulatives Formal 4 months 48 5

Alofs et al. (2015) Storytelling Tabletop Informal 2 sessions 5 8–11

Yannier et al. (2015) Science Manipulatives Formal 2 × 2 experiment 92 6–8

Tablet

Ukil Sorathia (2014) Mathematics Tabletop Informal N/A N/A 10–13

Lugrin et al. (2014) Models of interaction Tablet Informal 1 experiment 70 9–11

Sylla et al. (2014) Storytelling Manipulatives Informal 6 months 27 5

Sapounidis et al. (2014) Programming Manipulatives Formal 2 months 109 5–12

Adesina et al. (2014) Mathematics Tablet Formal 1 month 39 8–9

Christensen et al. (2014) Programming Manipulatives Informal 2 sessions 4 6–11

Wang et al. (2014) Programming Manipulatives Formal N/A 20 5–9

Spermon et al., (2014) Collaboration Tabletop Formal 2 studies 20 + 40 10–13

Chung (2014) Art Tablet Formal 1 experiment 21 4–5

Verhaegh et al. (2013) Problem solving Manipulatives Formal 4 weeks 52 8

Wang et al. (2013) Storytelling Manipulatives Formal 1 experiment 8 5–8

Sapounidis et al. (2013) Programming Manipulatives Formal 2 months 61 5–12

Jong et al. (2013) Mathematics Manipulatives Formal 1 experiment 99 5

Tablet

Furió et al. (2013) Science Tablet Formal N/A 79 8–10

Antle (2013) Problem solving Manipulatives Formal 20 sessions 40 7–10

Reitenbach et al. (2013) Literacy Manipulatives Formal 3 weeks 4 6–7

Waranusast et al. (2013) Art Tabletop Informal N/A 48 9

Awang Rambli et al. (2013) Literacy Manipulatives Formal 1 experiment 15 5

Tsong et al. (2013) Literacy Manipulatives Formal 1 day 6 6

Papadaki et al. (2013) Literacy Manipulatives N/A N/A N/A N/A

Marco et al. (2013) Problem solving Tabletop Formal 2 sessions 34 3–5

Karime et al. (2012) Symbols, sym-
bol mapping,
embodied
metaphors

Manipulatives Formal 5 sessions 11 4–5

Wang et al. (2012) Programming Manipulatives Informal 168 min 11 5–9

Kwon et al. (2012) Programming Manipulatives Formal 5 weeks 24 7

Marco et al. (2012) Problem solving Tabletop Formal 1 test session 4 5

Vanden Abeele et al. (2012) Problem solving Manipulatives Formal 3 days 46 3–7

Horn et al. (2012) Programming Manipulatives Formal 8 weeks + 1 week 74 + 15 5–6 + 5–7
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Table 2 (continued)

Publication Application
domain

Form of
tangible
object(s)

Educational
settings

Research
time
period

Sample
size

Participants
age
(years)

Sylla et al. (2012) Oral hygiene Manipulatives Formal 2 day 41 4–5

Bakker et al. (2012) Symbols, sym-
bol mapping,
embodied
metaphors

Manipulatives Formal 3 user studies 162 7–9

Sipitakiat Nusen (2012) Programming Manipulatives Informal 2 × 2 h 52 8–9

Scharf et al. (2012) Problem solving Manipulatives Formal 2 experiments 20 6–9

Sylla et al. (2012) Storytelling Manipulatives Formal 2 user studies 18 + 8 5

Medeiros et al. (2012) Storytelling Manipulatives Formal 6 months 8 5

Barendregt et al. (2012) Mathematics Tablets Formal 3 weeks 11 5–6

Higgins et at. (2011) History Tabletop Formal 1 day 32 10–11

Verhaegha et al. (2011) Problem solving Manipulatives Formal N/A 40 9.5

Ahmet et al. (2011) Science Manipulatives Formal 1 experiment 18 N/A

Olson et al. (2011) Collaboration Tabletop Formal 3 weeks 4 8–10

Wang et al. (2011) Programming Manipulatives Formal 1 experiment 10 5–9

Tseng et al. (2011) Science Manipulatives Formal 3 user studies 18 5–11

Chipman et al. (2011) Collaboration Tablets Formal 1 user study 18 5–6

Mickelson et al. (2011) Mathematics Manipulatives Formal 1 experiment 35 10–12

Freed et al. (2011) Communication Manipulatives Formal 1 experiment 4 10–12

McCrindle et al. (2011) Collaboration Tabletop Formal 1 experiment 2 11

Liu et al. (2010) Storytelling Manipulatives Formal 9 weeks 16 8

Parton (2010) Symbols, sym-
bol mapping,
embodied
metaphors

Manipulatives Formal 1 experiment 96 5–12

McKnight Fitton (2010) Problem solving Tablets Formal 1 experiment 13 6–7

Jansen et al. (2010) Literacy Manipulatives Formal 1 day 17 6–8

Marshall et al.(2009) Collaboration Tabletop Formal N/A 30 7–8

Jacoby et al. (2009) Problem solving Manipulatives Formal N/A 38 5–6

Sugimoto (2009) Collaboration Tabletop Formal N/A N/A 10–11

Karime et al. (2009) Symbols, sym-
bol mapping,
embodied
metaphors

Manipulatives Formal 1 experiment 5 2–5

Marco et al. (2009) Problem solving Tabletop Formal N/A N/A N/A

Hornecker Dünser (2008) Storytelling Manipulatives Formal 1 experiment 34 6–7

Juan et al. (2008) Storytelling Manipulatives Formal 1 experiment 44 6–8

Jansen et al. (2008) Art Manipulatives Formal 1 experiment 11 5–6

Terrenghi et al. (2006) Literacy Manipulatives N/A N/A N/A 7–12

Fernaeus Tholander (2006) Programming Manipulatives N/A N/A N/A N/A

Ucelli et al. (2005) Art Manipulatives Formal N/A N/A 9

McNerney (2004) Programming Manipulatives Formal 1 experiment 4 6–13

Weevers et al. (2004) Literacy Tabletop Formal 1 experiment 15 5–7

Luckin et al. (2003) Collaboration Manipulatives Formal Informal 2 weeks 54/12 4–6/6

Price et al. (2003) Collaboration Manipulatives Formal 1 experiment 12 6–10

Scarlatos (2002) Problem solving Manipulatives Informal 1 experiment N/A 10–11

Wyeth Wyeth (2001) Programming Manipulatives Formal 2 weeks 26 4–6

Cassell Ryokai (2001) Storytelling Manipulatives Formal 24 sessions 36 5–8
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Fig. 5 Distribution of
participant sample size

4 Discussion

4.1 Main findings

It can be concluded that analysed research has emphasized
the need for an enhancement of following four skills:
programming skills, literacy skills, mathematical skills and
problem solving. This is consistent with the perspective
typical learning domains which Marshall (2007) pointed
out in his six perspectives-based Analytic Framework on

Fig. 6 Relation of children’s age and application domain

Tangibles for Learning. All these skills correspond to the
specific nature of young children’s development phases.
Namely, the majority of selected studies refer to the
Piaget’s theory of cognitive development [57] as well
as to the Montessori’s educational approach [23] and
conclude that interacting with task-appropriate physical
objects represents the best learning environment for young
children. Piaget has distinguished physical and logical-
mathematical experience; physical experience consists of
acting upon objects and drawing knowledge about the
objects by abstraction, while the logical-mathematical
experience differs from physical experience because the
knowledge is not drawn from the object but from an
experience of the actions of the subject. Besides, Montessori
has also emphasized the importance of learning through
experience. Interaction with technology could enhance
development of abstract concepts, specifically abstract
mathematical concepts that help children to develop
problem solving skills. Tangible interactions and real life
observations play an important role in mathematics [81]
since traditional maths teaching focuses more on giving
procedural knowledge and less on application of these
knowledge in the real world [82]. Hence, TUIs prove
to be beneficial when it comes to gaining mathematical
knowledge since children are not explicitly taught about the
link between abstract or symbolic content and its concrete
physical manifestation [62]. In addition, they can offer an
external record of previous states and actions thus offering
good potential for enhancing numerical learning.

Aside from problem solving and mathematical skills,
development of literacy skills is very important especially
in pre-school years because it influences future reading
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and writing ability [83]. Literacy skills are one of key
indicators of children’s future academic achievements as
their underdevelopment might lead to achievement gaps
that are hard to eliminate further on in education. TUIs
seems to be a positive literacy learning tools for children
since they foster their motivation and allow them to
communicate through digital representations [83]. The
interactive features, such as sound or animation, as well as
haptic-initiated feedback in a TUI presented story, holds a
promise for children to independently obtain rich contextual
information and actively make meaning of words and story
content [84]. As storytelling plays an essential role in an
enhancement of literacy skills allowing children to interact
and express themselves, TUI could be applied as a facilitator
to storytelling since it can reduce cognitive load [85].

Research has shown that children as young as four can
understand the basic concepts of programming [86]. Still,
when it comes to learning how to program, children are
limited by the use of desktop and laptop computers since
these environments are not always suitable for them. This is
due to children lacking of important programming skills, for
example typing, that are necessary for many programming
environments [87]. Since tangible programming provides an
analog-like control over the instructions and the feedback
is real time [88], TUIs make computation immediate
making it easier to explain to young users [89]. When
programming, children explore fundamental concepts such
as sequencing or pattern recognition and TUIs are especially
well suited for this as they match children’s developmental
skills [90]. One strong point of TUI as an interface for
programming is related to the interface’s ability to create
physical sequence of commands, for example while using
digital blocks, thus making programming more direct and
less abstract. Through interaction with tangible interfaces
children learn how to program by building programs
physically, therefore exceeding the need to learn text-based
programming language syntax.

Considering potential learning benefits that TUIs may
provide, the selected primary studies have highlighted
collaboration as a main focus in the conducted research,
specifically in 14 out of 155 studies (i.e. 9%). There are
evidences that the use of tangible objects prompt children
to share control of interfaces [54, 91]. Studies have exposed
that the use of TUIs support social interaction trough
collaboration since students can, for example, discuss
program structures and rearrange them simultaneously
while discussing the effects of such actions [31]. There
are implications that collaboration while using TUI is
a motivating factor for children which favours their
engagement [92]. Another such similar learning benefit is
collaborative problem solving which can be enhanced with
the use of manipulatives perceived as easy and fun to use
[39]. It has been shown that TUIs enhance successful task

completion and motivate children [81, 82, 93]. Therefore,
while using TUIs children could achieve higher learning
performance compared to other forms of interaction [94].
Besides, the research has revealed that using TUIs changes
learning performances due to more accessible interfaces
and interactions [95]. In [89] authors have suggested that,
compared to GUI based interfaces, TUIs make computation
more accessible being appropriate for children learning
about computation and scientific exploration.

Further, with the use of TUIs children can express them-
selves through natural body movements and collaboration
thus supporting exploratory learning and enjoyment [96].
Also, TUIs have potential to enhance children’s understand-
ing of visuospatial processes during concrete constructional
activity [97]. The studies have also pointed out benefits from
understanding and supporting the ways in which physical-
ity supports cognitive development. TUIs provide a huge
potential in enhancement of children numerical learning
abilities on the one hand [62] and of logical thinking abil-
ities on the other [98]. There are evidences that when pro-
gramming with TUI children can comprehend more advance
concepts such as loops or parametric values [69].

The majority of selected research has outlined the
importance of children as design partners and emphasized a
strong distinction between the design of TUIs for adults and
for young children. Incorporation of well know elements
of play into TUIs could prove to be an integral element
of design when developing for playful learning [31]. The
design of a learning activity should guide and encourage a
child to accomplish the task; this might include providing
help such as hints when children commit common errors
[81]. When designing prototypes, some studies referred
to previously mentioned frameworks, in particular the
Tangible Learning Design Framework offered by Antle
and Wise [54] and the Child Tangible Interaction (CTI)
framework proposed by Antle [55], like for example
the mixed-reality system with tangible interaction for
mathematical learning [81] and TUI designed to support
children letter learning [96] respectively. Overall, due to
great potential of tangible interfaces not only to increase
enjoyment but also to improve children’s learning, research
has pointed out the importance of well-planned sequence of
guided activities during design iterations [99].

Finally, it is important to address also TUIs in relation
to emerging technologies like the Internet of Things (IoT),
a vision of ubiquitous computing technology and pervasive
connection of smart things [100]. Aiming to improve quality
of live and well-being, research in the IoT field is trying to
bridge technological barriers and explore new applications
for connected objects in educational context as well [18]. As
already shown in this paper, objects that can be touched by
children, whether being toys or educational materials, play
a significant role in their lives. In that respect, various ways
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of integration of tangible interfaces in IoT in the context of
children usage have been investigated like the examination
of the usage of wearable and IoT for teaching foreign
languages to young children using task-based approach
[101], as well as the application of IoT technology for
supporting the therapeutic activities [102], and for teaching
and tracking socio-communicative behaviours for children
with special needs [103]. Other study involving IoT in
general has explored how IoT can be used to allow parents
and care-takers to track the conditions of comfort and
safety inside a school bus in a real-time manner with the
goal of making the school transportation system smarter
[104]. It is worth mentioning that a new term Internet of
Tangible Things (IoTT) composed from the terms Tangible
User Interfaces and Internet of Things has been coined
[18]. The authors have provided a systematic review of
modalities how tangible interaction can be joined with IoT,
additionally pointing out advantages of tangible interaction.
For example, recently IoTT has been employed for children
with hearing impairment [105].

Smart IoT devices are “smart” due to various techniques
embedded in their core, such as Machine Learning (ML)
which can be considered as a general scope of computer
algorithms that can be improved automatically through
experience when provided data from the real world [106].
Since nowadays children are growing in this overwhelming
“smart environment” of Machine Learning system, the need
for children to learn the ML concepts could be questioned
[107]. ML concepts are not straightforward and are not easy
to understand in general, not only for children [108]. In this
context, research conducted in [107] aimed to explore the
pedagogical models and tools for integrating ML topics into
education presenting the theoretical grounds for a design-
oriented pedagogy. Furthermore, it has been researched how
basic ML concepts can be explained to children through
hands-on experience (interaction with a digital stick-like
device) [108].

4.2 Gaps in current work and future directions

Numerous selected primary studies have acknowledged
limitations such as very small sample of participants [87,
96]. Small sample size limits generalizability [109] and
doesn’t allow a significant quantitative analysis [96]. Yet
another example of limited generalizability is the age group
of participants, for example studies that have involved pre-
schoolers from US are limited since pre-school in the US
is non-mandatory [84]. This is consistent with the results
that we have gained with regard to the sample size and
selections of participants. Other studies lack of investigation
of long-term educational effect of evaluated TUIs [31,
68, 110]. Besides, some studies did not follow a rigorous
methodology to formally assess different possibilities of the

evaluated TUI [81, 93] while in others technical limitations
of the designed and tested TUI have been emphasized [97,
98].

Another limitation of discussed studies concerns the
lack of empirical evidence to support assumed benefits in
general, finding in line with already emphasized criticism
[65], as well as long-term empirical research in particular.
Namely, most of the empirical work was carried out
in a session or as a day study like 18-min user tests
[39], and 30-min or 1-h session user studies [111], along
with evaluations conducted through a form of one-day
experiment [46] and a one-day prototype testing [112].
Minority of studies reported user evaluations organized
over a period of weeks or months, for example 20 session
conducted over a four-week period [113], a 9-week pre-
post-test randomized controlled study [83], along with a
3 months [92] or a seven-months [82] reported empirical
period. The longest research was a three-year study of using
a Tangible Tabletop Interface with experiments conducted
in informal educational settings (i.e. “in the wild”) [114].

It is important to emphasize that in the studies which
present all three stages of TUI development, in particular
design, implementation and evaluation (refer to Table 2),
many were just starting to test/evaluate or to design
prototypes. Findings from revised studies revealed that the
field still lacks theoretical framework that outlines how
various TUI features affect learning outcomes, especially
when it comes to design guidelines. Thus, further substantial
empirical work is needed in the design area as well as in
engineering of suitable TUIs’ design for children.

In addition, the field requires more elaborated assessment
approach in terms of participants’ sample size as well as
research time period. Conducted studies should also have a
stronger theoretical background regarding the conduction of
an evaluation as well as the interpretation of the results in
terms of benefits that TUIs may have in educational context.
Namely, there is still little empirical work that provides
evidence to be able to claim that TUIs enhance learning;
additional research is required to determine if TUIs are
truly beneficial for children’s acquisition of knowledge.
Moreover, there is also lack of effective structure with which
it can be established what are the learning benefits.

In light of these considerations, we conclude that there is
a need for a concrete TUI design framework for young chil-
dren’s enhancement of programming, literacy, mathematical
and problem solving skills. Such framework should pro-
vide designers and researchers with design guidelines from
cognitive theories and pedagogical practices. In addition,
there is a necessity for long-term exploration of benefits that
TUI’s may have for enhancement of above mentioned skills
with emphasis on exploration done in formal school envi-
ronments. Besides, future research may well explore how
are different interaction modalities connected with abstract



Pers Ubiquit Comput

concepts that are presented through the application domain
of the specific TUI. Lastly, in the concluding remark we
underline that the TUI’s design must be focused on the
learning topic and its form must seamlessly enable a child
to comprehend the abstract concept that needs to be under-
stood. As already stated [38], a detailed framework for
structured research is required.

4.3 Limitations of the conducted review

The conducted systematic review aimed to provide a critical
overview of the current state of research efforts in TUIs
application in the context of young children education, but
there are a few limitations which have to be pointed out.
Firstly, some concerns related to the specified searching
string could be raised. We could argue that the specific
search terms, and the truncation method used to cover all
their variations, did not embrace all potential contributing
research studies. Secondly, since the user interfaces of the
three searched database varies, adjustment in the use of
database filters were employed. Specifically, in the Web of
Science database, the “topic” filter was selected enabling
the identification of publications in which the selected
search terms appear in the publication title, list of keywords
and/or abstract. On the other hand, due to lack of the
“topic” filter, the search of ERIC and Scopus databases has
enabled the selection of publications that included specified
search terms in the list of publication “key words”. Thirdly,
potential specification of other criteria (i.e. search terms)
along with a selection of other databases perhaps would
have bring forth additional and/or different publications,
since there are some peer-reviewed journal articles and
conference papers in which specified search terms may not
appear in the title, list of keywords and/or abstract but they
do still appear in the content. Nevertheless, this review
could not be exhaustive but could cover only representative
academic literature on TUI in early years’ education.

5 Conclusion

The presented work reviews academic literature dealing
with Tangible User Interfaces (TUIs) and interactions in
the learning and teaching process for young children. This
study aimed to shed more light on this emerging field of
research bringing a total of 155 primary studies published
between 2001 and 2019. To the authors’ knowledge, this
is the first systematic review specific to TUIs’ studies in
early years’ education. The theoretical contributions of this
original work are twofold — the research provides a critical
overview of the current state of research efforts in TUIs
application in the context of young children education as
well as addresses knowledge gaps in the field that inquire

further investigation. A short summary of the main findings
is listed in the following:

• The number of published studies that underlie research
on TUI and learning for young children has progres-
sively increased, starting from the 2001.

• Three distinctive embodiments, that is forms of tangible
objects, through which the interaction happens have
been identified: manipulatives, tabletops and tablets.

• Fourteen application domains were distinguished: Art,
Collaboration, Communication, Geography, History,
Literacy, Mathematics, Models of Interaction, Oral
hygiene, Problem solving, Programming, Science,
Storytelling along with Symbols, symbol mapping and
embodied metaphors.

• Manipulatives were the most dominant form of tangible
object (104 studies). Considering tablets (31 studies)
and tabletops (21 studies), manipulatives have a broader
range of use since they have been used in almost all
application domains.

• Out of 155 identified studies, 118 have addressed, in
more or less detail, all three stages of TUI development
— design, implementation and evaluation.

• Most empirical data has been collected in formal
educational settings (like schools and kindergartens),
specifically 72.9% of all studies.

• The sample size of children who participated in the
research ranges from 1 up to 162, while the majority of
research involved only up to 32 participants.

• In general, the main findings revealed that the form of
tangible object is closely related to the domain.

• In particular, when considering Art, Programming,
Storytelling, Literacy, Science and Problem solving,
manipulatives seem to be dominant. Besides, seeing
Collaboration or Mathematics, all three forms of
tangible objects have been used with no distinctive
advantage given to a specific form. But, the learning
topic shapes the form of tangible object when it comes
to the design of TUI for Mathematics.

• Majority of studies have declared small sample of
participants as a major shortcoming. Other common
limitation is related to research predominantly focused
on short-duration empirical studies.

• Overall, findings revealed that the field still lacks:

� theoretical framework that outlines how differ-
ent features of TUIs affect learning outcomes,

� additional empirical research to collect and
report evidence that TUIs are truly beneficial
for children’s acquisition of knowledge and

� more elaborated assessment approach in terms
of sample size and research time period.

• This certainly represents fields for further research.
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Appendix. Tables

Table 3 Key findings of assessed and analysed 155 studies identified in this systematic review

Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Almukadi et al. [115] The goal of this study is to comprehend
that using TUI improve children learning;
the system allows children to discover
and learn about countries from different
continents using tangible objects.

Geography Manipulatives Yes/Yes/Yes

Micheloni et al. [116] The paper presents a study conducted
on a videogame, as the means through
which the user is induced to learn to
use/play a complex and not-intuitive
control interface like the keyboard of a
piano.

Art Manipulatives Yes/Yes/Yes

Salman et al. [117] The user study aims to observe children’s
interaction with mixed-reality game with
tangibles to guide further design pro-
cesses towards developing no symbolic
math trainings.

Mathematics Manipulatives Yes/Yes/Yes

Veerbeek et al. [118] The study presents the use of electronic
tangibles and a dynamic testing format
to investigate children’s task solving
processes and changes in these processes
as a result of training.

Problem solving Manipulatives No/No/Yes

Chilcañán Capelo
et al. [119]

The objective of the research is to explore
the possibility of interaction through the
sensory channels of children with a virtual
environment through physical contact
based on virtual simulation by means of
a virtual game using the Sphero haptic
device.

Problem solving Manipulatives Yes/Yes/Yes

Garcia-Sanjuan
et al. [120]

The study has evaluated a collaborative
gamified quiz Quizbot in terms of user
experience and collaboration.

Collaboration Tablet Yes/Yes/Yes

Jurdi et al. [39] The study presents a framework and a
game implemented to foster collaborative
problem solving, and compare its accep-
tance and user experience with three dif-
ferent implementations: tabletops, tablets
and physical spaces.

Collaboration Tab/Man./TTop Yes/Yes/Yes

Chen and Wang [121] The study shows how tangible technology
can be used to combine with animal
companions to foster student learning
and interaction in learning fifty Chinese
characters.

Literacy Manipulatives Yes/Yes/Yes
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Table 3 (continued)

Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Burleson et al. [87] The study aims to investigate the affor-
dances of embodied instruction by
observing young children in free play and
open-ended learning activities of spatial
programming, using robots.

Programming Manipulatives Yes/Yes/Yes

Cuadrado [122] The paper describes the development
process of an accessible technological
system based on the interaction between
TUI objects specifically designed for
children training in experimentation of
sound.

Art Manipulatives Yes/Yes/No (?)

Caceres et al. [46] The paper presents the development
of a tangible programming interface
called FYO (Follow Your Objective)
that consists of a gaming programmable
board, puzzle-based tangible blocks and a
zoomorphic mobile robot as interpreter.

Programming Manipulatives Yes/Yes/Yes

Patel [123] The study presents how schemas can be
used as a framework to design an interac-
tive performance installation that incorpo-
rates children’s natural play patterns.

Art Manipulatives Yes/Yes/Yes

Verish et al. [124] The paper introduces CRISPEE, a novel
tangible user interface designed to engage
young elementary school children in bio-
engineering concepts. Using CRISPEE,
children assume the role of a bioengineer
to create a genetic program that codes

Science Manipulatives Yes/Yes/Yes

Di Fuccio and
Mastrobert [26]

The study focuses on the acceptability of
the mode of interaction. A storytelling
approach was applied with three different
interactions: touchscreen with a tablet,
multisensory approach with the multi
activity board as well as traditional book.

Storytelling Tablet/Manipulatives Yes/Yes/Yes

Pedersen et al. [31] The work deals with the BRICKO system
which provides new physical ways of
working with programming and is unique
in its use of LEGO as command bricks.
It allows for an important early success in
pupils’ first endeavours into the realm of
programming and robotics.

Programming Manipulatives Yes/Yes/Yes

Krpan et al. [125] The research illustrates the potential
of using augmented reality in learning
and teaching programming by creating
simple engaging game for teaching basic
programming concepts.

Programming Manipulatives Yes/Yes/No

Chou et al. [126] The goal of the study is to develop a
teaching aid, composed of four interac-
tive digital blocks and a computer for
learning Mandarin phonetic symbols, thus
providing children with visual, auditory,
and tactile experiences.

Literacy Manipulatives Yes/Yes/Yes

Van Camp et al. [127] The research aims to measure and empir-
ically validate the effect of tangible inter-
action on children’s play experience; pro-
totype of a programmable toy train with a
TUI based on tokens was build.

Programming Manipulatives Yes/Yes/Yes
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Table 3 (continued)

Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Akkil et al. [128] The study focuses on the development of
the Little Bear, a gaze aware pedagogical
agent that tailors its verbal and non-verbal
behaviour based on the visual attention
of the child to teach children names of
everyday fruits and vegetables.

Literacy Tablet Yes/Yes/Yes

Cho et al. [126] The paper aims to describe the degree of
engagement with tangible blocks by quan-
tifying children’s proactive and passive
actions during a learning session in three
common pedagogical scenarios.

Literacy Manipulatives Yes/Yes/Yes

Kang et al. [129] The research focuses on e-book appli-
cation (EFF-Book) to teach pre-school
children foreign languages using devices
such as smartphones or iPads. By utilizing
the touch screen, the application provides
an interactive illustratable tool for collage
art.

Literacy Tablet Yes/Yes/Yes

Moorthy et al. [130] The aim is to develop an interactive
textile touch-and-feel book for small
children, using e-textiles with embedded
electronics for the book’s construction
components, with haptic, audio and visual
feedback of the children’s actions.

Literacy Manipulatives Yes/Yes/No

Root et al. [131] The goal is to foster playful exploration of
computational thinking in pre-adolescent
children through tangible objects. Code-
Train and CodeBox, two motorized toys
whose behaviour can be programmed
through wooden building blocks without
the use of a computer, are presented.

Programming Manipulatives Yes/Yes/Yes

Sinha and Deb [132] This paper presents an enhanced learning
environment which is guided by an
intelligent tutoring system; its effect on
the learning outcomes of the children is
investigated.

Oral hygiene Manipulatives Yes/Yes/Yes

Yanikoglu et al. [78] This study presents an educational appli-
cation that leverages handwriting recog-
nition; it aims to increase student moti-
vation in completing assignments through
the use of tablets and natural handwritten
input.

Models of interaction Tablet Yes/Yes/Yes

Zhang et al. [133] The research focuses on design and
implementation of a tangible storytelling
system (TanStory) for children and design
of multiple interactive gesture which are
appropriate for telling stories.

Storytelling Manipulatives Yes/Yes/Yes

Sedaghatjou and
Campbell [73]

The paper explores how a young chil-
dren build an understanding of the car-
dinality principle through communica-
tive, touchscreen-based activities involv-
ing talk, gesture and body engagement
working via multi-modal, touchscreen
interface using contemporary mobile
technology (TouchCounts).

Mathematics Tablet Yes/Yes/Yes
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Table 3 (continued)

Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Veerbeek et al. [109], The study deals with an electronic con-
sole (TagTiles) which enables the use of
a computerized environment for assess-
ment; it makes possible for educators to
provide individualized forms of adaptive
instruction, based on the real-time activi-
ties/responses of the child.

Problem solving Manipulatives No/No/Yes

Pugnali et al. [134] The pilot study uses a mixed-method
approach in order to explore the learning
experiences that young children have with
tangible and graphical coding interfaces
and to measure the computational think-
ing skills that children using these tools
gain.

Programming Manipulatives No/No/Yes

Neumann [83] The study addresses the nine-week iPad
program which has been provided to
children; three literacy apps were used to
introduce new letters.

Literacy Tablet No/No/Yes

Zhou and Yadav [84] The research aims to explore potential
benefits regarding the use of multimedia
stories and questioning for improving
children’s vocabulary learning.

Literacy Tablet No/No/Yes

Marichal et al. [81] The study focuses on design of mixed-
reality tangible interaction to enhance
mathematical learning (CETA); learning
through games aims to increase the
engagement and joy of children.

Mathematics Manipulatives Yes/Yes/Yes

Volket al. [82] This study examines the impact of tablet-
based cross-curricular maths activities on
the acquisition of higher-order learning
outcomes.

Mathematics Tablet Yes/Yes/Yes

Tarasuik et al. [135] The research explores if children over
four years of age can learn to solve a
problem using a touchscreen app and
transfer this learning to solve an isometric
problem in the physical world.

Problem solving Tablet No/No/Yes

Lee et al. [136] The paper proposes a new and innovative
TUI design concept for a manipulative
digital drawing pen, enabling children
to perform stroke switches relatively
smoothly.

Art Manipulatives Yes/Yes/Yes

Gennari et al. [76] This paper advances the idea of
technology-enhanced gamified probes
for promoting a sense of progression
and control, as well as for sustaining
cooperation in a learning process.

Collaboration Manipulatives Yes/Yes/Yes

Martı́n-SanJosé
et al. [137]

The research deals with an educational
game based on historical ages; advanced
displays and natural gesture interactions
were used to develop two learning envi-
ronments for children.

History Tabletop Yes/Yes/Yes

Velamazán [138] The study investigates how Superbleeper
Lite system aids for children to under-
stand the relationships between concepts
like patterns, shapes, sizes, proportions,
time, measurement, change, order, set and
number sense using music and light as the
output of those concepts.

Mathematics Manipulatives Yes/Yes/Yes
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Table 3 (continued)

Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Ferrara et al. [139] The paper describes how to use tangible
interfaces for cognitive assessment and
training. The system (LogicART) that
can be used in assessment and training
of cognitive abilities, such as reasoning,
memory, categorization, etc. is illustrated.

Problem solving Manipulatives Yes/Yes/No

Santos et al. [140] The study investigates the mix of tangible
interaction, immersive environments, col-
laboration and pedagogical background
in the design of an educational game of
WaterOn! for children.

Collaboration Manipulatives Yes/Yes/Yes

Lee [141] The research deals with computer-
assisted language learning aimed to
determine whether specific technology
features of a tablet computer can add
to the functionality of multisensory
instruction in early reading acquisition.

Literacy Tablet Yes/Yes/Yes

Sitdhisanguan and
Amornchewin [142]

The study explores the potential of mobile
tablet technology in enhancement of ele-
mentary children learning to write letters
by compare learning efficacy of stylus
interfaced and touch-based interface with
traditional method (using regular pencil
and paper).

Literacy Tablet No/No/Yes

Wang et al. [143] The research focuses on tangible system
(TanProRobot 2.0), composed of tangible
programming blocks, a robot car and sev-
eral manipulatives, designed for children
to learn programming concepts.

Programing Manipulatives Yes/Yes/Yes

Yannier et al. [99] The study explores if experimenting with
three-dimensional (3D) physical objects
in mixed-reality environments produce
better learning and enjoyment than flat-
screen two-dimensional (2D) interaction
and help children learn basic physics
principles.

Science Manipulatives Yes/Yes/Yes

Kirkorian et al. [144] Research examines whether contingent
experience using a touchscreen increased
toddlers’ ability to learn a word from
video.

Literacy Tablet No/No/Yes

McManis and
McManis [145]

The work presents an empirical study
of the use of a touch-based, computer-
assisted learning system by low-income
pre-schoolers.

Literacy and Mathematics Tablet No/No/Yes

Zhu et al. [146] The study examines how different com-
binations of input and output modalities
used to teach children coding, affected
the process of problem solving and class
dynamics.

Problem solving Manipulatives No/No/Yes

Moyer-Packenham
et al. [74]

The study tries to contribute to the
limited body of research on children’s
affordance access when interacting with
virtual manipulative mathematics apps for
learning.

Mathematics Tablet No/No/Yes
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Table 3 (continued)

Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Hiniker et al. [147] The paper presents a conducted random-
ized controlled trial with pre-schoolers
to assess their ability to work with user
interface elements that require symbolic
mappings.

Symbols, sym-
bol mapping,
embodied
metaphors

Tablet No/No/Yes

Sylla et al. [92] The study aims to contribute to a deeper
understanding of the educational possi-
bilities offered by digital manipulatives
to enhance the development of lexical
knowledge and language awareness in
pre-school context.

Literacy Manipulatives Yes/Yes/Yes

Kubicki et al. [114] The paper addresses three-year study of
using a Tangible Tabletop Interface (TTI)
for the development of student learning in
spatial reasoning abilities.

Mathematics Tabletop Yes/Yes/Yes

Van Huysduynen
et al. [148]

The paper presents a study on chil-
dren’s play with tangible, interactive
objects (MagicBuns). The study exam-
ines the support of different combinations
of tangible feedback on different play
behaviours and forms of play related to
the different development stages of chil-
dren.

Collaboration Manipulatives Yes/Yes/Yes

Gallacher et al. [149] The paper introduces a tangible survey
system (SmallTalk) designed for use
within a theatre space to capture what
children thought of a live performance
they had just seen.

Art Manipulatives Yes/Yes/Yes

Schwartz et al. [150] The goal of the research is to understand
the potential of multi-touch displays
to facilitate data science education in
order to develop more complicated data
exploration applications.

Science Tabletop Yes/Yes/Yes

Nacher et al. [151] The study evaluates different mechanisms
of indirect dragging manipulations (tap-
based, accelerometer-based and buttons-
based) to identify those that could be used
by kindergarteners in scenarios where the
direct dragging is not suitable.

Problem solving Tablet Yes/Yes/Yes

Antle et al. [152] The workshop introduces knowledge
about design processes and child develop-
ment by supporting participants’ applica-
tion of knowledge in a hands-on, directed-
design activity.

- - -

Zhu and Wang [71] The paper presents an augmented real-
ity featured educational game specifi-
cally designed for pre-school children, to
teach children knowledge about colour
mix, mathematics and 2D-3D geometrical
shapes.

Mathematics Manipulatives Yes/No/No

Almukadi and Boy [96] The paper presents a human-centred
design approach of TUIs applied for
reading tasks in the classroom for children
focusing on language learning by building
3-letter words.

Literacy Manipulatives Yes/Yes/Yes
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Table 3 (continued)

Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Woodward et al. [79] The study examines how interface com-
plexity impact children’s touchscreen
interactions; findings point to several
design recommendations for touchscreen
interfaces for children of related age
group.

Models of interaction Tablet No/No/Yes

Antle et al. [56] The study aims to change children’s
awareness through hands-on interaction
with the world they live in; the SoT
system enables children to learn about
every object they touch in a typical day.

Unknow Tablet Yes/No/No

Baykal et al. [153] This paper presents a stage of a research
driven project of an interactive product in
development that aims to that facilitates
spatial skills of pre-schoolers.

Problem solving Manipulatives Yes/Yes/Yes

Soleimani et al. [154] The study outlines the motivations for
CyberPLAYce (tangible, interactive,
cyber-physical learning tool), focusing on
the full arc of design and evaluation activ-
ities concerning computational thinking
practices that engaged young children
storytellers.

Storytelling Manipulatives Yes/Yes/Yes

Strawhacker and Bers [90] This research aimed to explore how suc-
cessfully young children master founda-
tional programming concepts based on
robotics comparing two user interface:
tangible and graphical.

Programming Manipulatives No/No/Yes

Bertolo et al. [72] The study focuses on tablet applications
for 3D geometry learning in primary
schools.

Mathematics Tablet Yes/Yes/Yes

Garcia-Sanjuan et al. [155] The paper presents a joint collaboration
between technologists and kindergarten
instructors to design and evaluate a
technological platform using a mobile
robot for kindergarten instruction, as well
as an intuitive and user-friendly tangible
user interface.

Problem solving Manipulatives Yes/Yes/Yes

Dantas et al. [156] The study aims at promoting children’s
collaborative playful exploration of the
oral language, by allowing them to create
a wide diversity of language related
activities.

Storytelling Manipulatives Yes/Yes/Yes

Kubicki et al. [70] The aim of the study is to highlight
the contribution of a interactive table-
top TangiSense as support for learning
recognition of basic colours and collabo-
ration aids for young children. TangiSense
is based on a multi-agent system that
allows users to associate information with
behaviour to manipulate tangible objects.

Symbols, sym-
bol mapping,
embodied
metaphors

Tabletop Yes/Yes/Yes

Vatavu et al. [157] The paper addresses children during
their preoperational stage according to
Piaget’s cognitive developmental theory,
and reports their touchscreen performance
with standard tap and drag and drop
interactions on smart phones and tablets.

Models of interaction Tablet No/No/Yes
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Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Silva et al. [158] This study describes the conception and
implementation of the Voxar Puzzle, a
platform for games in which children are
able to use real objects to play a digital
puzzle and have real-time feedback of
their interaction.

Problem solving Manipulatives Yes/Yes/Yes

Van Dijk et al. [159] The study describes a model for tangible
user interfaces specifically for children
that focuses on the user experience
during interaction and on how to design
interactions. The model has been used to
design a multi-touch tabletop application
for a museum.

Models of interaction Tabletop Yes/Yes/Yes

Soleimani et al. [160] The paper outlines the motivations
for CyberPLAYce (tangible, interac-
tive, cyber-physical learning tool), and
focuses on an iterative design, mixed-
methodology and usability studies
involving children as storytellers.

Storytelling Manipulatives Yes/Yes/Yes

Sylla et al. [161] The overall aim of the study is to design
and evaluate a digital manipulative system
that stimulates storytelling and oral language
development in pre-school children.

Storytelling Manipulatives Yes/Yes/Yes

Alofs et al. [162] The paper presents the Interactive Sto-
ryteller, a multi-user interface for AI-
based interactive storytelling where sto-
ries emerge from interaction of human
players with intelligent characters in a
simulated story world and investigates to
what extent system supports social inter-
action.

Storytelling Tabletop Yes/Yes/Yes

Nacher et al. [163] The paper investigates multi-touch
devices and pre-kindergarteners’ ability
to perform additional gestures on multi-
touch surfaces, like one finger rotation
and two-finger scale up and scale down).

Models of interaction Tablet No/No/Yes

Yannier et al. [164] The study explores factors in tangible
games that may contribute to both learn-
ing and enjoyment with an eye towards
technological feasibility and scalability. It
is explored whether a simple and scalable
addition of physical control (such as shak-
ing a tablet) would yield an increase in
learning and enjoyment.

Science Manipulatives
and tablet

Yes/Yes/Yes

Ukil and Sorathia [165] The aim of the research is to teach middle
school children 3D shapes such as cube,
cuboid and cylinder using a tabletop.

Mathematics Tabletop Yes/Yes/Yes

Lugrin et al. [67] The paper focuses on the development
and evaluation of a pictorial interaction
language for children and compares the
experience of the pictorial interaction
language with a more traditional menu-
driven interaction.

Models of interaction Tablet Yes/Yes/Yes

Mercier and Higgins [75] The study explores how large multi-touch
tables can be used by groups of students
as an external representation of their
group interaction processes, supporting
collaborative learning activities.

Collaboration Tabletop No/No/Yes
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Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
Evaluation

Sylla et al. [166] The paper presents a study of the use
of a digital manipulative developed to
promote creative narrative construction
and storytelling. The study sought to
assess aspects of children’s embodiment
of the narratives, and how they shaped the
creation of stories.

Storytelling Manipulatives Yes/Yes/Yes

Sapounidis et al. [167] The paper presents a cross-age study
exploring children’s performance on
robot introductory programming activi-
ties with one tangible and one isomorphic
graphical system.

Programming Manipulatives Yes/Yes/Yes

Adesina et al. [168] The study explores a method that uses
trace links on an interactive touch-based
computing tool for the capture and analy-
sis of solution steps in elementary mathe-
matics.

Mathematics Tablet Yes/Yes/Yes

Christensen et al. [169] The paper describes a tangible interface
(Playte) designed for children animating
interactive robots. The system supports
physical manipulation of behaviours rep-
resented by LEGO bricks and allows the
user to record and train their own new
behaviour.

Programming Manipulatives Yes/Yes/Yes

Crescenzi et al. [170] The paper explores the role of physical
action with particular attention to forms
of touch-based interaction in young chil-
dren’s learning, and the role that touch
screen technologies and digital tools
(iPads) might have in re-shaping these.

Models of interaction Tablet No/No/Yes

Wang et al. [69] The paper presents T-Maze, an econom-
ical tangible programming tool for chil-
dren aiming to build computer programs
in maze games by placing wooden blocks;
several studies that evaluated T-Maze in
terms of its usability are reported.

Programming Manipulatives Yes/Yes/Yes

Spermon et al. [171] The paper describes the design of two
tangible games on a digital tabletop
with the goal to increase collaborative
interactions among children.

Collaboration Tabletop Yes/Yes/Yes

Chung [172] The research intends to design a seri-
ous music game for preoperational chil-
dren. Based on Piaget’s cognitive devel-
opmental theory the researcher integrates
the Taiwanese folk tunes and folksongs
materials, the western music system, and
multi-touch screen technology to create
serious music games.

Art Tablet Yes/Yes/Yes

Verhaegh et al. [173] The study explores if TagTiles (a con-
sole tangible electronic interface) tasks
applied in a game context can be used
to assess and train a range of non-verbal
skills.

Problem solving Manipulatives Yes/Yes/Yes

Wang et al. [174] The paper describes StoryCube, a system
which contains a tangible tool and a
3D story world designed for children’s
storytelling.

Storytelling Manipulatives Yes/Yes/Yes
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Publication Objective of the
study

Application
domain

Form of tangible
object(s)

Design/Implementation/
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Sapounidis et al. [175] The study explores children’s opinions
and preferences regarding tangible and a
graphical user interfaces that can be used
for introductory programming activities.

Programming Manipulatives Yes/Yes/Yes

Francesconi et al. [176] The paper presents a token+constraint
tangible interface for children to learn
musical skills such as musical notes,
rhythm and the sound of different instru-
ments.

Art Manipulatives Yes/Yes/No

Jong et al. [94] The study explores the differences in
behavioural responses among students
with different temperaments regarding
mathematic gameplay by comparing the
touch-based and gesture based interactive
devices.

Mathematics Manipulatives and tablet Yes/Yes/Yes

Furió et al. [177] The paper presents an educational game
for an iPhone and a tablet; the main
objective of the game was to reinforce
children’s knowledge about the water
cycle.

Science Tablet Yes/Yes/Yes

Antle [113] The paper presents an exploratory study
of children solving a spatial puzzle task
and investigate how the affordances of
physical, graphical and tangible interfaces
may facilitate the development of think-
ing skills.

Problem solving Manipulatives Yes/Yes/Yes

Reitenbach et al. [178] The paper provides an overview of
the design process of StoryBOX (tangi-
ble, technologically enriched blocks that
stimulate the development of language),
where creative research played a major
role.

Literacy Manipulatives Yes/Yes/Yes

Waranusast et al. [179] The paper introduces muSurface, an inter-
active surface with ability to interact with
tangible musical symbols. The advantage
of using muSurface as an instructing tool
over conventional didactic method was
studied.

Art Tabletop Yes/Yes/Yes

Rambli et al. [180] The study deals with augmenter reality
(AR) Alphabet Book created to enhance
existing alphabet learning by utilizing an
AR technology.

Literacy Manipulatives Yes/Yes/Yes

Tsong et al. [43] The paper presents the development of a
tangible multimedia learning system for
pre-schoolers with an objective to discuss
how digital multimedia objects can be
configured for tangibility.

Literacy Manipulatives Yes/Yes/Yes

Papadaki et al. [181] The study focuses on the “Book of
Ellie”, as the augmented version of a
classic schoolbook for teaching the Greek
alphabet to primary school children. It has
been evaluated with experts in terms of
performance, accuracy and usability.

Literacy Manipulatives Yes/Yes/Yes
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Publication Objective of the
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Application
domain

Form of tangible
object(s)

Design/Implementation/
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Marco et al. [182] The paper exposes the results of a final
evaluation of tangible game for a tabletop
device (NIKVision) that summarizes the
performance of the game in relation to
usability, user experience and physical
and co-located gaming.

Problem solving Tabletop Yes/Yes/Yes

Garaizar et al. [183] The aim of the study is popularizing TUI-
based mobile applications 3DU Blocks,
a library which provides colour pattern
recognition in arrangements of standard
construction Blocks, that has been devel-
oped.

Art Manipulatives Yes/Yes/No

Wang et al. [184] The paper presents a tangible program-
ming tool (E-Block) for children to expe-
rience the preliminary understanding of
programming by building blocks. The
project also highlights potential advan-
tages of using single chip microcomputer
technology to develop tangible program-
ming tools for children.

Programming Manipulatives Yes/Yes/Yes

Karime et al. (2012) [185] The paper presents an edutainment system
(Magic Stick) that uses multimedia tech-
nology to enhance children’s learning by
displaying different media related to an
object once children tap over that object.

Symbols, symbol
mapping, embodied
metaphors

Manipulatives Yes/Yes/Yes

Kwon et al. (2012) [88] The study describes a tool called Algo-
rithmic Bricks (A-Bricks) developed to
improve the programming language expe-
rience by considering and utilizing char-
acteristics of procedural language.

Programming Manipulatives Yes/Yes/Yes

Marco et al. (2012) [186] The paper presents the design process
of a set of games involving tangible
interaction using toys handled on an
active surface tabletop aiming to bring
recent proposals in natural interaction
closer to young children, adapting them to
children’s development and preferences.

Problem solving Tabletop Yes/Yes/Yes

Vanden Abeele et al. (2012) [187] The study suggests Laddering as a
promising empirical method to evaluate
the impact of tangibility on young chil-
dren’s user experiences; it helps to crit-
ically question the assumed benefits of
tangibility.

Problem solving Manipulatives Yes/Yes/Yes

Horn et al. (2012) [42] The research involves a tangible program-
ming language called Tern for use in
educational settings to engage children
in computer programming and robotics
activities.

Programming Manipulatives Yes/Yes/Yes

Sylla et al. (2012) [188] The paper represents a comparison study
between a tangible and a traditional GUI
for teaching pre-schoolers about good oral
hygiene.

Oral hygiene Manipulatives Yes/Yes/Yes
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Publication Objective of the
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Application
domain

Form of tangible
object(s)

Design/Implementation/
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Bakker et al. (2012) [189] The study explores Moving Sounds Tan-
gibles, a tangible system for learning
abstract sound concepts; it was analysed
whether the children succeeded in repro-
ducing the sound samples using the sys-
tem.

Symbols, symbol
mapping, embodied
metaphors

Manipulatives Yes/Yes/Yes

Sipitakiat and Nusarin
Nusen(2012) [190]

The work presents the design and analysis
of debugging abilities embedded into
a tangible programming system called
Robo-Blocks.

Programming Manipulatives Yes/Yes/Yes

Scharf et al. (2012) [191] The paper presents Tangicons 3.0, a
collaborative educational game for chil-
dren which fosters algorithmic construc-
tion and reasoning as well as discussions
among the players.

Problem solving Manipulatives Yes/Yes/Yes

Sylla et al. (2012) [192] The paper describes the design process
and a first pilot study of t-books, a toolkit
consisting of an electronic platform.

Storytelling Manipulatives Yes/Yes/Yes

Karimi et al. (2012) [193] The research explores Time-Me, a tool
that uses tangible elements to represent
time duration in connection with daily
activities. The tool aims to help children
contextualize and internalize time based
on the activities they partake in through-
out the day that are familiar to them.

Problem solving Manipulatives Yes/No/No

Medeiros et al. (2012) [194] The study presents the design process of
a flannel board augmented with audio and
video recording capabilities and describes
participatory design methodology that
was followed by working with 5-year-old
children over a six-month period.

Storytelling Manipulatives Yes/Yes/Yes

Barendregt et al. (2012) [195] The study presents Fingu, an iPad game
developed as a research tool to study
how children develop their mathematical
abilities through use of an embodied
game.

Mathematics Tablets Yes/Yes/Yes

Higgins et al. [196] The study represents results of a history
task that a small group of children
undertook; children’s interaction using
traditional resources was compared with
their interaction when using a multi-touch
table.

History Tabletop Yes/Yes/Yes

Seals et al. [197] The study describes the SMART Table,
a multi-user, multi-touch interactive inter-
face that teaches children different con-
cepts in fun ways, additionally inspiring
cooperative competition.

Mathematics Tabletop Yes/Yes/No

Verhaegha et al. [198] The study presents a concept for enhanc-
ing child development by introducing tan-
gible computing in a way that fits the
children and improves current education;
it also provides results of validation of
the concept with children, parents and
teachers.

Problem solving Manipulatives Yes/Yes/Yes
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object(s)
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Ahmet et al. [199] The study deals with research on how sen-
sor equipped computer game technologies
can be used to create tools for educa-
tional settings to learn about for example
concepts in physics. It is also discussed
how the mixed digital and physical set-
ting affects the children’s coordination
and collaboration and their strategies to
solve the given assignment.

Science Manipulatives Yes/Yes/Yes

Olson et al. [91] The study aims to adapt the NetLogo
modelling environment for elementary
school students through the use of multi-
touch tabletop devices to support collabo-
rative exploration of scientific models on
a tabletop surface.

Collaboration Tabletop Yes/Yes/Yes

Wang et al. [98] The paper presents a tangible program-
ming tool T-Maze for children; a user
study shows that T-Maze is an interesting
programming approach for children and
easy to learn and use.

Programming Manipulatives Yes/Yes/Yes

Tseng et al. [111] The paper presents Mechanix, an inter-
active display for children designed to
create, record, view, and test systems of
tangible simple machine components.

Science Manipulatives Yes/Yes/Yes

Manches and Price [200] The research revisits arguments into the
role of actions in learning and considers
the implications of these for the design
of novel materials using emerging inter-
faces.

Problem solving -

Chipman et al. [77] The study presents Tangible Flags, a
system designed to facilitate collabora-
tion and exploration; it demonstrates how
mobile technology can promote children’s
face-to-face collaboration in open envi-
ronments and bridge the gap between the
physical and the digital.

Collaboration Tablets Yes/Yes/Yes

Mickelson et al. [201] The paper describes a digital learning
tool that engages math teachers and
students with geometry through phys-
ical movement, tangible controls, and
computer visualization. A tangible inter-
face allows them to transform the cap-
tured images and create complex patterns
through mathematical relationships.

Mathematics Manipulatives Yes/Yes/Yes

Freed et al. [202] The paper presents I/O Stickers, adhesive
sensors and actuators that children can
use to handcraft personalized remote
communication interfaces.

Communication Manipulatives Yes/Yes/Yes

McCrindle et al. [203] The paper presents t-vote, a system support-
ing children’s decision making. To encour-
age collaboration in a museum’s context,
tangible pawns on a tabletop interface were
employed and the decision making process
of children was implicitly script.

Collaboration Tabletop Yes/Yes/Yes

Liu et al. [85] The study proposes an interaction model
featuring tangible story avatars (TSAs)
that can serve as a platform to scaffold
collaborative story creation, revision and
narrative.

Storytelling Manipulatives Yes/Yes/Yes
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Parton et al. [204] This paper examines multiple types of
physical world hyperlinking hardware
configurations for the purpose of deter-
mining an optimal reader/tag combination
for student use.

Symbols, symbol
mapping, embodied
metaphors

Manipulatives Yes/Yes/Yes

McKnight and
Fitton [205]

The paper explores terminology for
touchscreen gestures and in particular
the implications for child users. An ini-
tial study exploring touchscreen language
with 6–7-year-olds is presented as an
illustration of some of the key problems
that designers need to be aware of.

Problem solving Tablets Yes/Yes/Yes

Spina-Caza [206] The paper explores how everyday child-
hood playthings might be used to influ-
ence play in virtual spaces. The experi-
mental videogame prototype described in
the study enables children to engage in
play with both physical and virtual objects
simultaneously.

Science Manipulatives Yes/No/No

Marco et al. [207] The paper presents a new set of toys
and games especially designed to bring
tabletop interaction closer to very young
children. The final aim of the study was
to combine physical group activities with
educative computer games, in a unique
interactive experience.

Problem solving Tabletop Yes/Yes/No

Cassidy and
McKnight [80]

The study investigates the usability of
mobile touchscreen devices for children
concentrating on the interaction between
the child and the devices. A set of general
design guidelines for the design of mobile
devices for children is offered.

Models of interaction Tablet No/No/Yes

Jansen et al. [112] The paper presents TeddIR: a system
using a tangible interface that allows chil-
dren to search for books by placing tangi-
ble figurines and books they like/dislike in
a green/red box, causing relevant results
to be shown on a display.

Literacy Manipulatives Yes/Yes/Yes
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Marshall et al.[208] The research targets the development of
a collaborative application that could run
on a tabletop in order to investigate how
children plan together.

Collaboration Tabletop Yes/Yes/Yes

Jacoby et al. [97] The study focuses on enhancement of our
understanding of visuospatial processes
during concrete constructional activity. In
that respect a dynamic tool (PlayCubes)
that supports monitoring a variety of
perceptual-motor processes needed while
children perform constructional tasks was
developed.

Problem solving Manipulatives Yes/Yes/Yes

Sugimoto [209] The paper investigates how learning sup-
port systems should be designed, utiliz-
ing information and communication tech-
nologies to enable the systems to enhance
learners’ experiences.

Collaboration Tabletop Yes/Yes/Yes

Karime et al. [68] The paper introduces edutainment tool
(Magic Stick) that helps very young chil-
dren learn about new objects by providing
their names associated by visual repre-
sentations regarding these objects. The
results suggest that the tangible version
of the game is easier to use than the
screen-based version and that it causes
less unintended load for the children.

Symbols, symbol
mapping, embodied
metaphors

Manipulatives Yes/Yes/Yes

Marco et al. [210] The paper presents a research intended to
explore tabletop interaction possibilities
with children through the manipulation
of physical toys avoiding multi-touch
interaction problems.

Problem solving Tabletop Yes/Yes/Yes

Hornecker and
Dünser [211]

This paper presents a user study of
tangible augmented reality, which shows
that physical input tools can invite a
wide variety of interaction behaviours and
raise unmatched expectations about how
to interact.

Storytelling Manipulatives Yes/Yes/Yes

Juan et al. [212] The paper presents two augmented reality
interactive storytelling systems that use
tangible cubes. Children enjoyed playing
with the systems; the enjoyed system did
not matter if they were visualizing the
story in the HMD or in a typical monitor.

Storytelling Manipulatives Yes/Yes/Yes

Jansen et al. [213] The paper describes the design and
evaluation of an interactive computer
environment that envisions to contribute
to young children’s musical learning; an
embodied pedagogical agent (Panze) was
used.

Art Manipulatives Yes/Yes/Yes

Verhaegh et al. [95] The paper presents a study of the ease-
of-use of a tangible interface for an
educational game and of a personal
computer based version of the same game.

Problem solving Manipulatives No/No/Yes

Terrenghi et al. [93] The paper presents a learning appliance
(Learning Cube), a digitally augmented
physical cube and explores the physical
affordances of the cube.

Literacy Manipulatives Yes/Yes/Yes
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Scarlatos [214] The paper discusses pedagogical prin-
ciples and an approach to designing
and developing games that utilize tangi-
ble technologies. A library of functions,
designed specifically for tracking visual
tags in math games, is presented.

Mathematics Manipulatives Yes/Yes/No

Fernaeus and
Tholander [215]

The study explores how tactile and hap-
tic properties of tangible artefacts allow
for richer interactive experiences with the
tools, thereby providing increased possi-
bilities for reflection and understanding.

Programming Manipulatives Yes/Yes/Yes

Kikin-Gil, [216] This paper presents the design of the Light-
Wall, a tangible user interface aimed at
teaching children the core principles of
systems thinking. The research presents
the design problem, process and solution.

Science Manipulatives Yes/Yes/No

Ucelli et al. [217] The study introduces a digital 3D ver-
sion of the children’s cardboard pop-up
and movable book that explains basic con-
cepts of the theory of colours (Book of
Colours). It focuses on how use of aug-
mented reality based interfaces can bring
to improve existing learning methods.

Art Manipulatives Yes/Yes/Yes

McNerney [89] The paper discusses the development of
the Tangible Programming Bricks system,
a platform for creating micro worlds
for children to explore computation and
scientific thinking.

Programming Manipulatives Yes/Yes/Yes

Weevers et al. [110] The research focuses an interactive game
with a multi-modal tangible interface
(Read-It) that was designed to combine
the advantages of current physical games
and computer exercises.

Literacy Tabletop Yes/Yes/Yes

Luckin et al. [218] The paper describes the empirical work
completed by the CACHET (Computers
and Children’s Electronic Toys) project
investigating young children’s use of
interactive toy technology. The non-
screen-based tactile toys engendered pairs
and larger groups of children in social
interactions and collaboration between
peers.

Collaboration Manipulatives Yes/Yes/Yes

Price et al. [29] The paper presents an adventure game,
where pairs of children have to discover
as much as they can about a virtual
imaginary creature called the Snark,
through collaboratively interacting with a
suite of tangibles.

Collaboration Manipulatives Yes/Yes/Yes

Silva et al. [219] The paper focuses on how to bring
interactivity to a virtual storyteller by
allowing users to influence the story. The
storyteller is a synthetic 3D granddad that
uses voice, gestures and facial expressions
to convey the story content to be told.

Storytelling Manipulatives No/No/Yes
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Scarlatos [220] The study addresses Tangible Interfaces
for Collaborative Learning Environments
(TICLE) and explores new ways that mul-
timedia can enhance education without
becoming the focus of the educational
experience.

Problem solving Manipulatives Yes/Yes/Yes

Wyeth and Wyeth [221] The paper describes the design, imple-
mentation and evaluation of Electronic
Blocks, blocks with electronic circuits
inside them. Preliminary studies have
found that children aged between four and
six are capable of using the blocks to
create robots and robot’s actions.

Programming Manipulatives Yes/Yes/Yes

Cassell and Ryokai [222] The paper introduces StoryMat, a system
that supports and listens to children’s
voices in their own storytelling play.
The paper addresses the importance of
supporting children’s fantasy play and
suggests a new way for technology to play
an integral part in that activity.

Storytelling Manipulatives Yes/Yes/Yes
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Abstract: In order to detect the vehicle presence in parking slots, different approaches have been
utilized, which range from image recognition to sensing via detection nodes. The last one is
usually based on getting the presence data from one or more sensors (commonly magnetic or
IR-based), controlled and processed by a micro-controller that sends the data through radio interface.
Consequently, given nodes have multiple components, adequate software is required for its control
and state-machine to communicate its status to the receiver. This paper presents an alternative,
cost-effective beacon-based mechanism for sensing the vehicle presence. It is based on the well-known
effect that, once the metallic obstacle (i.e., vehicle) is on top of the sensing node, the signal strength will
be attenuated, while the same shall be recognized at the receiver side. Therefore, the signal strength
change conveys the information regarding the presence. Algorithms processing signal strength
change at the receiver side to estimate the presence are required due to the stochastic nature of signal
strength parameters. In order to prove the concept, experimental setup based on LoRa-based parking
sensors was used to gather occupancy/signal strength data. In order to extract the information of
presence, the Hidden Markov Model (HMM) was employed with accuracy of up to 96%, while the
Neural Network (NN) approach reaches an accuracy of up to 97%. The given approach reduces the
costs of the sensor production by at least 50%.

Keywords: parking occupancy; RSSI; SNR; LoRa; Hidden Markov Model; Deep Learning;
Neural Networks

1. Introduction

Intense technological development currently is reshaping many areas of everyday life and impacting
human behavior. The Internet of Things (IoT) vision of ubiquitous and pervasive connection of smart
things gives rise to a future environment that is composed out of physical and digital world. In this
environment, it is possible to receive information about or from the psychical world that was previously
not available to us and, moreover, interconnect it to exchange and use this information with the digital
world [1]. The IoT applications are being employed in diverse areas of industry, communication, wireless
sensor networks, data mining, assisted living, etc., giving rise to the concept of Smart City.

The Smart City is constituted out of gathered and processed information, covering a wide range
of entities, such as transportation, health, food, and education for the overall improvement of life
quality [2]. One of the most important topics addressed by the European Commission and most
nations in the world is the development of an urban city model that aimed at increasing the quality
of life of people working and living in them. Smart and Sustainable Mobility is one of the central
concepts in the vision of the Smart City, where IoT plays an important role [3,4]. In urban city areas,
due to the rise of cars, existing parking systems are inadequate or unable to handle parking loads [5].
Moreover, parking facilities are not accessible in a adequate manner, since it is estimated that drivers
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spend around 7.8 min. in finding free parking lots [6]. Studies have shown that, in traffic dens
environments in urban areas, 30–50% of drivers are in search of free parking [7]. In addition, the IBM
survey (IBM Survey. Available online: https://www-03.ibm.com/press/us/en/pressrelease/35515.
wss (accessed on 20 November 2020)) reported that due to traffic in metropolitan cities such as Beijing
or Madrid drivers spend, on average, 30 to 40 min. searching a free parking space. The increase of
fuel consumption and air pollution is one of the major issues that arise from this [8]. Furthermore,
the consequences of traffic jams are the frustration of drivers and higher probability of accidents [7].
Finally, traffic congestion leads to cost-effective losses, since, in a city of 50,000 inhabitants, having, on
average, 250 parking lots, generates an annual cost of 216,000 US dollars [9].

In the last decade, the development of dynamic and complex IoT system and number of connected
devices keeps increasing exponentially as well as the data that were collected by these devices that
need to be properly analyzed [10]. Effective analysis of big data can extract meaningful information
and correlation amongst vast quantities of data that are generated by sensor devices, which are
a key factor in the success in many domains and, especially, in the Smart City applications [11].
Therefore, IoT devices need to be able to manage data collection, Machine-to-Machine (M2M)
communication, pre-processing of the data if needed , whilst compensating among cost, processing
power, and energy consumption [12].

Along with great advancements in technology, including the availability of cheap and massive
computing, hardware and storage arose Machine Learning (ML) holding a vast potential for data
analysis, and precise predictions made from the past observations for given new measurements [13].
Machine learning is the most prominent artificial intelligence (AI) algorithm, which has been utilized
in various fields from computer vision, computer graphics, natural language processing (NLP) to
speech recognition, decision-making, and intelligent control [14], as well as in intrusion detection
systems [15]. Within IoT devices, the application of ML can enable users to gain deeper insight into
data correlations and mine the information and features that are hidden within this data [16]. With that
regard, IoT applications that use sensor technology, RFID technology, network communication,
data mining and machine learning could prove to be quite efficient in solving the previously presented
problem of free parking space [17].

Deep Learning methods, such as deep long short term memory network (LSTM), have been
recently applied for the prediction of available free parking space [18]. A recent review of literature
presented in [19] pointed to several open issues and challenges with regards to the design of Smart
Parking spaces, emphasizing the utilization of car parking with emerging technologies, such as
Deep Learning. A commonly and widely used model for sequential or time series data in ML and
statistics is the Hidden Markov Model (HMM) [20]. HMMs are based on the concept of Markov Chain,
and they can represent any random sequential process that undergoes transitions from one state to
another [21]. In the last two decades, HMM has been used in various areas as a data-driven modeling
approach in automatic speech recognition, pattern recognition, signal processing, telecommunication,
bioinformatics, etc. [22]. Recent works of researches incorporated Markov models for parking space
occupancy predictions. For instance, in [23], the authors propose a model-based framework in order to
predict future occupancy from historical occupancy data. The foundation of this predictive framework
is continuous-time Markov queuing model, which is employed to describe the stochastic occupancy
change of a parking facility. The model was evaluated while using a mean absolute relative error
(MARE), ranging from 5.23% to 1.86% for different case studies. Furthermore, in [24], an agent-based
service combined with a learning and prediction system that uses a time varying Markov chain to
predict parking availability is proposed. Agents predict the parking availability in a given parking
garage and communicate with other agents in order to produce a cumulative prediction achieving
prediction accuracy of about 83%.

In recent years, the field of Deep Learning has become rather prominent, and the concept
of artificial Neural Networks (NN), which are inspired by brain nervous system, has gained
significant interest amongst researches [25]. Neural Networks have the capacity to learn hierarchical



Electronics 2020, 9, 2207 3 of 28

representations and are well suited for machine perception tasks, where the crude underlying
features cannot be individually interpreted [26]. This makes them a powerful ML tool that achieves
state-of-the-art results in a wide range of supervised and unsupervised machine learning tasks.
Neural Networks have been efficiently implemented in a variety of fields like patter recognition, signal
processing and control of complex nonlinear systems [25]. Moreover, NNs have also been applied in
prediction of future occupancy status such as in [27,28]. Using the data regarding the duration of free
parking space and occupancy status, the researches in [27] have developed a short-term and long term
parking availability prediction system based on Neural Network. They have concluded that NNs can
adequately capture the temporal transformations of parking status providing accurate prediction of
occupancy up to half an hour ahead. More recently, in [28], the authors use a Deep Learning Neural
Network for parking lot occupancy status classification that is based on a images of parking spaces,
giving 93% correct classification rate for a particular data set.

Existing Smart Parking solutions for detecting occupancy include the usage of adequate sensing
technologies and transmission to a centralized system for further processing (using appropriate radio
technology, such as LoRa, NB-IoT, Sigfox, BLE5, etc.). Such devices use detection techniques that are
based on sensors, such as light, magnetometer, infrared detector, distance sensors, or a combination
of sensing technologies [29–32]. Moreover, the researchers in [33] point out that the employment of
a purposeful Smart Parking solution must take into account people with special needs and enable
parking for disabled. Therefore, they have utilized RFID and database authentication for the use of
ultrasonic sensors, LED, and cloud technology method for better and improved disabled parking
management. However, these solutions are rather power hungry, due to the consumption of a
large number of sensors, microcontrollers (MCUs), and radio communication peripherals, which
impact the lifetime of an otherwise battery-powered device. Consequently, the existence of sensing
technologies in Smart Parking sensor devices often requires from manufacturer the implementation
of circuitry that requires, from MCU, a state-machine capable methodology, adequate software
for sensor activation and sensor readings, and decision making about, and radio communication
upon, parking status changes. In addition, such devices are usually implemented with the capability
to receive communication over the radio from centralized systems/gateways for making updates
(e.g., duty cycle period, time synchronization), but also perform online firmware updates. Taking into
account additional requirements from the end user to calibrate sensors prior installing them, there is a
need for an alternative solution that would be easier to implement. The research that is presented in
this paper proposes a hardware sensing solution through software that uses signal strength information
to achieve cost savings. A novel software approach would employ appropriate ML algorithms to gain
a high level of occupancy status detection, thus achieving cost saving by reducing the price of the
sensing device. The idea of such a solution has found its basis in some recent research that observed
a scenario in which the signal strength at the receiver side is significantly reduced [6,34] when a
vehicle occupies a parking lot. Emerging techniques, like Machine Learning and intelligent sensing
in car parks, might be able to efficiently reduce the parking search time and improve mobility [19].
Similarly, it has been observed that the measurement of the received signal strength from the LoRa
radio module could serve as a humidity indicator for the purpose of soil moisture detection [35,36].
In the parking environment, when something changes, such as when the car goes over the sensor
device covering the parking lot, signal strength at the receiver side will change. This indicates that the
signal strength change also holds information about the vehicle presence. Using the above principle in
which the vehicle presence can cause a drop in signal power at the receiver side from a LoRa-based
device, this paper introduces a novel system for the cost-effective and low-power detection of parking
slot occupancy. Because signal strength change and parking occupancy present highly correlated
processes, it is reasonable to use machine learning techniques, such as Hidden Markov Model and
Neural Networks, for detecting/estimating occupancy from signal strength change with a low error
rate. This way, the hardware problem of sensing occupancy is solved through software while using
HMM and NN, where a high estimation detection result is achieved, which, at the end, will result in
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reducing the overall price of the sensing device. Consequently, the device will become a simple beacon
device (without any sensor), where occupancy is detected with a significant change in signal strength.
Moreover, the proposed solution could also serve as additional sensor to already existing parking lot
detection techniques in order to improve parking lot occupancy monitoring, without any hardware
changes to existing sensing techniques. Using techniques that are based on the Hidden Markov Model,
it is possible to estimate parking space occupancy based on signal strength with an accuracy of up to
96%. When introducing machine learning techniques that are based on Neural Networks, parking lot
occupancy can be correctly estimated with an accuracy of up to 97%.

2. State of the Art

Smart Parking solutions vary with regards to sensing technologies and methods that are used
for parking space occupancy prediction and classification. When regarding the architecture of these
solution it can be noticed that it is generally constituted out of three distinguishing components: type of
sensors, network protocols, and software solutions [37]. In [38], the authors designed a prototype of a
parking occupancy monitoring and visualization system that uses an ultrasonic sensor being controlled
by an Arduino Uno which uses a Wireless XBee shield and an XBee Series 2 module for communication.
The data collected from the sensor is then given as an input to a algorithm that detects parking space
statues and reports to a database in a real-time basis. Moreover, in [39], the authors presented a novel
system for detecting the cruising behavior in vehicle journeys and developed a real-time parking
information system. The system uses GPS sensors as an application that sends the user’s location and
allows for the system to create a heat map with the acquired information showing free and unavailable
parking lots. The proposed method relies on the principle of detecting a significant local minimum in
the GPS trace with respect to the distance from the destination. In addition to GPS data, other sensing
data from the driver’s smartphone, such as accelerometer, gyroscope, and magnetometer, were also
collected. Classification using Decision Trees (DT), Support Vector Machines (SVM) and k-Nearest
Neighbors (k-NN) is used to detect cruising behavior. The system then automatically annotates parking
availability on road segments based on the classified data and displays this information as a heat-map
of parking availability information on the user’s smartphone. Using this approach, the researches
were able to detect cruising on average 81% of the time. In [40], the authors used a light detection
and ranging optical sensor (LIDAR) in order to measure the distance between a car and an object
next to it. They have combined this sensor with a GPS receiver to determine the speed of a vehicle
in a particular pair of geographic coordinates and a web camera to track tests. The information
were then sent to a Raspberry Pi connected to the cloud via LTE-IEEE 802.11p protocol for further
data processing and analyses. Parking situations were estimated by applying machine learning.
Research that was conducted in [41] uses video camera sensors for detecting multiple parking space
occupancy. Using image processing techniques: the Histogram of oriented Gradient (HOG) descriptor,
the Scale-invariant feature transform (SIFT) corner detector, and Metrics on Color Spaces YUV, HSV,
and YCrCb authors achieved an accuracy rate of over 93% for parking lot occupancy detection.

In the last decade, a number of solutions aiming at predicting the occupancy in the future have
emerged with the goal of simplifying the search of free parking spaces. These solutions are based
on Machine Learning techniques that involve learning, predicting, and the exploiting of cloud based
architectures for data storage [42]. Generally, data regarding occupancy are the history of occupancy
for a parking lot, containing date-time information with a specific occupancy status. For instance,
in the work [43], while using ML, the authors present two smart car parking scenarios based on
real-time car parking information that has been collected from sensors in the City of San Francisco,
USA, and the City of Melbourne, Australia. The historic data contained features, like area name,
street name, side of street, street marker, arrival time, departure time, duration of parking events
(in seconds), sign, in violation, street ID, and device ID. From these data, the occupancy rate was
calculated. The evaluation revealed that the Regression Tree, when compared to NN and SVR, using a
feature set that includes the history of the occupancy rates along with the time and the day of the week
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performed best for prediction of a free parking space on both the data sets. Moreover, in research [42],
the authors applied a Recurrent Neural Network (RNN)-based approach for the prediction of the
number of free parking spaces. They have used parking data of Birmingham, U.K., which contained
the parking occupancy rate for each parking area given the time and date. They achieved the median
of mean absolute error of 0.077 for prediction of occupancy. The results show that the approach
used is accurate to the point of being useful for being utilized in Smart Parking solutions. In [44],
the authors discuss the problem of predicting the number of available parking spaces in a parking lot
by regarding the vehicle’s arrival as a Poisson distribution process. They model the parking lot as a
continuous-time Markov chain. With the predicted occupancy status, each parking lot can provide
availability information to the drivers via vehicular networks. The work presented in [45] investigates
the changing characteristics of short-term available parking spaces. The availability data were collected
from parking in several off-street parking garages in Newcastle. This forecasting model is based on
the Wavelet Neural Network (WNN) method and it is compared with the largest Lyapunov exponents
(LEs) method in the aspects of accuracy, efficiency, and robustness. They conclude that WNN gives a
more accurate short-term forecasting prediction with a average mean square error (MSE) is 6.4 ± 3.1.
More recently, the authors in [18] presented a framework that is based on LSTM in order to predict the
availability of parking space with the integration of Internet of Things (IoT). They have also used the
previously mentioned Birmingham parking sensors data set for performance evaluation of free parking
space prediction that is based on location, days of a week, and working hours of a day. The authors
show that, from all performance measurement parameters, the minimum prediction accuracy is 93.2%
(RMSE) and maximum prediction accuracy is 99.8% (MSLE). They present the experimental results that
show that their proposed model outperforms the state-of-the-art prediction models. Finally, they point
to some limitations of the study regarding the decision support system: it predicts the availability of
parking lots only considering the parking occupancy information.

Table 1 gives a short comparison of identified researches regarding the technological architecture
of these existing Smart Parking solutions and the concept that is presented in this paper.

Table 1. Comparison table of various sensing technologies and it applications in Smart Parking.

Paper Sensing Device
(Network Protocol) Data Type Application ML Model Detection Rate

J. Xiao et al. [23] / occupancy history parking traffic Markov M/M/C/C
model MARE 1.486%

Tilahun and Di Marzo
Serugendo [24] / occupancy history parking availability

prediction
agent-based service

(Markov chain)
83% prediction

accuracy

Vlahogianni et al. [27] ferromagnetic parking
sensor (802.15.4 protocol) occupancy history parking occupancy

prediction NN 0.004 MAE

Farag et al. [28] camera parking spaces
images

parking occupancy
classification NN 93% classification

rate

Grodi et al. [38] ultrasonic sensor (XBee
Series) occupancy history parking occupancy

detection none none

Jones et al. [39] GPS sensors location data detection of cruising
behaviour DT, SVM, k-NN 81% detection

accuracy

Hiesmair et al. [40] LIDAR(LTE-IEEE
802.11p), GPS distance, speed estimation of parking

situation NN, DT, k-NN, SVM 95% accuracy

Tatulea et al. [41] video camera sensor images parking occupancy none 93% accuracy

Camero et al. [42] / parking occupancy
rate history

prediction of
occupancy rate RNN MAE of 0.077

Zheng et al. [43] / history of
observations

parking occupancy
rate

Regression Tree, NN,
SVR

Mean MAE
0.019–0.079

Ji et al. [45] / availability data over
time

prediction of
occupancy WNN MSE 6.4 ± 3.1

Ali et al. [18] /(LoRaWAN) occupancy history prediction of
occupancy LSTM 93.2–99.8%

This paper Libelium parking(LoRa) Signal Strenght occupancy
classification HMM,NN 97% accuracy
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The majority of papers focused their research in obtaining parking occupancy or availability
prediction using the history of occupancy for a specific parking lot, containing date-time information
with a specific occupancy status, as can be observed from the above presented table. Some researches
do not employ a specific sensing device, but rather use public data sets that are provided [18,23,42,43]
concentrating the goal of their study in finding the most appropriate Machine Learning technique
for prediction or classification of a free parking space. They do not discuss or propose an overall
technological architecture of their solution, but rather present a ML model based framework that can
be employed in future systems. Moreover, it can be noticed that the majority of research used Neural
Networks as a ML technique for the prediction or classification of free parking for a variety of data type.
This is due to their ability to learn from complex, large scale structure and unclear information, which
provides a high performance result, as shown in researches [18,27,28,40,45]. These researches point out
that Neural Networks show high levels of accuracy in the prediction and classification of free parking
space out performing other ML algorithms. The work presented in our paper gives a rather unique
version of sensing the occupancy status, since it is based on the idea of eliminating the costly and
energy hungry device with a beacon that will only send the data about the Received Signal Strength at
a certain time. This distinguishes our work from the identified research in this filed in terms of used
radio technology (LoRa) as well as the data type used for building the ML model. With that goal, it was
decided to examine HMM and NN as ML approaches for classification of free parking. As previously
elaborated, NN were selected, due to their dominant performance. Moreover, the Hidden Markov
Model was employed due to its flexible mathematical structure, which makes a firm mathematical
basis for modeling [46]. What is more, they are easy to implement (for instance, the Viterbi algorithm
can be directly implemented as a computer algorithm) and they explicitly model the actual distribution
of classes in classification problems, such as classifying a free parking space. With regards to radio
technology, research of literature in [37] has shown that only 5% of researches up to date have
employed LoRa for their Smart Parking Solution and, among these, none have used ML models for
estimation or prediction. Although LoRa targets a wide range of applications, it has not yet been
employed in a considerable amount in Smart Parking solutions [29]. The long range nature of LoRa
technology allows for devices to communicate over larger distances (as far as 10 km) in comparison
to XBee Series 2 and 802.15.4 radio technology presented in researches [27,38,40]. Hence, a single
gateway device could simultaneously collect signal strength measurements data from multiple beacons
scattered over a large parking lot, and classify parking status in real-time while using related Machine
Learning techniques, thus enabling energy and cost savings.

3. LoRa-Based Smart Parking Sensor Device

In this paper LoRa radio technology was employed for transmitting information regardinf parking
lot occupancy. As a a representative of a Low-Power Wide Area Networks (LPWANs), LoRa allows
for battery-enabled devices such sensors to communicate low throughput data over long distances.
As such, they are suitable for Smart Parking sensors deployed over a parking lot, since the information
about parking status change can be transmitted to base stations (gateways) that are placed hundreds
of meters from the parking lot. This enables a single gateway to potentially cover large parking area.

Figure 1 depicts the architecture of implemented LoRaWAN parking mechanism. The core
of a Smart Parking sensor device is a commercial LoRaWAN-based Smart Parking sensor device
from Libelium that comprises radar and magnetometer sensor for parking lot occupancy detection.
These nodes are equipped with waterproof enclosure and they are fully powered with built-in
lithium-thionyl chloride (Li-SOCl2) batteries with an overall capacity of 10.4 Ah that allows
autonomous operation for a couple of years (Libelium: https://www.libelium.com/iot-products/
smart-parking/ (accessed on 20 November 2020)). Five Libelium parking sensor devices were placed
at the surface of faculty parking lot. In the implementation of Libelium LoRaWAN parking sensor,
the device periodically wakes up (every 60 s) and activates internal sensor devices (such as radar,
magnetometer) for checking the change in parking status. If parking lot status changes (from free goes
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to occupied or from occupied to free), the sensor device transmits the message over a radio while
using LoRaWAN protocol to the gateway. In addition, Libelium parking devices employ keep-alive
message transmissions, where the parking status is periodically sent if parking lot status does not
change, for example, during nighttime hours.

As a LoRaWAN provider, The Things Network (TTN) was selected for its simplicity and good
documentation. Furthermore, TTN forwards all of the messages from Libelium Smart Parking sensor
to our personal server comprising Node-RED, InfluxDB, and Grafana services for visualization and
further processing, as shown in Figure 1. Three TTN gateways were placed within a close vicinity
of parking sensor devices, as shown in Figure 2 (left). Once the message arrives to the gateway
(the base station), it is forwarded to the TTN Network and Application server, where the message
payload is decoded and prepared for further processing and forwarding while using MQTT protocol
or HTTP integration. In a given implementation, Node-RED was used for message aggregation from
TTN. Afterwards, Node-RED parses and prepares the message for storage in the InfluxDB database.
One entry into the database stores information regarding parking lot occupancy, timestamp entry
(InfluxDB is a time series database), signal strenght measurements on every gateway device (RSSI and
SNR), and sensor ID. Figure 2 (right) shows a snapshot of parking lot occupancy along with RSSI
measurement captured on three LoRaWAN gateways. As can be seen, when vehicle occupies a parking
lot, a drop in RSSI values is detected at all gateways, which could serve as indicator of occupancy.

LoRaWAN
base station

Libelium Smart Parking Sensor Network and
Application server

Figure 1. Network architecture of Libelium Smart Parking sensors.
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Figure 2. (left) Three LoRaWAN Gateways in the close vicinity of Libelium slart parking sensors,
(right) Received Signal Strength Indicator (RSSI) captured on three LoRaWAN gateways from one
Libelium Parking sensor device.

Consumption of Libelium Smart Parking Sensor Device

Figure 3 shows the consumption of Libelium smart parking sensor device that utilizes LoRaWAN
radio technology for occupancy transmission detection. To capture detailed measurements of current
consumption, node was connected to the ooscilloscope via Current Ranger. As can be seen, device first
utilizes LoRaWAN OTAA authentication protocol for establishing Network and Application session
keys, which is followed by sending two Start frames and Info frame, as specified by the Libelium
documentation. During active period, in which node sends occupancy status update, MCU with
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sensors and radio pheripheral (radar and magnetometer) are powered on, where the overall average
consumption will slightly be above 100 mA. In contrast, during inactive period, where MCU with radio
pheripheral and sensors is in inactive mode, overall consumption falls to 12 µA (Figure 4). The duty
cycle (sleep period) of node is 60 s. After waking up, MCU powers the sensors and checks whether
parking status occupancy changed from previous measurement. If parking lot occupancy has changed,
MCU wakes up radio for sending status update. Otherwise, a node will enter into sleep mode.

Libelium parking sensor devices are equipped with lithium-thionyl chloride (Li-SOCl2) batteries
that have an overall capacity of 10.4 Ah. Assuming consumption in sleep period is 0.012 mA,
where device consumption in active period, on average, is 100 mA, along with one LoRaWAN message
sent every 60 min and 6 s of wake-up duration, the device lifetime will be 2061.8 days, or 5.65 years.
In this calculation, it is assumed that the capacity is automatically derated by 15% from 10.4 Ah in
order to account for some self discharge.
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Figure 3. (left) Libelium Smart Parking sensor consumption during the initial OTAA connection
to the gateway. (right) Libelium Smart Parking sensor consumption between two microcontroller
wakeup periods.

Figure 4. The consumption of Libelium Smart Parking sensor with Current Raider in sleep mode.

4. Beacon-Based LoRaWAN Parking Sensor Device

In a concept of a cost effective smart parking occupancy detection device, Machine Learning
techniques are employed for estimating occupancy from a beacon device. Such a novel solution will
not require any sensor or sensor readings from devices, such as magnetometer and radar employed in
Libelium smart parking sensor device. This beacon device would be comprised out of a simple MCU
with LoRa radio module, as depicted in Figure 5. In order to minimize energy consumption during
inactive period and periodically wake-up MCU from deep sleep, a TPL5110 Nano Timer could be
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employed. During deep sleep, TPL5110 would cut off power from both the MCU and LoRa module,
thus minimizing the overall consumption.
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Figure 5. Scheme of LoRaWAN parking beacon device.

It is necessary to select MCU that supports the library for LoRaWAN message communication.
Besides ATmega328P, which is standard MCU for Arduino Uno and Arduino Mini Pro, MCUs that
employ libraries for LoRaWAN-based connection are also ATtiny 84, ATtiny 85 and STM32. Table 2
gives consumption comparison of MCUs during active period. Clearly, for the purposes of creating
a simple beacon device, besides ATmega328P, which is found on Arduino Pri Mini, ATtiny 84 or
ATtiny 85 could also be used, since their consumption is around 3mA in active state. During inactive
state, the TPL5110 Nano Timer is selected, since its consumption is below 1 µA. Table 3 depicts the
energy consumption of every component that builds the Beacon Device. Because the beacon device
does not hold any sensor, the active period basically comprises of waking up MCU and LoRa radio
module, and sending LoRaWAN message, which can be reduced to approximately 5.5 s. In an active
period, the average consumption is 25 mA, which includes 116 mA of consumption during LoRaWAN
communication during a smaller portion of time, and 3 mA of MCU consumption during active period.
Note that LoRa communication only occupies small portion of active period. During deep sleep period,
device consumption could be around 4 µA, which includes TPL5110 timer and low power voltage
regulator. Assuming a duty cycle of 10 min., with a battery capacity of 10.4 Ah and 15% self discharge,
the battery lifetime should be approximately 4.33 years.

Table 4 shows price of the proposed beacon device, and its components used in its development.
As an alternative to TPL5150 timer, DS3231 low-power and low-cost RTC clock could be used in order
to periodically wake-up Arduino from deep sleep which can lower the consumption of the complete
beacon to below 1 µA. The DS3231 can be found for a price of around 1 USD. Microcontroller that
supports LoRaWAN library is ATMega328P, whereas its representative, Pro Mini, can be found in a
price range of around 1.5 USD. In order to convey information over the radio, RFM95 LoRa module
could be employed, with price of approximately 4.18 USD. Hence, the overall price of the module
goes below 7 USD. For comparison, the price of FMCW Radar sensor device that is typically found
in Libelium smart parking device is 14 USD, i.e., twice the price of the developed beacon device.
Taking the price of magnetometer as well as the MCU and timer into account, the overall price goes
well above the price of the proposed beacon device.
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Table 2. Comparison of microcontroller (MCU) consumption that support LoRaWAN communication.

MCU ATmega328P ATtiny 84 ATtiny 85 STM32F103C8T6 (STM32)

Consumption (3.3. V and 8MHz) 3.9 mA 3 mA 3 mA 8 mA

Table 3. Consumption of every element of the beacon prototype along with lifetime duration estimation.

LoRa RF96 IC 116.1 mA
Aduino mini pro (ATmega328p) 4 mA
LDO 0.00377 mA
Timer TPL5110 0.000310 mA
Active period duration 5.5 s
Average overall consumption in active period 25 mA
Average consumption in inactive period 4 µA

Lifetime duration (10.4 Ah battery) 1594 days

Table 4. Price of the overall beacon device.

Module Price (USD)

ATMega328P Pro Mini 1.57
RFM95 4.18
DS3231 1.02

Overall 6.77

5. Experimental Setup and Data Analysis

5.1. Experimental Setup

For the purpose of collecting parking occupancy detection, five Libelium Smart Parking sensor
devices were placed at the faculty parking lot next to each other (Figure 2 (left)). These parking sensor
devices are placed in the center of the parking lot at the surface. The devices are equipped with a
magnetometer and radar sensor devices, in such a way that, when the parking lot status changes
(when vehicle approaches or leaves the parking lot), the sensing technology detects change and
sends information over a radio channel. As a communication peripheral, Libelium devices employ
LoRa radio capabilities in order to convey information regarding changes in parking lot occupancy.
Besides sensing event driven packets, Libelium sensors also send keep-alive packets periodically every
two hours. Three LoRaWAN gateways were placed in the radio range of Libelium parking sensors in
order to collect data from Libelium devices. Two gateways were placed indoor within faculty facilities,
while the third gateway was placed outdoor on top of the faculty. Namely, the first gateway was
placed on the faculty first floor (4 m from the ground and around 30 m from the sensor), the second
gateway was placed at the faculty fifth floor (around 15 m from the ground and 75 m from the sensor),
while the third gateway was placed on the ninth floor of the faculty (around 30 m from the ground
and 145 m from the sensor), as can be depicted in Figure 2 (left). Installed gateways employ TTN
technology that allows for the collection of data from gateways and their storage into a designated
database. The data were stored into the InfluxDB database, as shown in Figure 1. The collected
data comprised information about parking lot occupancy status, Received Signal Strength Indicator
(RSSI) in dBm, Signal to Noise Ratio (SNR) for every gateway, Gateway ID, Sensor ID, as well as the
timestamp of the moment at which the data were received by TTN gateway. The data have been
collected from five different sensors and three different gateways in period from 13th of December
2019 until 6th of September 2020. During that period, 130,984 raw data were collected from all five
sensors. InfluxDB further allowed for the exportation of the collected data into csv. format for further
processing. Machine learning techniques were employed on the collected data while using dedicated
computing machine for performing such a task. Namely, Intel core i5-7300HQ@2.50GHz processor
with 8GB of RAM and NVIDIA GTX1050 GPU running 64 bit Windows 10 operating system has
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been used. NVIDIA CUDA Deep Neural Network library (cuDNN) was employed to utilize the
performances of fast computing using GPU. The Keras 2.3.1. Python library was used running on top
of a source build of Tensorflow 2.2.0 with CUDA support.me for different batch sizes.

5.2. Data Analysis

Because all of the gateways did not receive the same amount of data and, moreover, not in the
same timestamp, it was decided to extract relevant data for each sensor and each of the three different
gateways separately for the analysis.

In accordance with the goal of detecting how Occupancy Status is related with Received
Signal Strength Indicator and Signal to Noise Ratio, it was proceeded with a plotting of the
histograms presented in Figure 6 in order to gain a general illustration of the relationship between the
aforementioned variables.
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Figure 6. Histograms of RSSI and SNR values changes for different parking status and sensors from
GW1, GW2 and GW3, respectively.

Firstly, it was noticed that parking lots are free considerably more than they are occupied. This is
an important property of the parking place indicating its stochastic behavior. The parking is located
on University grounds and, therefore, is usually free during night time or over the weekend periods.
Secondly, the histograms depict that the RSSI values for free and RSSI values for occupied parking
status overlap in Gateway 1 (GW1) and Gateway 2 (GW2). The same reasoning applies for SNR values
for all sensors in GW1 and GW2. However, result that were gained for Gateway 3 (GW3) and sensors 2,
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3, and 4 differ from above mentioned. The aforementioned sensors gave the least overlapping of RSSI
and SNR values for a particular occupancy state. It was also noticed that higher RSSI values indicate a
free parking space, while lower indicate the occupied one. The difference between the results gained
for different gateways could be a consequence of the distance of GW1 (30 m), GW2 (75 m), and GW3
(145 m) from the parking sensor. GW3 is furthest away and on top of the University building and
outdoor. This would imply that the closer the gateway, the channel influences RSSI and SNR stronger
than the change of the parking status.

Because of the overlapping of RSSI and SNR values in different occupancy states, it was important
to explore the change of RSSI and SNR values when the parking status does not change and when
it changes from one state to another. Further analyses showed that, when parking status does not
change, the values of RSSI and SNR change very little or not at all. However, when the parking status
does change, there is a significant change in the RSSI and SNR values. Figure 7 presents histograms
of changes of values for RSSI when parking space remains free and when parking space becomes
occupied prior to being free for sensor 2 from GW3.
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Figure 7. (left) Difference of RSSI values when the parking space remains free, (right) Difference of
RSSI values for change of state from occupied to free for sensor 2 from GW 3.

In light of the above reasoning, the conclusions were twofold: (1) RSSI, SNR, and occupancy
status are considerably correlated and (2) the adequate ML algorithm must be able to comprise the
complexity of the data correlations in order to provide an appropriate estimation of occupancy status.

6. Machine Learning as an Approach to Parking Occupancy Detection

In the IoT paradigm of numerous smart connected devices, Machine Learning has emerged as
an essential field of research and application aiming at providing computer programs the ability to
automatically improve through experience [47]. The most distinguished attribute of a learning machine
is that the trainer of learning machine is ignorant of the processes within it [48]. Machine learning
generally includes data processing, training, and testing phases with the aim of making the system able
to carry out decisions based on the input received from the training phase [13]. In order to archive the
learning process, systems use various algorithms and statistical models to analyze the data and gain
information about the correlation between the data features [12]. The algorithms that are used in these
processes can be divided into four distinctive groups, as Supervised, Unsupervised, Semi-supervised,
and Reinforcement learning algorithms:

• Supervised learning algorithms demand external monitoring by a supervisor with the goal of
learning how to map input values to the output values where the accurate values are given by a
supervisor [49].
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• Unsupervised learning algorithms make computers learn how to perform a specific task only
with the provided unlabeled data. These types of algorithms need to find existing relationships,
irregularities, similarities, and regularities in provided input data [50].

• Semi-supervised learning is a hybrid approach of the previous two categories that uses both
labeled data and unlabeled data. These algorithms generally act like the unsupervised learning
algorithms with the improvements that are brought from a portion of labeled data [51].

• Reinforcement learning algorithms operate with a restricted insight of the environment and with
limited feedback on the quality of the decisions. In order to operate effectively and provide
the most positive outcome, these algorithms have the ability to selectively ignore irrelevant
details [52].

ML has been ideally suited for various types of problems, such as as classification, clustering,
predictions, pattern recognition, etc. The most appropriate ML algorithm is chosen based on the
swiftness of the technique and its computational intensity, depending on the application type [12].

Nowadays, Deep Learning (DL) has become one of the leading Machine Learning techniques
efficient in solving complex problems that have otherwise been impossible to solve while using more
traditional ML approaches [13]. Deep Learning has been recognized as one of the ten breakthrough
technologies of 2013 and fastest-growing trend in big data analysis [53]. Deep Learning applications
have achieved remarkable accuracy and popularity in various fields, especially in image and audio
related domains [13]. Deep Learning (DL) techniques effectively give insights from the data,
comprehend the patterns from the data, and classify or predict the data [54]. Neural Networks
that involve more than two hidden layers have been considered to be a characterization of DL and
the word ’deep’ signifies the large number of hidden layers that compose the Neural Network [53].
Implementations of Deep Learning technology today is achieving a large success in a variety of
engineering and technical problems, including object detection, traffic engineering, traffic classification,
and prediction [23,55–57].

6.1. Hidden Markov Model

Hidden Markov Models (HMMs) have been known for decades and, today, are making a
large impact with regard to their applications, especially in form of Machine Learning models and
applications in reinforcement learning. They are widely being used for pattern recognition [58],
i.e., namely speech recognition [21] as well as in biological sequence analysis [59], gene sequence
modeling, activity recognition [60], and analyses of ECG signal [61,62]. Markov Chains and process
were first introduced by Markov in 1906 as a time-varying random phenomenon for which the Markov
properties are attained. Its practical importance is the use of the hypothesis that the Markov property
holds for a certain random process in order to build a stochastic model for that process [22].

In the broadest sense, a Hidden Markov Model (HMM) is a Markov process that can be divided
into two parts: an observable component and an unobservable or hidden component. The observation
is a probabilistic function of the state, i.e., the resulting model is a doubly embedded stochastic process,
which is not necessarily observable, but it can be observed through another set of stochastic processes
that produce the sequence of observations. A machine learning algorithm can apply Markov models
to decision making processes regarding the prediction of an outcome.

In 1986, Rabiner and Juang [63] gave the structure of the first order Hidden Markov Model,
denoted as λ (A, B, π), where A = {aij} is the matrix of transition probabilities, B = {bj(k)} is the
matrix of observation probability distribution in each state, and π is the initial state distribution.
Rabiner (1989) presented [64] three different types of problems in HMM: The Evaluation Problem,
Decoding problem and Learning. The first problem is commonly solved by using the Forward or
Backward algorithm, where as the last problem is, the most difficult of the three problems, usually
solved while using Baum–Welch method. With regards to the second problem, the central issue is
to find the optimal sequence of states to a given observation sequence and model used. The most
common method to this is by using the Viterbi algorithm, which was introduced by Andrew Viterbi in
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1967 as a decoding algorithm for convolution codes over noisy digital communication links. It is the
answer to the decoding problem resulting in the Viterbi path, since the algorithm can be interpreted as
a search in a graph whose nodes are formed by the states of the HMM in each of the time instant [22].
Let λ (A, B, π) be a HMM and O = (o1, o2, . . . , oT) given observations. The Viterbi algorithm finds the
single best state sequence q = (q1, q2, . . . , qT ) for the given model and observations. The probability of
observing o1, o2, . . . , ot using the best path that ends in state i at the time i given the model λ is:

δt(i) = max
q1,q2,...,qt−1

P(q1, q2, . . . , qt−i, qt = i, o2, o2, . . . , ot | λ) (1)

δt+1(i) can be found using induction as:

δt+1(i) = bj(ot+1) max
1≤i≤N

[δt(i)aij] (2)

In order to return the state sequence, the argument that maximizes Equation (2) for every t
and every j is stored in a array ψt(j) [63]. It is important to point out that the Viterbi algorithm can
be directly implemented as a computer algorithm. Moreover, the algorithm succeeds in splitting
up a global optimization problem, so that the optimum can be computed recursively: in each step,
we maximize over one variable only, rather than maximizing over all n variables simultaneously.

Hidden Markov Models have been used now for decades in signal-processing applications, such as
speech recognition, but the interest in models has been broaden to fields of all kind of recognition,
bioinformatics, finance etc. [65].

With regards to the first order Markov model, if the past and the present information of the
process is known, the statistical behavior of the future evolution of the process is determined by the
present state. Thus, the past and future are conditionally independent (the system has no memory) [66].
Therefore, it is reasonable to ask whether there can be a model that can gather and somewhat keep
information from the past. The answer lies within a higher-order Markov models, where the hidden
process is a higher order Markov chain and it is dependent on previous states. This gives memory to
the model and such a modeling is more appropriate for processes in which memory is evident and
important, for example, a stock market time series.

Model and Results

The collected and visualised data, as presented in Data analyses section, revealed the general
proprieties of our data, their correlation, and enabled us in designing the appropriate model for the
Machine Learning approach in reaching the desired goal. The aim is to determine the occupancy of a
parking space based solely on Received Signal Strength Indicator and Signal to Noise Ratio values.
Hidden Markov Model of second order, which is presented in the following, was designed and used
in order to classify the occupancy status of a parking space, while using RSSI and SNR values.

From previously presented and discussed histograms of RSSI and SNR values with regards to
occupancy status, it was concluded that, when parking status does not change, the values of RSSI
and SNR change very little or, in most cases, not at all. In contrast, when the parking status does
change, there is a significant change in RSSI and SNR values. Therefore, the variables “bring memory”
with them that is dependent of the previous state of occupancy. The process it self is of a time series
that can be designed and modeled using a second-order HMM. In this model, the Hidden States
are the aim of prediction, which is Occupancy status. In order to “bring memory” into our model,
the Observable (Visible) States are defined to be the changes of RSSI (the same reasoning and model
applies for SNR) values that are calculated as the difference between these values from two previous
states. The notation and model illustration are as follows:

• F—free, O—occupied.
• RSSIs—value of Received Signal Strength in occupancy state s in a timestamp.
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• 4RSSI = RSSIs − RSSIs+1. Difference between two values of RSSI in two consecutive
occupancy states.

• FF—state that is free which previous state was free.
• FO—state that is occupied after previously being free.
• OF—state that is free after being occupied
• OO—state that is occupied which previous state was occupied.

States FF, FO, OF, and OO bring with them “memory of occupancy”, since they remember what
was the occupancy status form the “past”. These states represent Hidden Layer of states. The Hidden
Markov Model model is denoted as λ (A, B, π), where:

• A is the transition matrix. It stores probabilities of transition from one state to another. The matrix
holds some zero values, due to the fact that some transitions are impossible. For instance,
you cannot transit from state FF into the state OO,

• π is the initial state distribution (stationary distribution) and it is calculated by solving the
matrix equation

π = π · A.

• B is the matrix containing the observation probability distribution in each state. In this model,
the observations are the changes of RSSI values in two consecutive occupancy states—4RSSI.

Figure 8 visualizes the architecture of our second order HMM.

FF FO

OF OO

RSSIT1 RSSIT2 RSSIT3 RSSITk...

ΔRSSI1 ΔRSSI2 ΔRSSIk-1

Observations (visible layer)

Hidden states
P1

P5

P9 P13

P3

P12

P6

P2

P8P10 P16

P15

P14

P4

P11

P7

Pk1 Pk2 Pk3 ... Pkn

...

Figure 8. Illustration of second-order Hidden Markov Model for detecting occupancy status based on
change of RSSI values.

As stated, because it was decided to extract the relevant data for each sensor and each of the three
different gateways separately, the implementation took all of these possibilities into account. The used
decoding algorithm for finding the optimal sequence of states to a given observation sequence and
model is previously defined Viterbi algorithm. All of the data were effectively used as an observation
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for a chosen step and given as input to the Viterbi algorithm. The chosen step determines the length
of observation sequence. For example, if the chosen step is 4, then the whole data set from selected
sensor and gateway is divided into subsets of sequences containing four consecutive values of a
chosen variable (RSSI or SNR). Every one of this sequences is then given as an observation input to the
Viterbi algorithm.

The classified and the true values are stored separately and the accuracy is calculated while using
accuracy score function. This function computes subset accuracy, which is the fraction of samples
classified correctly. The set of labels classified for a sample must exactly match the corresponding set
of labels of true values. Moreover, the model’s evaluation is done while using Mean Absolute Error
(MAE). The model was tested for all variables from all sensors and gateways, and the best results are
given in Table 5.

Table 5. Table of best results using the Hidden Markov Model (HMM) model obtained for each gateway.

Gateway Variable Accuracy MAE(Sensor Number) (Best Results)

GW1 RSSI (4) 87% 0.30
GW1 SNR (4) 87% 0.35
GW2 RSSI (3) 89% 0.27
GW2 SNR (3) 92% 0.20
GW3 RSSI (2) 93% 0.17
GW3 SNR (2) 96% 0.11

The least promising results were gained form the closest gateway GW1, as can be seen from the
table. On GW1, the second HMM model only reached 87% accuracy with a MAE of 0.30. This is
due to the previously explained overlapping in the RSSI (or SNR) values with regards to different
occupancy status. With regards to GW2, the best results are slightly better with regards to Accuracy
and MAE than GW1. This also is consistent with the reasoning of overlapping values for different
occupancy status.

Finally, the best results were obtained for the furthest GW3, giving 96% accuracy for observation
values of SNR from sensor 2 and senor 4 and MAE of 0.17 and 0.11, respectively. Figure 9 illustrates
the best result that is obtained while using the HMM model from sensors 2 from Gateway 3.
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Figure 9. Mean Absolute Error (MAE) and classification Accuracy for SNR values from sensors 2 from
Gateway 3.

Despite the results that were obtained while using the second order HMM, this approach has
limitations; the states must be drawn from a modestly sized discrete state space and each hidden state
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can depend only on the immediate previous state [26]. In order to model N bits of information about
the past history, HMM requires 2N hidden states [67], which makes it computationally impractical
for large data sets. HMM are generative classifiers which means that they explicitly model the actual
distribution of each class, in contrast to discriminative models, such as Neural Networks, which model
the decision boundary between the classes [68]. Discriminative models can provide robust solutions
for non-linear discrimination in high-dimensional spaces [69] and they have been shown to be quite
effective for applications in classification [70]. Therefore it reasonable to examine Neural Networks as
another approach that can encompass complex, high-dimensional, and noisy real-world data.

7. Neural Network Models

Neural Networks, or Artificial Neural Networks (ANN), have gained significant attention in the
last two decades as a Machine Learning technique in a variety of areas for prediction and classification
task [12]. Inspiration for their architecture was taken from the brain nervous system in a form of a
mathematical model that is designed to mimic the structure and functionalities of the real biological
Neural Networks [71]. They have been applied in many divers areas of scientific research, such as
pattern recognition [72], image classification [73], language processing [74], computer vision [75],
as well as time series forecasting [76].

Generally, the Neural Network consists out of three basic layers as shown in Figure 10, namely
the input layer, the hidden layers, and the output layer. The Neural Network can have more than one
hidden layer, which represents the depth of the Neural Network. The imitation of the brain learning
processes is done by searching the hidden links between a series of input data while using hidden
layers of neurons, where the output of a neuron of a layer becomes the input of a neuron of the next
layer. An artificial neuron yi can be defined as a function

yi = fi(x) = ϕ(〈wi, x〉+ bi), (3)

which acts on a linear combination of the input vector x = (x1, ..., xn) and a neuron bias bi [77].
The input vector is weighted with the connection weight vector wi = (w1,i, ..., wn,i) and the ϕ is called
activation function. The performance of the training process and estimation (or prediction) accuracy of
the NN is highly influenced by the weight initialization and activation function [78]. The activation
function will control the amplitude of the output of the neuron, keeping it in a usually acceptable
range of [0, 1] or [−1, 1] [79]. The activation functions are divided into linear and non-linear activation
function and non-linear ones are most commonly used. Some of most frequently applied non-linear
activation functions are Sigmoid, Rectified Linear Unit (ReLU), and Tanh function. Sigmoind function
can be defined as S(x) : R→ [0, 1]

S(x) =
1

1 + e−x .

The Sigmoid function is continuously differentiable, but it suffers from gradient vanishing [78],
which can significantly slow down the learning process. This problem has been resolved while using
the ReLU activation function.

ReLU function can be defined as φ : R→ R+

φ(x) =

{
λx, x > 0
βx, x ≤ 0

,

where commonly λ = 1 and β = 0. The derivative of the function will be quite simple, 1 for positive
values and 0 otherwise, as can be seen from the function’s definition. Therefore, the average derivative
is rarely close to 0, which allows gradient descent to keep progressing. Hence, ReLU has been mainly
used as an activation function for the neurons that are placed in hidden layers [78], while Sigmoid
has been used as a activation function for the neurons that are placed in the output layer. This paper
implements a Neural Network comprised out of two hidden layers (Figure 10). The input layer takes
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data, such as the sensor ID, RSSI, and SNR, of the LoRa packet sent from the sensor to the Gateway,
and ID of that gateway, along with the timestamp of the event when the packet was sent. The exit
layer predicts parking space occupancy (free or occupied).

Input layer 1st hidden layer
256 units, ReLU

2nd hidden layer
128 units, ReLU

Output layer
1 unit

Month

Day

Hour

Sensor ID

RSSI

SNR

Gateway ID

Figure 10. Architecture of Neural Network model for parking space occupancy classification.

As seen, the layers comprise artificial neurons, where every neuron has multiple weights and
some form of transfer or activation function. The Neural Network is a supervised learning algorithm,
in which the weight of the neurons is calculated during the training process. Because of the training
procedure, the input data to the network should cause the output as close to the ground truth. In order
to accomplish this, during the training procedure, which is an iterative procedure, a loss (cost) function
is used to determine the quality of the network with specific weights. For a binary classification
problem, such as parking lot occupancy, Binary Cross-Entropy Loss, as one of the commonly used loss
functions, and it has been utilized in this research.

In order to minimize loss function during the training phase in which the weight of
neurons is determined, a good deal of optimization algorithms have been implemented, many of
which are first-order iterative optimization algorithms. The algorithms used in this paper were
Stochastic Gradient Descent (SGD), Adaptive Moment Optimization (Adam), and Root Mean Square
Propagation (RMSProp).

7.1. Evaluation Metrics

The proposed Neural Network model has been evaluated while using different metrics to evaluate
different characteristics of the classifier. Namely, the metrics used were Accuracy, F1 score, Area under
the Receiver Operating Characteristic Curve Accuracy (ROC AUC) and Average Precision (AP).

• Accuracy—it is defined as the overall accuracy or proportion of correct predictions of the model
and it is given with the formula:

Accuracy =
TP + TN

TP + FP + TN + FN
, (4)

where TP and TN denote the number of positive and negative instances that are correctly
classified. FP and FN denote the number of misclassified negative and positive instances,
respectively.

• F1 score—F1 score is the harmonic mean of the Precision and Recall. Precision is defined as the
number of correct predictions out of all the predictions based on the positive class, whereas Recall
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is the number of instances of the positive class that were correctly predicted [13]. F1 score is
calculated while using formula:

F1 score = 2 · Precision · Recall
Precision + Recall

. (5)

The F1 score takes values from the [0, 1] interval, reaching minimum for TP = 0, that is, when all
the positive samples are misclassified, and the maximum for FN = FP = 0, which is for perfect
classification [80].

• ROC AUC—the Receiver Operator Characteristic (ROC) curve is an evaluation metric for binary
classification problems and it is a probability curve that is created by plotting the True Positive
Rate (TPR) versus the False Positive Rate (FPR) [13]. The Area Under the Curve (AUC) represents
a separability measure of classifiers, i.e., the ability of the classifier to distinguish between
classes [81]. The ideal classifier will have the unit area under the curve and a worst case classifier
will have FPR = 100% and TPR = 0 [13].

• Average Precision—it is the measure that considers both Recall and Precision and can be expressed
as a function p(r) of the recall and it is given with [82]:

Average Precision =

1∫

0

p(r)dr. (6)

7.2. Results and Discussion

Data used for building the NN model were previously described in Data Analysis section.
The pre-processing of data comprised of data normalization due the different value scales of variables
in the collected data. The inputs to the model were values of RSSI and SNR for a specific sensor
and gateway, whereas the target values were numeric values of parking lot occupancy (0—free,
1—occupied). Therefore, for each of the sensors, data from all three gateways were given as input.
There is a slight imbalance regarding the number of instances of each class, depending on the sensor
and gateway, as was observed in Data Analyses section. This does not represent a problem for (GW3),
since it gives the smallest overlapping of RSSI and SNR values for a particular occupancy state, and
good results can be obtained, regardless of class disproportion, if both groups are well represented and
their distributions do not entirely overlap [83]. Therefore, the data were first split into training and
test set while using stratification in order to preserve the distribution of classes in training and test set,
with the test set size being 10%. Moreover, the training set was further split into train and validation
set also using stratification, with the validation set size being 10%. Stratification will equalize the ratios
of the number of training and validation samples for each class and it is able to achieve lower biases
and small variances in estimated accuracies [84], providing consistent predictive performance scores.
This way, potential biases that could be caused by the some imbalance in the data set are minimized.

Different optimizers, namely, Adaptive Moment Optimization (Adam), Root Mean Square
Propagation (RMSprop), and Stochastic Gradient Descent (SGD), were tested, as well as other
hyper-parameters that are presented in Table 6.

Table 6. Selection of the hyper parameters for evaluation.

Hyper Parameter Values

Number of neurons Layer1—256, Layer2—128
Learning rate 0.001 , 0.01
Number of epochs 50, 100, 150
Batch size 64

The first experimental results of the Neural Network model exposed that Adam, as an optimizer,
has achieved the best performance results. This is reported for all sensors in Table 7. As can be noticed,
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the highest Accuracy and ROC AUC were again achieved for sensors 2 and sensor 4, namely 91% and
94% Accuracy, respectively, for 100 epochs, and a learning rate of 0.001 on the Test and Validation set.
These results seem to be rather consistent with the result that was obtained with the second order
HMM model.

Table 7. Results of first Neural Network model for Adaptive Moment Optimization (Adam) optimizer.

Sensor ID Learn. Rate Epochs
TRAINING VALIDATION TEST

Acc. F-Score AUC AP Acc. F-Score AUC AP Acc. F-Score AUC AP

1 0.001 50 0.885 0.471 0.896 0.638 0.883 0.503 0.925 0.750 0.869 0.448 0.892 0.647
1 0.001 100 0.885 0.546 0.904 0.662 0.889 0.551 0.891 0.634 0.897 0.570 0.908 0.679
1 0.01 50 0.879 0.395 0.898 0.635 0.869 0.412 0.899 0.646 0.874 0.394 0.892 0.626
1 0.01 100 0.883 0.512 0.893 0.633 0.880 0.522 0.908 0.674 0.879 0.538 0.907 0.651

2 0.001 50 0.911 0.576 0.934 0.749 0.921 0.608 0.931 0.745 0.914 0.573 0.938 0.749
2 0.001 100 0.915 0.592 0.935 0.754 0.911 0.590 0.936 0.765 0.915 0.587 0.942 0.766
2 0.01 50 0.912 0.546 0.935 0.753 0.913 0.527 0.934 0.742 0.905 0.512 0.929 0.742
2 0.01 100 0.911 0.547 0.931 0.745 0.917 0.585 0.937 0.771 0.914 0.566 0.932 0.734

3 0.001 50 0.912 0.601 0.933 0.744 0.908 0.621 0.940 0.781 0.911 0.568 0.928 0.720
3 0.001 100 0.913 0.560 0.916 0.714 0.913 0.560 0.901 0.718 0.906 0.519 0.906 0.711
3 0.01 50 0.911 0.540 0.911 0.708 0.906 0.487 0.902 0.675 0.919 0.575 0.911 0.716
3 0.01 100 0.911 0.525 0.912 0.702 0.912 0.557 0.918 0.743 0.919 0.571 0.902 0.717

4 0.001 50 0.937 0.749 0.952 0.833 0.940 0.756 0.956 0.847 0.937 0.750 0.945 0.835
4 0.001 100 0.935 0.729 0.953 0.838 0.943 0.758 0.959 0.858 0.936 0.701 0.957 0.838
4 0.01 50 0.936 0.745 0.954 0.840 0.937 0.733 0.943 0.802 0.935 0.738 0.946 0.819
4 0.01 100 0.935 0.729 0.956 0.836 0.933 0.708 0.956 0.823 0.941 0.762 0.959 0.856

5 0.001 50 0.852 0.306 0.807 0.555 0.862 0.343 0.829 0.585 0.845 0.311 0.816 0.566
5 0.001 50 0.852 0.312 0.814 0.566 0.854 0.324 0.817 0.560 0.859 0.352 0.817 0.575
5 0.01 50 0.853 0.291 0.805 0.551 0.837 0.312 0.792 0.581 0.856 0.294 0.803 0.543
5 0.01 50 0.852 0.436 0.808 0.551 0.849 0.447 0.805 0.574 0.848 0.449 0.823 0.580

The result of the Area Under the Curve point out that the Neural Network performs well as
a classifie,r with just RSSI and SNR values as an input. However, HMM achieved better Accuracy,
since it contained “memory” of previous occupancy. Consequently, it was decided to upgrade the
model with more input using the time variables, namely, hour, day and month. Therefore, for each
sensor hour, day and month for a specific occupancy was taken into the account. Time variables
can grasp effects such as seasonality and temporal dependence, giving a more in-depth display of
occupancy history. The data were again pre-processed in the previously described manner.

The second experimental results that were obtained are presented in Table 8. These were
accomplished for a learning rate of 0.001, 100 epochs and Adam optimizer. As can be noticed,
incorporating time data into the model resulted in better classification performance. Yet again, the
highest Accuracy and AUC was gained for sensor 2 and sensor 4. For sensor 2 and sensor Accuracy
and AUC on test set was 96% and 98% respectively, where as on the validation set Accuracy and AUC
was 95% and 98% for sensor 2 and 97% and 98% for senors 4. Moreover, it can be noticed that the
Accuracy and AUC have risen up for all other sensors when time data were included, consequently
justifying our reasoning for their incorporation. A high F1 score on test and validation set for all
sensors implies rather good precision and recall, and an overall high AUC indicates that the presented
Neural Network model is very good in distinguishing between classes. This is confirmed with high
Average Precision, which indicates that NN correctly handles positives.

Table 8. The results of second Neural Networks (NN) model for Adam optimizer, learning rate 0.001
and 100 epochs.

TRAINING VALIDATION TEST

Acc. F-Score AUC AP Acc. F-Score AUC AP Acc. F-Score AUC AP

Sensor 1 0.958 0.853 0.987 0.942 0.960 0.865 0.986 0.935 0.955 0.831 0.983 0.911
Sensor 2 0.971 0.888 0.993 0.962 0.954 0.814 0.980 0.905 0.962 0.857 0.989 0.942
Sensor 3 0.962 0.845 0.988 0.939 0.955 0.820 0.981 0.889 0.961 0.838 0.980 0.904
Sensor 4 0.972 0.896 0.993 0.963 0.970 0.883 0.989 0.947 0.969 0.882 0.989 0.954
Sensor 5 0.945 0.838 0.983 0.932 0.933 0.809 0.975 0.911 0.942 0.832 0.978 0.921
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In accordance with previously discussed results, a final model of Neural Network was designed
and tested. This model would give an overall parking lot classification. The model encompassed all of
the collected data, namely sensor ID, RSSI, and SNR values for all three gateways and time variables
of a specific occupancy status of a particular sensor, as can be seen in Table 9.

Table 9. Snapshot of a dataframe used for the model of Neural Network.

Time Sensor ID Month Day Hour GW ID RSSI [dBm] SNR Status

2019-12-13 14:52:00 5 12 13 14 1 −112.0 4.2 0
2019-12-13 14:52:00 5 12 13 14 2 −80.0 8.0 0
2019-12-13 14:53:00 5 12 13 14 1 −111.0 4.2 0
2019-12-13 14:53:00 5 12 13 14 2 −85.0 7.0 0
2019-12-13 14:55:00 3 12 13 14 1 −120.0 −5.2 1
... ... ... ... ... ... ... ... ...
2020-09-06 18:16:00 3 9 6 18 2 −90.0 6.2 1
2020-09-06 18:18:00 2 9 6 18 2 −95.0 9.8 0
2020-09-06 18:31:00 5 9 6 18 2 −80.0 8.8 0
2020-09-06 19:21:00 4 9 6 19 2 −81.0 8.5 0
2020-09-06 19:45:00 1 9 6 19 2 −91.0 7.8 0

The data were further pre-proccesd in a similar manner as in the first two versions of the model,
with one major difference. In the process of train, test, and validation split, it was important in order to
ensure that the amount of data from all sensors was equally distributed. Therefore, stratification was
done with regards to sensor ID. Different combinations of optimizers, learning rates, and epochs were
again tested and the results are presented in the Table 10.

Table 10. Result of different combinations of optimizers, learning rates and epochs for the final Neural
Network model.

Opt. Learn. Rate Epochs
TRAINING VALIDATION TEST

Acc. F-Score AUC AP Acc. F-Score AUC AP Acc. F-Score AUC AP

sgd 0.01 50 0.944 0.798 0.974 0.887 0.946 0.803 0.975 0.891 0.941 0.798 0.972 0.886
sgd 0.01 100 0.954 0.837 0.982 0.919 0.953 0.833 0.982 0.918 0.950 0.831 0.979 0.912
sgd 0.001 50 0.932 0.731 0.963 0.848 0.929 0.718 0.961 0.845 0.932 0.726 0.957 0.827
sgd 0.001 100 0.936 0.753 0.968 0.866 0.936 0.747 0.967 0.866 0.939 0.756 0.965 0.856
sgd 0.001 150 0.941 0.799 0.971 0.877 0.938 0.795 0.970 0.880 0.945 0.809 0.972 0.878

adam 0.01 50 0.952 0.836 0.982 0.918 0.949 0.826 0.980 0.911 0.945 0.813 0.977 0.901
adam 0.01 100 0.955 0.842 0.985 0.930 0.952 0.828 0.980 0.909 0.951 0.826 0.981 0.913
adam 0.001 50 0.956 0.834 0.985 0.931 0.949 0.809 0.981 0.916 0.949 0.812 0.981 0.915
adam 0.001 100 0.961 0.862 0.988 0.944 0.961 0.857 0.986 0.936 0.957 0.851 0.985 0.934
adam 0.001 150 0.964 0.868 0.990 0.954 0.956 0.841 0.983 0.930 0.955 0.838 0.981 0.923

rmsprop 0.01 50 0.939 0.772 0.964 0.856 0.937 0.766 0.959 0.846 0.934 0.764 0.962 0.854
rmsprop 0.01 100 0.940 0.775 0.964 0.861 0.939 0.776 0.965 0.865 0.943 0.787 0.970 0.875
rmsprop 0.001 50 0.946 0.809 0.972 0.887 0.945 0.808 0.971 0.888 0.942 0.789 0.966 0.882
rmsprop 0.001 100 0.950 0.816 0.974 0.900 0.949 0.818 0.974 0.897 0.950 0.814 0.972 0.886
rmsprop 0.001 150 0.948 0.802 0.973 0.894 0.945 0.787 0.971 0.888 0.943 0.788 0.970 0.883

Adam achieved best performance for a 0.001 learning rate and 100 epochs, which is consistent
with our previously obtained results. Specifically, this combination reached 96% and 95% Accuracay
on the validation and test set, respectively, and 96% AUC on both the validation and test set. Figure 11
visualizes the learning curves on the train and validation set and Accuracy plot with regards to
different optimizers for a learning rate of 0.001 and 100 epochs. It can be noticed that, for the Adam
optimizer, the Accuracy plot on the Train and Validation set seem to overlap, and the learning curves
are almost in a optimal fit.
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Figure 11. (left) Learning path of model with training and validation loss, (right) Accuracy plot for
Stochastic Gradient Descent (SGD), Adam, and RMSprop optimizers respectively with the learning
rate of 0.001 and 100 epochs.

Finally, the performance of the Neural Network as a classifier, for a different combination of
optimizers for a learning rate of 0.001 and 100 epochs, is evaluated with the ROC curve visualized in
Figure 12. As can be seen, with Adam optimizer, NN as a classifier is able to achieve the highest TPR
while maintaining a low FPR. High AUC of 98% implies that the final Neural Network model is able
to distinguish occupied and free parking space exceptionally well.
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Figure 12. Receiver Operating Characteristic (ROC) curves for SGD, Adam, and RMSprop optimizers,
respectively, with the learning rate of 0.001 and 100 epochs.

Lastly, we have compared our results with other researches that we have identified in the State
of the Art section that have also used Neural Network as a ML technique for the classification or
prediction of a free parking space. We have compared them with our results in terms of achieved
accuracy and presented the comparison in Table 11.

Table 11. Comparison table of this paper with other research in terms of accuracy for NN.

Paper ML Model Given Accuracy for NN
Vlahogianni et al. [27] NN (prediction) 0.004 MAE

Farag et al. [28] NN (classification) 93%
Jones et al. [39] DT,SVM, k-NN (classification) 81%

Hiesmair et al. [40] NN, DT, k-NN, SVM (classification) 95% accuracy
Zheng et al. [43] RT, NN, SVR (prediction) Mean MAE 0.194–0.059

This paper HMM, NN (classification) 97% accuracy
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The researches [27,43] have used Neural Network for future prediction and, therefore, have
presented their results in terms of MAE. As can be seen from the table, this paper achieved best
performance results in terms of accuracy of NN for classifying a parking space, in comparison
to [28,39,40].

8. Conclusions

This paper presents a novel software alternative concept of cost-effective sensor device for
parking lot occupancy detection. Namely, a LoRa-based smart parking sensor device measured
parking lot occupancy during the period of several months. The parking lot occupancy was sent
over a radio channel to three LoRaWAN gateways that collected measurements of signal strength
from five sensor devices that were placed on a University parking lot. The analysis of collected
data indicates a correlation between RSSI, SNR, and parking lot occupancy. Using related machine
learning techniques, it was shown that parking lot occupancy can be estimated from signal strength
measurements. Using the Hidden Markov Model with Viterby algorithm and Deep Learning approach
based on Neural Networks showed significant results up to 97% of correctly estimating parking lot
occupancy. Our future work will comprise an exploration of other ML techniques for parking space
classification, which we further plan to evaluate and compare to the results that we have obtained in
this paper.
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The Internet-of-Things vision of ubiquitous and pervasive computing gives rise to future smart irrigation sys-
tems comprising the physical and digital worlds. A smart irrigation ecosystem combined with Machine Learn-
ing can provide solutions that successfully solve the soil humidity sensing task in order to ensure optimal
water usage. Existing solutions are based on data received from the power hungry/expensive sensors that are
transmitting the sensed data over the wireless channel. Over time, the systems become difficult to maintain,
especially in remote areas due to the battery replacement issues with a large number of devices. Therefore,
a novel solution must provide an alternative, cost- and energy-effective device that has unique advantage
over the existing solutions. This work explores the concept of a novel, low-power, LoRa-based, cost-effective
system that achieves humidity sensing using Deep Learning techniques that can be employed to sense soil hu-
midity with high accuracy simply by measuring the signal strength of the given underground beacon device.
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1 INTRODUCTION
Technologies of the 21st century, especially wireless technologies, have been rapidly emerging
in recent years. This has supported the development of Internet-connected sensory devices that
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provide observations and data measurements from the physical world. The expansion of a large
amount of connected devices has shaped a new paradigm—The Internet of Things (IoT). The
IoT represents a concept of ubiquitous computing technology such as sensors, actuators, mobile
phones, and so on, that interact together prompted with the use of wireless technologies. In this
environment, it is possible to receive interesting and important information about or from the
physical world and moreover, interconnect it to exchange and use this information with the digi-
tal world [1]. This has had an impact on many areas of everyday life, particularly in fields such as
automation, industrial manufacturing, logistics, business/process management, intelligent trans-
portation of people and goods, and environmental monitoring [2, 3]. IoT applications are especially
suited for living environments like the agricultural ones regarding environmental sustainability
or soil optimization where irrigation plays an extremely important role [4]. In agriculture, water
issue and irrigation methods are essential in efficient water usage with regard to the increase of
productivity and economic benefit [5]. Determination of water status and conduction of irriga-
tion could be resolved efficiently with the novel sensing technologies [6]. According to the study
by California Department of Water Resources, and their evaluation of California weather-based
“smart” irrigation controller programs, reduction of outdoor water may range from 6% up to 41%
depending on the study site and region.1 The crucial parameter in the development of a smart
irrigation system is soil humidity, which is affected by numerous environmental factors such as
air temperature, air humidity, and soil temperature [7].

There is a real need for the improvement of irrigation systems since it is estimated that 40% of
water used for agriculture is lost in developing countries [8]. A wide variety of battery-operated
sensing devices already exist that are based on measuring the electrical properties of the soil, while
data is delivered through some wireless interface. Existing wireless technologies have been either
designed for high-throughput applications (e.g., 3G, WiFi, LTE) with high power consumption or
are characterized by low power consumption (e.g., ZigBee, Bluetooth Low Energy) but limited
in the achievable coverage area. Low-power wide area (LPWA) networks, such as LoRa and
Sigfox NB-IoT, are emerging as the enabling wireless technology especially for the development
of precision farming, flood monitoring [9], precision livestock farming, and/or smart irrigation
systems [10, 11]. LPWA leverage the need for only intermittent or sporadic transmissions of small
data packets, making them suitable for battery-operated devices. Existing commercial sensors for
irrigation systems are quite expensive, while sensor lifetime can reach up to a couple of years.

The development of IoT has been followed by the exponential growth of big data [12] and with
it arose Machine Learning (ML) with great potential for precise predictions made from the past
observations given new measurements [13]. Within the field of smart agriculture, ML was pro-
posed for moisture estimation and moisture prediction [14]. However, proposed ML-based solu-
tion were not aimed at reducing the cost of sensing devices, but rather at predicting soil moisture
using available sensing devices providing information about air humidity, temperature, and soil
temperature [7]. Deep Learning (DL) has recently been introduced in the field of agriculture as a
modern and promising technique with growing popularity, since advancements and applications
of DL offer much needed precision in this field, indicating its large potential [15]. DL models have
the ability to provide better analytical insight into the IoT systems with two important advantages
over traditional ML: reduced need for a handcrafted dataset and improved accuracy [16]. Recently,
with the advancement of LPWA networks such as LoRa, it was shown that there exists a correla-
tion between RSSI and soil moisture, for sensors and gateways buried fully into the ground [17, 18].

1Evaluation of California weather-based “smart” irrigation controller programs, https://p2infohouse.org/ref/53/52030.pdf.
Accessed 24 February, 2020.
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In addition, RSSI signals from LoRa/LoRaWAN devices were already proposed for fingerprinting
localization [19], as well as for secure key generation [20].

This article explores a concept of cost-effective and low-power humidity sensing using DL tech-
niques. Namely, due to different radio propagation behavior in wet conditions, the changes of soil
moisture and the signal strength of a buried device are tightly correlated [17, 18]. The approach
presented in this article reflects a more real-life scenario that considers a soil humidity estimation
system based on the signal strength data generated from an underground LoRa beacon, collected
by multiple overground gateways, along with related ML techniques. A future humidity sensor-
free device that implements a DL algorithm should result in a cost-effective solution that is easier
to maintain due to the prolonged battery lifetime.

This article is structured as follows: In Section 3, the implementation and architecture of a
LoRaWAN-based soil moisture sensor device is described. Section 4 gives a preliminary analysis
of collected data. A ML approach to soil moisture estimation based on SVR and LSTM algorithms
is given in Section 5. Finally, the conclusion is given in Section 6.

2 STATE OF THE ART
IoT systems are becoming increasingly dynamic and complex, and ML has been regarded as the
key technology for prediction and estimation using models and algorithms [21]. These algorithms
can detect patterns in large amounts of data, specifically in a time series of observational data [22].
Generally, ML methodologies include a learning process with a goal to extract knowledge from
data (training data) in order to perform a task. The most prominent feature of a learning machine
is that the trainer of the learning machine is ignorant of the processes within it.

ML has the ability to learn without being programmed for specific tasks [23] where learning
algorithms can be categorized as Supervised, Unsupervised, and Reinforcement learning.

—Supervised learning algorithms require external assistance by a supervisor and their aim is
to learn the mapping from the input values x to the output valuesy where the correct values
are provided by a supervisor [24].

—Unsupervised learning algorithms are only given input data and their goal is to find regular-
ities between them [25].

—Reinforcement learning algorithms learn by making decisions based on actions that need to
be taken in order to provide the most positive outcome [26].

The two most common ML tasks are classification tasks and regression tasks. They differ with
regard to the type of desired outcome. In classification tasks the outcome is a discrete category,
whereas, in regression tasks the outcome is one or more continuous variables [1].

In recent years, DL has been actively employed in IoT applications as one of the ML ap-
proaches [16]. DL reliably mines real-world IoT data from noisy and complex environments in
contrast to conventional ML techniques and is a strong analytical tool for huge data giving better
performance for such tasks [27]. Traditional ML techniques depend on the quality and accuracy of
the features given to the algorithm, whereas DL can automatically represent and organize multiple
levels of information to express complex relationships between data [28].

The application of ML techniques for agriculture use, and specifically soil moisture estimation
and prediction, have interested researchers for over two decades. One such research is presented
in [29], where soil moisture is estimated using remote sensing data from Tropical Rainfall
Measuring Mission Precipitation Radar (TRMMPR). The aim of the study was the estimation
of soil moisture content for the Lower Colorado River Basin area. The authors developed
Support Vector Machine (SVM), Artificial Neural Networks (ANNs), and multivariate
linear regression (MLR) models for the estimation and showed that the SVM model is better at
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capturing the interrelation between soil moisture, backscatter, and vegetation in comparison to
the ANN and MLR models. The study presented in [30] investigated the relationship between soil
moisture, Standardized Precipitation-Evapotranspiration Index (SPEI), and climate indices
in Xiangjiang River basin. Incorporating the climate impact on drought, the Support Vector
Regression (SVR) model is built to predict the SPEI from climate indices. The results showed that
the SVR model could improve the prediction accuracy of drought in comparison to solely using
the drought index as the only input parameter. In [31], the authors used precipitation, daytime
and nighttime land surface temperature, potential evapotranspiration (PET) estimated using
mean temperature, the Normalized Difference Vegetation Index, the Normalized Difference Water
Index data combined with large-scale climate indices, and long-range forecast climatological
data for drought forecasting in the area of South Korea. They developed Decision trees (DTs),
Random forest (RF), and Extremely randomized trees (ERTs) models as both classification
and regression models. Results show that the regression models gave better performance in the
majority of cases. Soil moisture estimation from meteorological data using SVR is given in [32].
The authors also compare the SVR model with ANN to validate capabilities of the SVR model
and conclude that SVR outperforms ANN in all cases. A DL model for soil moisture estimation
is presented in the study [33]. The authors use deep belief networks (DBNs) to predict soil
moisture content from topographic properties, environmental and meteorological data such as
evapotranspiration, leaf area index (LAI), and land surface temperature in the Zhangye oasis in
Northwest China. A novel macroscopic cellular automata (MCA) model by combining DBN
is given and compared with a widely used neural network, multi-layer perceptron (MLP). The
result shows that the DBN-MCA model led to a reduction in root mean square error (RMSE) by
18% in comparison with the MLP model. The authors conclude that the MCA model is promising
for modeling the temporal and spatial variations of soil moisture content.

A review of ML dedicated to applications of ML in agricultural production systems is presented
in [22]. The authors emphasize key and unique features of popular ML models and conclude that
the ML models will be even more widespread in the future providing production improvement.
Generally, a variety of ML algorithms have been exploited for agricultural purposes, such as [34],
where soil moisture, crop biomass, and Leaf Area Index are estimated from X-band ground-based
scatterometer measurements using two variants of Radial basis function neural networks
(RBFNNs) algorithms, namely, conventional radial basis function neural network and general-
ized regression neural network (GRNN). Results show that good performance was obtained
from both networks in retrieving soil moisture content. Furthermore, in [35] a SVR technique was
used and compared with a multi-layer perceptron neural network (MLP NN) algorithm for
soil moisture estimation using C-band scatterometer field measurements and considering various
combinations of the input features (i.e., different active and/or passive microwave measurements
acquired using various sensor frequencies, polarization, and acquisition geometries). The authors
present a comparison of SVR model performance and the MLP NN model and conclude that the
SVR provides higher accuracy in prediction for the given datasets and for all the input feature con-
figurations. They imply that the SVR model has a better generalization ability than the MLP NN
model, i.e., the SVR model is more capable to learn mapping that provides higher accuracy in the
prediction of unknown real samples. Furthermore, in [36], Long Short-Term Memory (LSTM)
has been applied to predict water depth in agricultural Hetao Irrigation District in arid northwest-
ern China using monthly water diversion, evaporation, precipitation, temperature, and time as
input data to predict water table depth. The model was evaluated using RMSE and coefficient of
determination R2. The authors conclude that the proposed model is suitable for predicting wa-
ter table depth and especially can be used in areas with complex hydro-geological characteristics.
In [37] neural networks, multiple regression, and fuzzy logic were used for spatial soil moisture
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Table 1. Comparison Table of Machine Learning Models and Applications for Soil
Moisture and Drought Estimation

Paper Prediction model Application Best peformance model
A. Sajjad et al. [29] SVM, ANN, MLR Soil moisture estimation SVM
Y. Tian et al. [30] SVR, drought index Prediction of agricultural drought SVR
J. Rhee and J. Im [31] DT, RF, ERT (classification and regression models) Drought forecasting regression
M. Gill et al. [32] SVM, ANN Soil moisture prediction SVM
X-D.Song et al. [33] DBN, MLP Soil moisture content prediction DBN
R. Prasad et al. [34] RBFNN, GRNN Soil moisture estimation both
L. Pasolli [35] SVR, MLP NN Soil moisture estimation SVR
J. Zhang et al. [36] LSTM Water depth LSTM
T. Lakhankar et al. [37] neural networks, multiple regression, fuzzy logic Spatial soil moisture retrieval fuzzy logic, neural network

retrieval using active microwave data. The study area was located in Oklahoma, USA and mod-
els sensitivity was estimated by measuring the change of RMSE when an input variable is added
(or deleted) from the models. The obtained results suggest that soil texture and vegetation highly
influence soil moisture retrieval. The authors conclude that the fuzzy logic and neural network
models outperformed multiple regression in terms of validation. Table 1 gives a short comparison
of the above-mentioned researches regarding ML models for soil moisture and drought estimation
and forecasting.

Soil moisture estimation from other measurements such as RSSI only recently started to attract
the research community. In [38], the authors present a case study of how variations in meteorolog-
ical conditions with four selected meteorological factors—air temperature, absolute air humidity,
precipitation, and sunlight—influence IEEE 802.15.4 network based on 6 months of sensor data.
Amongst the obtained results, they conclude that temperature is the most dominantly correlated
with RSSI. Similarly, in [39] an impact of both air temperature and air humidity on performances
of signal strength variations of 802.15.4 networks is shown. The authors conclude that air tem-
perature has a significant negative influence on signal strength in general, while high relative air
humidity may affect the signal on lower temperatures.

In [40], the authors present a soil moisture monitoring system that uses UHF RFID tags in order
to provide a wireless and batteryless field sensor. The paper presents the conceptual design of the
system and provides experimental results showing that the RSSI signal correlates with soil mois-
ture using ANN. Further on, an ANN was used for soil moisture prediction based on the RFID tag
signal analyses giving coefficient of determination R2 > 0.9 in the majority of cases. However, since
buried UHF RFID tags can be read only from short distances (up to 50 cm), this work proposes a
mobile robot that travels across the field and navigates above the buried UHF RFID tags to collect
RSSI data. Such a solution is time-consuming and challenging, especially when a large number of
RFID sensors is scattered over a large and possibly uneven crop field, which requires a robot to
travel to every tag to collect RSSI data. In [41], the authors propose passive UHF RFID tag sensors
integrated with a monopole probe for soil moisture monitoring. Their experimental results show
that changes in soil permittivity cause changes in RSSI of the backscattered signal. Therefore, we
conclude that further exploration of Received Signal Strength in the context of soil moisture es-
timation in required, especially for the purpose of reducing size, cost, and battery efficiency of
sensor device. With regard to LoRa-based systems, the research community has recently begun
to research the potential of correlating RSSI changes in LoRa signal with specific environmental
changes. In the study presented in [19], a publicly available dataset of LoRaWAN RSSI measure-
ments is utilized to compare different ML methods for fingerprinting localization. The authors
present the k-Nearest Neighbors (kNN) method, the Extra Trees method, and a neural network
approach using a Multi-layer Perceptron. They conclude that the MLP performs best achieving
highest accuracy. In [42], the authors present the results of signal strength measurements and sim-
ulations based on Wireless InSite radio propagation software and imply that parking occupancy

ACM Transactions on Internet Technology, Vol. 22, No. 2, Article 39. Publication date: October 2021.



39:6 L. D. Rodić et al.

Table 2. Comparison Table of Various Radio Technologies and Applications Based
on Signal Strength Variations

RSSI values mapped with
Paper Radio technology Application ML model Best performance model specific soil moisture values
Aroca et al. [40] UHF RFID (short range) soil moisture prediction ANN ANN YES (MSE = 0.00152)
Hasan et al. [41] UHF RFID (short range) soil permittivity none none NO
Anagnostopoulos et al. [19] LoRa (long range) localization kNN, Extra Trees, MLP MLP /
Solic et al. [42] LoRa (long range) parking space occupancy none none /
Wennerström et al. [38] 802.15.4 (short range) change of meterological factors none none NO
Luomala et al. [39] 802.15.4 (short range) air temperature and air humidity none none NO
Liedmann et al. [18] LoRa (long range) soil moisture estimation none none NO
Liedmann et al. [17] LoRa (long range) soil moisture estimation none none NO
This article LoRa (long range) Soil moisture estimation SVR, LSTM LSTM YES (MSE = 0.00018)

Fig. 1. Network architecture of LoRaWAN-based soil-moisture sensor system.

can be estimated by detecting the change in RSSI at the receiver side. With regard to soil mois-
ture and its correlation to RSSI researches, [17, 18] show the existence of a correlation between
RSSI signals from LoRa-based devices and soil moisture, for sensors and gateways buried fully into
the ground. In [18], the authors present design and experimental validation of the developed Soil
Moisture Sensing System (SoMoS) based on a Software Defined Radio (SDR) approach using
LoRa in the laboratory. The system showed valid behavior and is able to detect soil moisture via
the radio field. Furthermore, the authors in [17] have done a long-term evaluation of the previously
proposed SoMoS system showing a high correlation between measured Receive Signal Strength
Indicator and precipitation events.

Work presented in our article reflects a more real-life scenario that considers soil humidity
estimation based on the signal strength data generated from an underground LoRa beacon and
collected by overground gateways, using related ML techniques. The long-range nature of LoRa
technology allows the device to communicate over larger distances (as far as 10 km) in comparison
to UHF RFID and 802.15.4 radio technology. Hence, a single overground gateway device could
collect simultaneously signal strength measurements data from multiple underground beacons
scattered over a large crop field, and estimate soil humidity using related ML techniques. Table 2
compares the above-mentioned papers and this article in terms of used radio technology for
variety of applications.

3 LORA-BASED SOIL-MOISTURE SENSOR
Usually, soil-moisture sensor devices are battery-operated sensor devices where a humidity
and temperature (soil moisture) sensor is connected to a microcontroller that periodically reads
sensor values and sends them over the radio channel to the base station (or base stations), after
which the sensor data is forwarded to the application for visualization (Figure 1). To preserve
energy, battery-operated devices go to the sleep mode, extending the device lifetime (usually
for a couple of years). The concept exploited in this article is based on the idea of elimination
of soil-moisture sensor device, thereby reducing the overall cost of sensor devices. This would
result in energy savings required for its powering. In this section, a detailed implementation
description of a LoRa-based sensor device is given. First, implementation of the LoRaWAN-based
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Fig. 2. Scheme of LoRaWAN I2C soil-moisture sensor.

I2C soil-moisture sensor device is introduced, after which a novel concept of sensor device that
achieves moisture sensing through signal strength is explored.

3.1 LoRaWAN Technology
In this article, the technology of Low-Power Wide Area Networks (LPWANs) was employed,
more precisely LoRa, to convey data over the radio from sensor device to the base station (Fig-
ure 1). LPWANs such as LoRaWAN allow battery-operated sensors or things to communicate low-
throughput data over long distances with minimal infrastructure deployment, and are suited for
applications in scenarios such as agriculture monitoring [17].

The network architecture of LoRaWAN typically exhibits a star-of-stars network topology, as
depicted in Figure 1. The application-specific end devices are connected to one or many gateway
or base station devices that are in turn directly connected to a network server and application.
The gateways simply act as a transparent relay between the end devices and the network server.
The network server can further forward the information to corresponding application servers for
processing.

3.2 Realization of LoRaWAN-Based I2C Soil-Moisture Sensor Device
The core of the sensor device is an Arduino Pro Mini (with ATmega328P) that operates at 3.5 V
supply voltage, as depicted in Figure 2. For soil humidity and temperature monitoring, an I2C soil-
moisture sensor is employed that uses capacitive sensing2 (with price up to 25 EUR), connected to
a Arduino Pro Mini board. To enable LoRaWAN-based communication, a RFM95W module with
a SX1276 chip and spring antenna was used with +14 dB transmission power. To preserve energy
during an inactive period, the sensor device has a predefined sleeping period controlled with a
TPL5110 Nano Timer. During the sleep period, TPL5110 basically cuts off power from both the
Arduino and sensors components, minimizing the overall consumption of the device. The timer
was set to power up Arduino every 5 minutes.

2https://www.whiteboxes.ch/shop/i2c-soil-moisture-sensor/.
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Fig. 3. Implementation of LoRaWAN-based soil-moisture sensor.

Two Raspberry Pi gateway devices were used for implementation of the LoRaWAN gateway
infrastructure. These devices were placed indoors and configured to forward messages to The
Things Network (TTN) cloud infrastructure. First, the gateway uses an IMST iC880A-SPI con-
centrator with a Shengda SDBF1.4 9 dbi 868 MHz antenna, vertically polarized, while a second
gateway device uses a RAK831 concentrator with a Procom CXL 900-6LW-NB, 8 dBi gain, 868 MHz,
vertically polarized, omnidirectional antenna.

The moisture sensor device was buried 14 cm below the ground level with an antenna vertically
oriented, while two indoor TTN gateways were placed in close vicinity of the sensor device. The
first gateway, denoted as Gateway 1, was placed on the fifth floor (15 meters from the ground
and around 60 meters from the sensor), while the second gateway, denoted as Gateway 2, was
placed at the first floor (around 4 meters from the ground and 18 meters from the sensor), as can
be depicted in Figure 3. The sensor is buried to the specified depth of 14 cm for several reasons.
The soil composition is brown soil on limestone and dolomite, calcambisol, which is developed
on pure Mesozoic limestones and dolomites. The soil is non-carbonate with a pH greater than 5.5.
The electrical conductivity of calcocambisol soil is about 124.2 μS/cm, with total porosity 45–65%,
while the capacity of accessible water plants ranges from 5 to 15 cm [43]. As the aim of the work is
to create a system/sensor for possible automatic irrigation, the depth at which the sensor is buried
is large enough that the change in soil moisture affects the signal strength, while still being placed
at depths from which the roots of the plants draw water from.

Once the message arrives to the base station, it is forwarded to the TTN Network and Applica-
tion server (Figure 1). Furthermore, TTN allows message forwarding from their infrastructure to
our servers using the MQTT protocol. On our server side, node-red was used for message aggre-
gation, parsing and InfluxDB for storage. Figure 4 shows a snapshot of soil humidity and moisture
along with RSSI and SNR values captured on one of the gateways. As can be seen, when the soil
humidity increased, both RSSI and SNR signal values dropped, showing the tight bound between
these values.
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Fig. 4. Snapshot of RSSI and SNR signal captured on LoRaWAN gateways from soil-moisture sensor. I2C
sensor measures the temperature and humidity of the ground.
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Table 3. Consumption of Every Element of the Soil-Moisture Sensor and
Beacon Prototype along with Lifetime Duration Estimation

Soil-moisture device Beacon device
LoRa RF96 IC 116.1 mA 116.1 mA
Soil-moisture sensor v2.7.6 9.34 mA 0 mA
Aduino mini pro (ATmega328p) 9.09 mA 4 mA
LDO 0.00377 mA 0.00377 mA
Timer TPL5110 0.000310 mA 0.000310 mA
Active period duration 7.5 s 5.5 s
Average overall consumption in active period 35 mA 25 mA
Average consumption in inactive period 4 μA 4 μA
Lifetime duration (10.4 mAh battery) 834.37 days 1,580 days

Fig. 5. Consumption of LoRaWAN I2C soil-moisture sensor.

3.3 Consumption and Lifetime Estimation
Energy consumption of every component that comprises the soil-moisture sensor device is found
in Table 3. To estimate the sensor lifetime the sensor was connected to the Current Ranger, whereas
Current Ranger was connected to the Oscilloscope to capture detailed measurements of current
consumption. As can be depicted in Figure 5, the biggest consumer of current is the LoRa module.
After powering the device via TLP5110, Arduino MCU runs bootloader, and reads LoRaWAN pa-
rameters from EEPROM memory. For the I2C sensor heat and reading period around 1 second is
spent, while bootloader additionally introduces 1 second for running. After that, message transmis-
sion occurs over the LoRa radio channel. The transmission period was around 700 ms with 130 mA
consumption. After that, two RX windows are open for message reception over the radio channel
from the gateway (specified by the LoRaWAN protocol). Next, MCU triggers TPL5110 to power off
Arduino with radio and sensor components. While MCU is inactive, the overall consumption falls
to 3.7 μA.

Example: Soil-moisture sensors are equipped with built-in lithium-thionyl chloride (Li-SOCl2)
batteries with an overall capacity of 10.4 Ah. Assuming that device consumption during the sleep
period is 4 μA, while average device consumption during wake period is on average 35 mA, with
1 LoRaWAN keep-alive message sent every 10 minutes, and 7.5 seconds wake-up duration on
average, an estimated battery lifetime will be approximately 834.37 days, or 2.29 years. This calcu-
lation assumes that the capacity is automatically derated by 15% from 10.4 Ah to account for the
self-discharge.
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Table 4. Comparison of MCU Consumption that Supports LoRaWAN Communication

MCU ATmega328P ATtiny 84 ATtiny 85 STM32F103C8T6 (STM32)
Consumption (3.3. V and 8 MHz) 3.9 mA 3 mA 3 mA 8 mA

Consumption of Beacon Device. In a concept of a low-power and cost-effective device where
DL techniques could be employed to estimate soil humidity by measuring signal strength from an
underground beacon, a novel device will not require readings from an I2C soil-moisture sensor
device. Hence, overall consumption will be reduced by saving around 1 second on I2C sensor heat
and reading period. To further reduce consumption, an additional 1 second is saved by eliminating
bootloader from Arduino. Therefore, the wake-up duration will now be reduced to approximately
5.5 seconds. To additionally decrease MCU consumption (ATmega328p) in active mode, all LEDs
from Arduino Pro Mini could be taken off, lowering its consumption below 5 mA in active state. Ta-
ble 3 depicts the energy consumption of every component that builds Beacon Device. Taking into
account the above presented numbers of battery capacity, wake-up duration, and keep-alive mes-
sages every 10 minutes, sensor lifetime will be increased to approximately 1,580 days, or 4.33 years.

The consumption could be additionally reduced by introducing MCUs with lower consumption
in active mode, besides ATmega328P. Table 4 gives a comparison of the consumption of MCUs
that support the LoRaWAN library. Operating voltage 3.3 V was selected since the LoRa module
operates at exact voltage, but also, smaller operating voltage reduces MCU consumption. Besides
ATmega328P, MCUs that employ libraries for LoRaWAN-based connection are ATtiny 84, ATtiny
85, and STM32. Clearly, for the purpose of creating a simple beacon device, ATtiny 84 or ATtiny
85 could be used, as their consumption is around 3 mA in active state.

In the following section, a soil-moisture sensor concept is described that uses a DL technique
based on signal strength measurement for soil humidity estimation.

4 PRELIMINARY ANALYSIS OF COLLECTED DATA FROM LORAWAN-BASED
SOIL-MOISTURE SENSOR

An analysis of data collected from a LoRaWAN-based Soil-Moisture Sensor device was conducted
to uncover anomalies, define necessary data preparation approaches, and determine potentially
useful ML algorithms for the desired estimations. Such data analysis enabled the discovery of
characteristic properties of the data with a goal to exploit how soil humidity is related to the
signal strength.

4.1 Data Collection
The goal of the analyses was to detect how soil humidity is related with Received Signal Strength
Indicator. From the collected sensor data in InfluxDB, the data was extracted for the following
time periods: 2 days of July, 17 days of August, 7 days of November, 31 days of December of 2019,
and the first 7 days of January 2020. Extracted information contained RSSI, SNR, soil temperature,
soil humidity, a timestamp, as well as the LoRaWAN Gateway ID. Namely, 13,900 data packets
were received by Gateway 1 (60 m distance), while Gateway 2 (18 m distance) collected 8,413 data
packets. Gateway 2 collected a smaller amount of data packets as it was not active all the time. In
further text, RSSI and SNR from Gateway 1 are denoted as RSSI1 and SNR1, and from Gateway 2
as RSSI2 and SNR2.

4.2 Data Smoothing and Aggregation
Crucial features of data variables can be traced by observing their changes over time. However, as
can be seen in Figure 4, soil humidity changes slowly over time, while RSSI changes rapidly. Due
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Table 5. Pearson Correlation Matrix between Soil
Humidity and RSSI and SNR

RSSI1 SNR1 RSSI2 SNR2
Soil humidity −0.29 −0.81 −0.65 −0.73

to the channel stochastic behavior, the received signal has two major fading components. One is
the rapid fluctuation of signal strength due to the propagation factors, while the other is its slower
variant and a result of the multipath factors [44]. Therefore, raw data was smoothed through
decomposition of the received signal strength on long- and short-term fading factors using a
2-hour time frame. The long factor component was calculated by taking 24 samples of raw RSSI
and SNR data and computing its mean, and further subtracted it from the raw value.

Data was then aggregated in such a way that the smoothed RSSI values were assigned to a class
of soil humidity percentage to determine if the RSSI values are correlated to a specific class of
percentage of soil humidity. The 13,900 raw data of soil humidity values vary from 10% up to 40%
of humidity. However, the majority of data, i.e., 13,570 (97%) are placed between values of 29% up
to 39% of humidity. These values were categorized into equidistant classes that differ in 0.5% of
humidity and RSSI values were associated to each class. Afterward, for each class an RSSI mean
value was assigned to it, where the mean was calculated out of all RSSI values in that class. Since
13,900 data values of RSSI1 were collected and 8,413 data values of RSSI2, analyses for each value
were carried out separately.

Pearson correlation coefficients between specific classes of Soil humidity and associated RSSI
and SNR values are presented in Table 5.

As can be seen in Table 5, SNR1, RSSI2, and SNR2 substantially correlate with soil humidity,
implying that lower values of SNR and RSSI indicate higher soil humidity, as depicted in Figure 6.

It is important to note that for Gateway 1, that is more far away and on top of the University
building (indoor), the channel was showing bi-modal distribution. Data tracing showed that there
was a particular working-day time frame that changed the mean value of the signal strength pa-
rameter. The difference between the results gained for RSSI1 and RSSI2 in data aggregation is a
consequence of the distance of Gateway 1 (60 m) and Gateway 2 (18 m) form the soil-moisture
sensor. This implies that the farther the gateway is, the channel influences RSSI stronger than Soil
Humidity. In light of this reasoning, it was concluded that RSSI and Soil Humidity values are con-
siderably correlated and that the adequate ML algorithm must be able to comprise the complexity
of the data properties elaborated in the above analyses.

5 ML APPROACHES TO SOIL-MOISTURE ESTIMATION
The data analysis from the previous section implied that the correlation between the Received
Signal Strength Indicator. and soil humidity is substantial. Therefore, an investigation whether soil
humidity can be estimated out of signal strength using MLg methods is needed. Out of a variety
of different sets of data, the collected data is sequential data (i.e., time series) where all data points
are not independent, and are identically distributed results from the time measurements. There
are a variety of ML models and methods for this kind of task such as ARIMA, Hidden Markov
Model, SVR, kNNs, or Recurrent Neural Networks (RNNs). A strong advantage of DL for the
above-mentioned problems is feature learning, i.e., the automatic feature extraction from raw data
allowing it to solve more complex problems particularly well and fast [15].

Therefore, two models were built, evaluated, and compared, namely, the SVR model and the
LSTM model. Both models used the same data and were validated in the same manner, which
is further described. The primary aim of building the models was not interpretation, but rather
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Fig. 6. Smoothed (up) RSSI2 and (down) SNR2 value correlated with specific Soil humidity classes. The circle
size represents the relative portion of RSSI and SNR data within the humidity class.

the accurate estimation of Relative Soil Humidity based on the signal strength. For the models,
all 13,900 raw data samples of RSSI and SNR captured on two LoRaWAN Gateways, as well as
soil humidity were taken into account. Building the models consisted of three steps: Data pre-
processing, Defining the Model, and Model validation, presented in the following.

5.0.1 Data Pre-Processing. Data pre-processing involved data normalization. This was done due
to the different value scales of variables in collected data; generally, Relative humidity was mea-
sured as a percentage, whereas RSSI and SNR values were measured in decibels. The inputs to the
models were numerical values of RSSI and SNR, while the output was a numeric value that esti-
mates relative soil humidity. Furthermore, data was divided into training set and test set in an 80–
20% ratio, respectively, for models evaluation. The chosen training set consisted of pre-processed
data from 2 days of July, 17 days of August, 7 days of November, and 28 days of December of
2019 (containing 11,120 samples); the test set consisted of pre-processed data of the last 3 days
of December 2019 and the first 7 days of January 2020 (containing 2,780 samples). The part of
the data chosen for training was deliberately taken from the above described time periods since
it provided better insight into changes of RSSI with respect to soil humidity. Moreover, the test
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set was intentionally chosen from the previously described time frame because of consistency in
measurements.

5.0.2 Model Validation. The models were validated on the previously described test set. The
loss function used for estimation of error was MSE. Smaller MSE implies higher estimation accu-
racy, defined in equation

MSE =
1

2m

m∑

i=1

(
ŷ (i ) − y (i )

)2
. (1)

As an additional evaluation metric that was used was Mean Absolute Error (MAE), defined in
equation

MAE =
1
m

m∑

i=1

���ŷ (i ) − y (i ) ��� . (2)

MSE gives the average squared difference between the estimation and expected results, whereas
MAE measures the average magnitude of errors in a group of estimations. Moreover, validation
loss represents how well or poorly the model behaves during training.

5.1 The SVR Model
The idea of (SVM was introduced by Vapnik in the mid 1990s and today this a well known ML
algorithm used in various applications from classification, forecasting to pattern recognition. The
SVM implements the idea of mapping input vectors into a high-dimensional space F , which is
furnished with a dot product, using a non-linear mapping selected a priori [45]. This idea has
been generalized to become applicable to regression problems using SVR briefly presented in the
following.

Let us consider a training set T = {(xi ,yi ) | xi ∈ Rn ,yi ∈ R, i = 1, . . . ,n}, where
X = (x1, . . . ,xn ) are sampling data and Y = (y1, . . . ,yn ) target values. The objective of SVR is
to find function f (x ) that has at most ε deviation from the observed target yi for all training data,
enforcing flatness. This function can be defined as a linear function

f (x ) = ωΦ(x ) + b, (3)
where Φ : Rn → F is the map into the higher dimensional feature space, ω represents vector of
weights of the linear function, and b is the bias. The desired function, which is optimal, is chosen
by minimizing the function

Ψ(ω, ξ ) = C
n∑

i=1

(
ξi + ξ

∗
i
)
+

1
2 ‖ω‖

2 , (4)

where ξ , ξ ∗ are non-negative slack variables that measure the upper and lower excess deviation,
‖.‖ is the Euclidean norm ( 1

2 ‖ω‖2 represents regularization term),C is a regularization parameter
that allows the tune of the tradeoff between tolerance to empirical errors and regularization term.
Ψ(ω, ξ ) must satisfy the following constraints:

⎧⎪⎪⎨⎪⎪⎩
yi − ωΦ(xi ) + bi ≤ ε + ξi ,
ωΦ(xi ) + bi − yi ≤ ε + ξ ∗i ,
ξ , ξ ∗ ≥ 0, i = 1, . . . ,n.

(5)

Furthermore, the most prominent feature of SVR is the ability to establish a correlation between
data using non-linear mapping. This is achieved using kernel functions for generating the inner
products, known as kernels, which satisfy Mercer’s theorem. One of the broadly used kernels are
polynomial and Gaussian radial basis function (RBF) kernels. Our model implemented the RBF
kernel given with the following formula: This is achieved using kernel functions for generating the
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Fig. 7. Estimation of soil humidity with SVR model on the test set compared to expected values of soil
humidity.

inner products, known as kernels. Our model implemented the RBF kernel given with the formula:

Kγ ( |x − xi |) = exp
{
−γ · |x − xi |2

}
. (6)

Data was pre-processed as described, but the input for the model consisted of the following: for
every value of RSSI and SNR at the timestep t , needed for the estimation of humidity at a timestep
t , the values of RSSI and SNR at the timestep t − 1 were also taken. This provided the model with
a “hybrid short-term memory” of the previously measured values in time t − 1. The necessary
parameters γ ,C , and ε of the model were selected with a Grid search process of performing hyper
parameter tuning in order to determine the optimal values for a given model. The process resulted
in parameters γ = 1, C = 0.0.1, and ε = 0.1.

Estimation of soil humidity with the model on the test set compared to expected values of soil
humidity is presented in Figure 7.

The model was further validated on the test set resulting in MSE = 0.0243 and MAE = 0.0487
losses. These results implied that the soil humidity could be estimated based solely on Received
Signal Strength and SNR values with a respectful accuracy even with a limited dataset.

5.2 The LSTM Model
RNNs are based on the recursive structure in which the one-step model with a timestep is trained
first and then recursively used to return the multi-step prediction [46]. A special type of RNN is
a LSTM neural network constituted of a set of recurrently connected memory blocks—LSTM cells
(depicted in Figure 8). An LSTM cell consists of four layers: the main layer and three layers which
are gate controllers, each computing values between 0 and 1 based on their input [16].

Layers operate in the following way:
1. Main layer - analyzes the current inputs x (t ) and the previous (short-term) state h (t−1) , then

outputs the д(t ) vector.
2. Forget gate f (t ) decides parts of the long-term state c (t − 1) that need to be erased.
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Fig. 8. Long Short-Term Memory (LSTM) cell.

3. Input gate i (t ) controls parts of д(t ) that are added to the long-term state c (t ) .
4. Output gate o (t ) determines which parts of a long-term state should be read c (t−1) and given

to the output y (t ) and short-term state h (t ) at the current timestep (t ).
The states of the cell are calculated using the equations given below:

i (t ) = σ
(
W T

xi · x (t ) +W
T
hi · h (t−1) + bi

)
, (7)

f (t ) = σ
(
W T

xf · x (t ) +W
T
hf · h (t−1) + bf

)
, (8)

o (t ) = σ
(
W T

xo · x (t ) +W
T
ho · h (t−1) + bo

)
, (9)

д(t ) = tanh
(
W T

xд · x (t ) +W
T
hд · h (t−1) + bд

)
, (10)

c (t ) = f (t ) ⊗ c (t−1) + i (t ) ⊗ д(t ), (11)

y(t ) = h (t ) = o (t ) ⊗ tanh(c (t ) ), (12)
where σ represents logistic activation function, tanh is hyperbolic tangent function, W(x ) are
weight matrices for each of the four layers for input vector x (t ) , and W(h) are matrices of the
previous short-term state h (t−1) . Finally, b denotes the bias term of each layer. The difference be-
tween the LSTM and the standard RNN is within their structure to memorize. With traditional
RNN, parts of information are lost in the process of each feedback resulting in RNN not being able
to have long time memory in contrast to LSTM which has a long-term memory. LSTM is able to
remove or add information to the cell state, unlike the mechanism that completely overrides cell
states like in standard RNNs [23]. Long dependency in time can be observed in IoT applications
such as environmental monitoring, human activity recognition, or machine translation, and LSTM
models have proven to perform better than RNN for such data [16]. LSTM cells are very success-
ful at capturing long-term patterns in time series data and that was one of the reasons for their
selection as a DL approach for prediction.
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Fig. 9. Model architecture comprising two LSTM stacks.

Table 6. Selection of the Hyper Parameters
for Evaluation

Hyper parameter Values
Number of neurons 16, 32
Learning rate 0.0001 , 0.001
Number of epochs 50, 100, 150, 200, 250

The LSTM model presented in this article used previously described pre-processed data. With
regard to the inputs, a timestep of 18 was chosen, approximating 90-minute observations (18 sam-
ples, 5 minute period) for each estimation. Normalized data was given as an input to the LSTM
model with a goal to estimate relative soil humidity based on the signal strength. The architecture
of the model, presented in Figure 9, consisted of two stacked LSTM cells, on top of each other,
which are able to build up progressively higher level representations of data.

Several options for number of neurons per layer, learning rates, epochs, and different optimizers,
presented in Table 6, were evaluated and compared. Table 7 shows the results of different combina-
tions of LSTM hyper parameters and their respective MSE and MAE losses. Although LSTM neural
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Table 7. Results of Different Combinations of LSTM Hyper
Parameters and their Respective MSE and MAE Losses

Layer1 Layer2 Learning rate Epochs MSE MAE
32 16 0.0001 50 0.00332 0.05706
32 16 0.0001 100 0.01185 0.10531
32 16 0.0001 150 0.01266 0.11146
32 16 0.0001 200 0.00918 0.09515
32 16 0.0001 250 0.00320 0.05548
32 16 0.001 50 0.00126 0.03053
32 16 0.001 100 0.00255 0.04628
32 16 0.001 150 0.00032 0.01502
32 16 0.001 200 0.00119 0.03248
32 16 0.001 250 0.00089 0.02336
32 32 0.0001 50 0.00347 0.05664
32 32 0.0001 100 0.00215 0.03704
32 32 0.0001 150 0.00086 0.02409
32 32 0.0001 200 0.00562 0.07412
32 32 0.0001 250 0.00485 0.06734
32 32 0.001 50 0.00116 0.03149
32 32 0.001 100 0.00018 0.01043
32 32 0.001 150 0.00056 0.01460
32 32 0.001 200 0.00287 0.05083
32 32 0.001 250 0.00123 0.03421

networks deal with time series data quite well, it is still rather important to cautiously regard selec-
tion of the hyper parameters. For example, a reduced number of epochs decreases over fitting. To
minimize the chance of overfitting, a dropout layer was used after every LSTM cell layer with 20%
probability of ignoring neurons throughout the training phase. The function used for activation
was ReLU. With regard to the selection of optimizers, a preliminary testing of the model’s behavior
was done with regard to different optimizers. Three optimizers were tested: Adam, RMSprop, and
SGD. RMSprop outperformed the other two optimizers with regard to the aforementioned dataset
and was selected as the optimizer.

The LSTM model was evaluated on a test set to assess the influence of different hyper parame-
ters to the model performance. The best result was achieved with a set of parameters with the same
number of neurons, 32, on both LSTM layers with a learning rate of 0.001 and number of epochs 100.
As can be seen from Table 7, they obtained the lowest MSE and MAE errors, 0.00018 and 0.01043,
respectively. Figure 10(a) represents the learning path of the model with previously described pa-
rameters, training, and validation loss in relation to each epoch. Estimation of soil humidity with
the model compared to expected values of soil humidity that was done on the test set is presented in
Figure 10(b). Furthermore, it is important to emphasize the performance of the best LSTM model
in terms of training and test time. The specification of the computational machine includes In-
tel core i5-7300HQ@2.50 GHz processor, 8 GB of RAM, and NVIDIA GTX1050 GPU running a
64 bit Windows 10 operating system and the NVIDIA CUDA Deep Neural Network library
(cuDNN). The Keras 2.3.1. Python library was used running on top of a source build of Tensor-
flow 2.2.0 with CUDA support.me for different batch sizes. The best LSTM model training time
was 1,385.9917 seconds whereas the test time was 0.66786 seconds, therefore causing a minimum
delay between two consecutive estimations. Since the computing was done on a desktop computer,
it is expected that the estimation time will be accelerated on a future dedicated computation ma-
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Fig. 10. (a) Learning path of model with training and validation loss. (b) Estimation of soil humidity with
the model compared to expected values of soil humidity.

chine using GPU. Due to their massively parallel architecture, GPUs provide effective solutions for
real-time systems, allowing them to speed up computations that involve matrix-based operations,
which are the core of ML implementations [47].

5.2.1 Discussion. Despite a small and limited dataset, containing only several months of rep-
resentative data, significant results were gained with respect to the ML approach for estimation
of soil humidity based on the signal strength. Firstly, the SVR model gave considerably good es-
timation of soil humidity from RSSI and SNR indicating that the previously perceived correlation
between SNR, RSSI, and soil humidity was substantial. Secondly, the SVR model confirmed the
Signal Strength Approach and concept of humidity sensing using only RSSI and SNR and apply-
ing ML techniques data was valid. Thirdly, the stacked LSTM model gained significantly more
accurate estimations of soil humidity using this data and outperformed the traditional SVR with
regard to the accuracy of estimation. Furthermore, LSTM, as a DL model that is suited for time
series data, was able to better encompass a complex correlation between the RSSI, SNR, and soil
humidity providing higher performance and precision.

6 CONCLUSION AND FUTURE DIRECTIONS
This article presents a novel concept of a cost-effective and low-power sensor that achieves hu-
midity sensing using DL. Namely, a LoRa-based I2C soil-moisture sensor device was implemented
that measures soil humidity and temperature for a time period of several months. With a sampling
rate of 5 minutes, soil temperature and humidity were measured and sent over a radio channel
to two LoRaWAN gateway devices that collected signal strength measurements from the sensor
device. The analysis of collected data showed a noticeable correlation between RSSI, SNR, and
soil humidity. It was further shown that soil humidity can be estimated with high accuracy from
signal strength, along with related ML techniques. The use of LSTM Neural Network as a DL ap-
proach provided significant results in terms of accuracy of estimation in contrast to traditional ML
techniques of SVR. Future work will comprise an improvement on the accuracy of the presented
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LSTM model by involving other sensor measurements such as air humidity and temperature which
could influence soil humidity estimation accuracy from signal strength. Moreover, the potential
for energy savings will be examined. A transmission period of LoRa beacon using adequate ML
algorithms will be investigated using dynamic wake-up and beacon transmissions that depend on
dynamics of soil-moisture changes.
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prvostupnice matematike. Na navedenom studiju je stekla diplomu Magistra inženjerske
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objavljenih u prestižnim med̄unarodnim časopisima, a svoja je istraživanja prezentirala na
renomiranim znanstvenim skupovima. Osim svojih istraživačkih postignuća, Lea je stekla
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