Proračun drvene konstrukcije rešetkastog krovišta

Plazonić, Ante

Undergraduate thesis / Završni rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj:
University of Split, Faculty of Civil Engineering, Architecture and Geodesy / Sveučilište u Splitu, Fakultet građevinarstva, arhitekture i geodezije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:123:037350

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-23

Repository / Repozitorij:
FCEAG Repository - Repository of the Faculty of Civil Engineering, Architecture and Geodesy, University of Split
SVEUČILIŠTE U SPLITU
FAKTULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE

ZAVRŠNI RAD

Ante Plazonić

ZADATAK ZA ZAVRŠNI RAD

TEMA:
Proračun drvene rešetkaste krovne konstrukcije

OPIS ZADATKA:
Na temelju zadanih podataka drvene rešetkaste krovne konstrukcije potrebno je dimenzionirati glavni nosač i sekundarni nosač konstrukcije, te izraditi radioničke nacrtne glavnog nosača i detalje spojeva.

Način izvedbe: montažno
Materijal konstrukcije: C 30, 1. klasa uporabljivosti
Objekt se nalazi na području Zagreba.
Razmak okvira: 5,0 (m)

Split, rujan 2017.

Mentor: Dr. sc. Neno Torić
Ante Plazonić

Proračun drvene konstrukcije rešetkastog krovišta

Završni rad

<table>
<thead>
<tr>
<th>Članak</th>
<th>Naslov</th>
<th>Stranica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Konstruktivni sustav krova</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>Statička analiza sustava</td>
<td>1</td>
</tr>
<tr>
<td>1.3.1.</td>
<td>Glavni nosač</td>
<td>1</td>
</tr>
<tr>
<td>1.3.2.</td>
<td>Podrožnice</td>
<td>1</td>
</tr>
<tr>
<td>1.3.3.</td>
<td>Spreg</td>
<td>2</td>
</tr>
<tr>
<td>1.4.</td>
<td>Materijal</td>
<td>2</td>
</tr>
<tr>
<td>1.5.</td>
<td>Zaštita materijala</td>
<td>2</td>
</tr>
<tr>
<td>1.6.</td>
<td>Transport i montaža</td>
<td>2</td>
</tr>
<tr>
<td>2.1.</td>
<td>Glavni nosač</td>
<td>3</td>
</tr>
<tr>
<td>2.2.</td>
<td>Grada i propisi</td>
<td>3</td>
</tr>
<tr>
<td>2.3.1.</td>
<td>Stalno djelovanje</td>
<td>3</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>Promjenjivo djelovanje – Djelovanje snijega</td>
<td>4</td>
</tr>
<tr>
<td>2.3.3.</td>
<td>Promjenjivo djelovanje – Djelovanje vjeta</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>STATIČKI PRORAČUN</td>
<td>12</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Gornji pojas</td>
<td>19</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Donji pojas</td>
<td>21</td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Vertikale</td>
<td>23</td>
</tr>
<tr>
<td>4.1.4.</td>
<td>Dijagonale</td>
<td>24</td>
</tr>
<tr>
<td>4.2.</td>
<td>Dimenzioniranje podrožnica</td>
<td>26</td>
</tr>
<tr>
<td>5.1.</td>
<td>Detalj 1 – Dvostruki zasjek</td>
<td>29</td>
</tr>
<tr>
<td>5.2.</td>
<td>Detalj 2 – Zasjek i čavlani spoj</td>
<td>33</td>
</tr>
<tr>
<td>5.3.</td>
<td>Detalj 3 – Vlačni nastavak</td>
<td>37</td>
</tr>
<tr>
<td>5.4.</td>
<td>Detalj 4 – Zasjek i čavlani spoj</td>
<td>40</td>
</tr>
<tr>
<td>5.5.</td>
<td>Detalj 5 – Čavlani spoj</td>
<td>44</td>
</tr>
<tr>
<td>6.</td>
<td>GRAFIČKI PRILOZI</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Generalni nacrt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radionički nacrt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detalj 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detalj 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detalj 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detalj 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detalj 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iskaz materijala</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>LITERATURA</td>
<td>48</td>
</tr>
</tbody>
</table>
1. **TEHNIČKI OPIS**

1.1. **KONSTRUKTIVNI SUSTAV KROVA**

Zadan je trokutasti rešetkasti nosač raspona l=16,0 (m). Glavni nosači su paralelni u tlocrtu i nalaze se na međusobnom razmaku 2,00 (m).

Stabilizacija drvene konstrukcije predviđena je horizontalnim spregom.

1.2. **STATIČKA ANALIZA SUSTAVA**

Opterećenja koja djeluju na drvenu konstrukciju:

- stalno opterećenje (teret)
- snijeg (na čitavoj krovnoj plohi)
- vjetar

Predmetna građevina se nalazi na području grada Zagreba, kategorija zemljišta III. Odgovarajući koeficijenti za vjetar i snijeg uzeti su prema tome iz propisanih tablica. Takvim se ispostavila kombinacija K1: 1,35(G+G1)+1,35S+1,35W2→stalno opterećenje + snijeg + vjetar (izvana i podtlak iznutra).

Gornji i donji pojas proračunati su kao kontinuirane grede na koje su zglobno pričvršćene dijagonale i vertikale. Rezne sile i progibi izračunati su u „Scia 2016“ programu. Spojevi i nastavci štapova izvedeni su čavlima Na 6,0 x 180 i vijcima M16.

1.3. **KONSTRUKTIVNI ELEMENTI**

1.3.1. **GLAVNI NOSAČ**

Oni predstavljaju nosivi dio konstrukcije i imaju funkciju prenošenja opterećenja na nosive elemente koji su ispod njih (opterećenje se prenosi na zidove, a potom na temeljno tlo). Moraju biti dimenzionirani na način da preuzmu opterećenje od vlastite težine krovne konstrukcije, snijega i vjetra. Svi su pravokutnog presjeka.

1.3.2. **PODROŽNICE**

To su konstruktivni elementi koji prenose opterećenje s krovne ravnine na glavne nosače. Elementi glavne podrožnice koji imaju funkciju vertikale vjetrovnog sprega dimenzija su 18/18 cm i kvadratnog su poprečnog presjeka. Podrožnice su razmaknute 2,08 (m).
1.3.3. SPREG

Spreg prestavlja konstruktivne elemente za prihvat sile vjetra i da spriječi bočno izvijanje (izbočavanje) glavnih nosača. Horizontalne spregove tvore glavni nosači kao pojasevi, glavne podrožnice kao vertikale i dijagonale.

1.4. MATERIJAL – DRVO

Elementi konstrukcije izrađeni su od četinara II klase. Dopuštena naprezanja za ovu klasu i vrstu drveta:

\[
\begin{align*}
 f_{m,k} &= 30,0 \text{ N/mm}^2 \\
 f_{c,0,k} &= 23,0 \text{ N/mm}^2 \\
 f_{t,0,k} &= 18,0 \text{ N/mm}^2 \\
 E_{\text{mean}} &= 12000 \text{ N/mm}^2 \\
 G_{\text{mean}} &= 720 \text{ N/mm}^2 \\
 \rho_{\text{mean}} &= 380 \text{ kg/m}^3
\end{align*}
\]

1.5. ZAŠTITA MATERIJALA

Zaštitu nosivih elemenata potrebno je provesti s odgovarajućim vodootpornim zaštitnim sredstvima. Zaštita se provodi s tri premaza, s tim da je dva premaza potrebno nanijeti u tvornici prije transporta, a treći završni nakon potpunog „zatvaranja“ konstrukcije. Boja zaštitnog sredstva je prozirno smeđa u tonu drva nosača. Debljina premaza 0,2 mm.

Zaštita metalnih dijelova i spajala izvodi se pocinčavanjem na uobičajen način, a u skladu s važećim propisima sve metalne dijelove prije pocinčavanja potrebno je obraditi.

1.6. MONTAŽA I TRANSPORT

Posebnu pažnju potrebno je posvetiti montaži i transportu da bi se izbjegla nepotrebna oštećenja. Izvođač je dužan izraditi plan montaže nosača kojeg treba zajedno s transportnim planom dostaviti nadzornoj službi za sigurnost. Glavni nosači se izrađuju na podu, zatim se pomoću dizalica podižu u vertikalni položaj i to tako da se podignu prvo glavni nosači povezani spregom, a nakon toga ostali. Zatim se povezuju preko podrožnica. Konačno na već sklopljenu konstrukciju postavlja se pokrov od sendvič panela.
2. OPĆI PODACI, GEOMETRIJA I ANALIZA OPTEREĆENJA

2.1. GLAVNI NOSAČ
- trokutasti rešetkasti nosač
- raspon: l=16,00 (m)
- nagib krovne plohe: α = 16°
- visina nosača: h = 3,0 (m)
- razmak nosača : e = 5,0 (m)
- pokrov : sendvič panel

2.2. GRADA I PROPISI
- četinari C30 / uporabna klasa 1
- EC HRN N 1995-1-1 i DIN1052

2.3. ANALIZA OPTEREĆENJA

2.3.1. STALNO DJELOVANJE

dG= pokrov + sekundarni nosači + stabilizacija=0,40 kN/m²
G= g · x · L= 0,40 · 2,08 · 5,0= 4,16 kN
G/2= g · x/2 · L= 0,40 · 2,08/2 · 5,0= 2,08 kN

Slika 2.3.1.1. Stalno opterećenje u čvorovima okvira
2.3.2. PROMJENJIVO DJELOVANJE – DJELOVANJE SNIJEGA

\[s = \mu \cdot C_e \cdot C_t \cdot S_k \]

- \(\mu_i \rightarrow \) koeficijent oblika za opterećenje snijegom (ovisi i obliku i nagibu krova, te o rasporedu snijega na krovnoj plohi); za \(\alpha = 16,0^\circ \Rightarrow \mu_i = 0,8 \)
- \(s_k \rightarrow \) karakteristična vrijednost opterećenja na tlu u kN/m² (ovisi o lokaciji i nadmorskoj visini objekta); Zagreb \(\Rightarrow s_k = 1,0 \text{ kN/m}^2 \)
- \(C_e \rightarrow \) koeficijent izloženosti (obično uzima vrijednost 1,0)
- \(C_t \rightarrow \) toplinski koeficijent (obično uzima vrijednost 1,0)

Slika 2.3.2.1. Koeficijenti oblika opterećenja snijegom i slučajevi opterećenja snijegom za dvostrešni krov

<table>
<thead>
<tr>
<th>Kut nagiba krova (\alpha)</th>
<th>(0^\circ \leq \alpha \leq 30^\circ)</th>
<th>(30^\circ < \alpha < 60^\circ)</th>
<th>(\alpha \geq 60^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_1)</td>
<td>0,8</td>
<td>0,8 ((60 - \alpha)/30)</td>
<td>0,0</td>
</tr>
<tr>
<td>(\mu_2)</td>
<td>0,8 + 0,8 (\alpha/30)</td>
<td>1,6</td>
<td>–</td>
</tr>
</tbody>
</table>

Slika 2.3.2.2 Koeficijenti oblika opterećenja snijegom
Slika 2.3.2.3 Karta sniježnih područja Republike Hrvatske

\[s = 0,8 \cdot 1,0 \cdot 1,0 \cdot 0,80 = 0,80 \text{kN/m}^2 \]

\[S = s \cdot \frac{x}{2} \cdot L = 0,8 \cdot \frac{2,08}{2} \cdot 5,0 = 8,32 \text{kN} \]

\[S = s \cdot x \cdot L = 0,8 \cdot 2,08 \cdot 5,0 = 4,16 \text{kN} \]

Slika 2.3.2.1. Opterećenje snijegom u čvorovima okvira
2.3.3. PROMJENJIVO DJELOVANJE – DJELOVANJE VJETRA

\[w_e = q_{ref} \cdot c_e |z_e| \cdot c_{pe} \left[\text{kN/m}^2 \right] \rightarrow \text{pritisak vjetra na vanjske površine} \]

\[w_i = q_{ref} \cdot c_i |z_i| \cdot c_{pi} \left[\text{kN/m}^2 \right] \rightarrow \text{pritisak vjetra na unutarnje površine} \]

\[z_e, z_c \rightarrow \text{referentne visine za lokalni ili unutarnji tlak} \]

\[q_{ref} \rightarrow \text{referentni pritisak srednje brzine vjetra} \]

\[c_{pe}, c_{pi} \rightarrow \text{vanjski i unutarnji koeficijenti pritiska vjetra} \]

Slika 2.3.3.1 Pozitivni i negativni koeficijenti pritiska vjetra

Proračun osnovnog pritiska vjetra:

\[q_b = \frac{1}{2} \rho \cdot v_b^2 \left[\text{kN/m}^2 \right] \]

\[v_b = c_{dir} \cdot c_{season} \cdot v_{b,0} \left[\text{m/s} \right] \]

\[v_{b,0} \rightarrow \text{fundamentalna vrijednost osnovne brzine vjetra (za Zagreb } v_{b,0}=20,0 \text{ m/s)} \]

\[c_{dir} \rightarrow \text{faktor smjera vjetra (obično se uzima 1,0)} \]

\[c_{season} \rightarrow \text{faktor doba godine (obično se uzima 1,0)} \]

\[v_{b,0} = 20,0 \text{ m/s} \]

\[v_b = 1,0 \cdot 1,0 \cdot 20,0 = 20,0 \text{ m/s} \]

\[\rho = 1,25 \text{ kg/m}^3 \]

\[q_b = \frac{1}{2} \rho \cdot v_b^2 \]

\[q_b = \frac{1}{2} \cdot 1,25 \cdot 20,0^2 = 250 \text{ N/m}^2 = 0,25 \text{ kN/m}^2 \]

Srednja brzina vjetra:

\[v_m |z| = c_s |z| \cdot c_0 |z| \cdot v_b \left[\text{m/s} \right] \]

\[c_s |z| \rightarrow \text{faktor hrapavosti terena} \]

\[c_0 |z| \rightarrow \text{faktor orografije ili opisivanje brežuljaka ili gora (obično se uzima 1,0)} \]
Faktor hrapavosti određuje se prema:
\[c_r(z) = k_r \cdot \ln \left(\frac{z}{z_0} \right) \]
\[z_{\text{min}} \leq z \leq z_{\text{max}} \]
\[c_r(z) = c_r(z_{\text{min}}) \quad z \leq z_{\text{min}} \]

\[z_0 \rightarrow \text{duljina hrapavosti} \]
\[k_r \rightarrow \text{faktor terena ovisan o duljini hrapavosti} \]

\[z_0 = 0.3 \text{ m} \]
\[z_{\text{min}} = 5.0 \text{ m} \]
\[z_{\text{max}} = 200.0 \text{ m} \]
\[z(\text{visina objekta}) = 10.0 \text{ m} \]

\[k_r = 0.19 \cdot \left(\frac{z_0}{z_{0,\text{II}}} \right)^{0.07} = 0.19 \cdot \left(\frac{0.3}{0.3} \right)^{0.07} = 0.19 \]
\[c_r(z) = 0.19 \cdot \ln \left(\frac{10.0}{0.3} \right) = 0.67 \]

Srednja brzina na visini 10.0 m iznosi:
\[v_m(z) = v_m|_{10.0 \text{ m}} = 0.6662 \cdot 1.0 \cdot 20.0 = 13.40 \text{ m/s} \]

Intenzitet turbulencije računa se prema izrazu:
\[I_v(z) = \frac{k_1}{c_0 |z| \cdot \ln \left(\frac{z}{z_0} \right)} \]
\[k_1 \rightarrow \text{faktor turbulencije (obično se uzima vrijednost 1.0, ukoliko nije drugačije definirano Nacionalnim dodatkom)} \]
\[c_0 |z| = 1.0 \]
\[I_v(z) = \frac{1.0}{1.0 \cdot \ln \left(\frac{10.0}{0.3} \right)} = 0.285 \]
Pritisak brzine vjetra pri udaru:

\[q_p |z| = c_e |z| \cdot q_b \]

\[q_p |z| = |l + 7 \cdot I_v |z| \cdot \frac{1}{2} \cdot \rho \cdot v_m^2 |z| \]

\[q_p |z| = |l + 7 \cdot 0,285 |z| \cdot \frac{1}{2} \cdot 1,25 \cdot 13,40^2 \]

\[q_p |z| = 332,5 \text{ N/m}^2 = 0,311 \text{ kN/m}^2 \]

\(c_e |z| \) → faktor izloženosti i odnosi se na pritisak te ovisi o visini iznad terena \(z \) i kategoriji terena

Određivanje koeficijenata pritiska vjetra

Koeficijent vanjskog pritiska \(c_{pe} \):

Slika 2.3.3.2 Definiranje područja vjetra za vertikalne zidove

Slika 2.3.3.3 Dvostrešni krov
e=b ili 2h, odabire se manja vrijednost
b-dimenzija okomito na vjetar

Kut nagiba	→α=16,0°
Smjer vjetra	→Θ=0°
Parametar	e=\min\{b;2h\}=\min\{50,0;20,0\}=20,0\ m
Očitani koeficijenti vanjskog pritiska za zone:	
G:	c_{pe} = -0,30
H:	c_{pe} = -1,00
I:	c_{pe} = -0,80
J:	c_{pe} = -0,40

→uzimaju se najnepovoljniji koeficijenti
Određivanje koeficijenta pritiska C_{pi} na unutarnje površine konstrukcije:

$C_{pi}=+0,2$

$$w = w_e + w_i$$

\[\begin{align*}
G: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |0,80+0,20| = 0,311 \text{kN/m}^2 \\
H: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |0,30+0,20| = 0,156 \text{kN/m}^2 \\
I: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |0,40+0,20| = 0,187 \text{kN/m}^2 \\
J: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |1,00+0,20| = 0,373 \text{kN/m}^2 \\
\end{align*} \]

Rezultantno djelovanje vjetra dobije se kombiniranjem vanjskog i unutarnjeg učinka:

$C_{pi}=-0,3$

$$w = w_e + w_i$$

\[\begin{align*}
G: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |0,20+0,30| = 0,156 \text{kN/m}^2 \\
H: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |0,20+0,30| = 0,156 \text{kN/m}^2 \\
I: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |0,00+0,30| = 0,093 \text{kN/m}^2 \\
J: & \quad w = q_p |z| \cdot c_{pe} ''+'' c_{pl} = 0,311 \cdot |0,00+0,30| = 0,093 \text{kN/m}^2 \\
\end{align*} \]

SILE VJETRA W1 NA KROV

\[\begin{align*}
W1 &= 0,311 \cdot 5,0 \cdot 2,08/2 = 1,62 \text{kN} \\
W2 &= W3 = W4 = 0,156 \cdot 5,0 \cdot 2,08 = 1,62 \text{kN} \\
W5L &= 0,156 \cdot 5,0 \cdot 2,08/2 = 0,81 \text{kN} \\
W5D &= 0,373 \cdot 5,0 \cdot 2,08/2 = 1,94 \text{kN} \\
W6 &= W7 = W8 = 0,187 \cdot 5,0 \cdot 2,08 = 1,94 \text{kN} \\
W9 &= 0,187 \cdot 5,0 \cdot 2,08/2 = 0,97 \text{kN} \\
\end{align*} \]

Slika 2.3.3.4 Sila vjetra W1 na krov
SILE VJETRA W2 NA KROV

W1 = 0,156·5,0·2,08/2 = 0,81 kN
W2 = W3 = W4 = 0,156·5,0·2,08 = 1,62 kN
W5L = 0,156·5,0·2,08/2 = 0,81 kN
W5D = 0,093·5,0·2,08/2 = 0,48 kN
W6 = W7 = W8 = 0,093·5,0·2,08 = 0,96 kN
W9 = 0,093·5,0·2,08/2 = 0,48 kN

Slika 2.3.3. Sile vjetra W2 na krov
3. STATIČKI PRORAČUN

PROGIB-G1

PROGIB-G

PROGIB-S
PROGIB-W2

1) \[W_{S,\text{inst}} \leq L/300 = 53,33 \text{ mm} \rightarrow 5.5 \leq 53,33 \text{ mm} \]
\[W_{W2,\text{inst}} \leq L/300 \rightarrow 0.8 \leq 53,33 \text{ mm} \]

2) \[W_{\text{fin}} - W_{G,\text{inst}} \leq L/200 \]
\[W_{\text{fin}} = W_{G\text{fin}} + W_{G1,\text{fin}} + W_{S\text{fin}} + W_{W2,\text{fin}} \]
\[W_{G\text{fin}} = W_{G,\text{inst}} (1+k_{\text{det}}) = 1.1(1+0.8) = 1.98 \text{ mm} \]
\[W_{G1,\text{fin}} = W_{G1,\text{inst}} (1+k_{\text{det}}) = 2.8(1+0.8) = 5.04 \text{ mm} \]
\[W_{S,\text{fin}} = W_{S,\text{inst}} (1+0) = 5.5 \text{ mm} \]
\[W_{W2,\text{fin}} = 0.8 \text{ mm} \]
\[W_{\text{fin}} = 13.32 \text{ mm} \]
\[W_{\text{fin}} - W_{G1,\text{inst}} \leq L/200 \rightarrow 13.32 - 2.8 \leq 90 \]
\[10.52 \text{ mm} \leq 90 \text{ mm} \]
KOMBINACIJA 1 – 1,35(G+G1) + 1,35S + 1,35W1

M - K1

V - K1

N - K1
KOMBINACIJA 2 – 1,35G+1,35G₁ + 1,5S

M - K2

V - K2

N - K2
KOMBINACIJA 3 – 1,35G+1,35G1 + 1,5W2

M - K3

V - K3

N-K3
KOMBINACIJA 4 - 1,0G + 1,0 G1 + 1,5 W1

M - K4

V - K4

N - K4
4. DIMENZIONIRANJE SUSTAVA

4.1. DIMENZIONIRANJE REŠETKE KONSTRUKTIVNOG SUSTAVA

UPORABNA KLASA 1 (C30)

TRAJNO OPTEREĆENJE

\[k_{\text{mod}} = 0.6 \]
\[\gamma_M = 1.3 \]

KARAKTERISTIČNE VRIJEDNOSTI I PRORAČUNSKIE VRIJEDNOSTI:

\[f_{c,0,k} = 23.0 \text{N/mm}^2 \]
\[f_{c,0,d} = k_{\text{mod}} \cdot f_{c,0,k} = 0.6 \cdot \frac{23.0}{1.3} = 10.615 \text{N/mm}^2 \]

\[f_{m,k} = 30.0 \text{N/mm}^2 \]
\[f_{m,d} = k_{\text{mod}} \cdot \frac{f_{m,k}}{\gamma_m} = 0.6 \cdot \frac{30.0}{1.3} = 13.846 \text{N/mm}^2 \]

\[f_{v,k} = 3.0 \text{N/mm}^2 \]
\[f_{v,d} = k_{\text{mod}} \cdot \frac{f_{v,k}}{\gamma_m} = 0.6 \cdot \frac{3.0}{1.3} = 1.385 \text{N/mm}^2 \]

\[f_{t,0,k} = 18.0 \text{N/mm}^2 \]
\[f_{t,0,d} = k_{\text{mod}} \cdot \frac{f_{t,0,k}}{\gamma_m} = 0.6 \cdot \frac{18.0}{1.3} = 8.308 \text{N/mm}^2 \]

\[E_{0,\text{mean}} = 12000 \text{N/mm}^2 \]
\[E_{0.05} = \frac{2}{3} E_{0,\text{mean}} = \frac{2}{3} \cdot 12000 = 8000 \text{N/mm}^2 \]
4.1.1. GORNJI POJAS

PRETPOSTAVLJENI POPRECNI PRESJEK: b/h= 24/30 cm

\[A = b \cdot h = 24 \cdot 30 = 720,0 \text{ cm}^2 \]

\[I_y = \frac{b \cdot h^3}{12} = \frac{24 \cdot 30^3}{12} = 54000,0 \text{ cm}^4 \]

\[I_z = \frac{h \cdot b^3}{12} = \frac{30 \cdot 24^3}{12} = 34560,0 \text{ cm}^4 \]

\[W_y = \frac{b \cdot h^2}{6} = \frac{24 \cdot 30^2}{6} = 3600,0 \text{ cm}^3 \]

PRORAČUNSKE SILE: \[N_d = -225,34 \text{ kN (Tlak)} \]

\[M_d = 11,03 \text{ kNm} \]

\[V_d = 5,55 \text{ kN} \]

PRORAČUN NAPREZANJA

\[\sigma_{c,0,d} = \frac{N_{c,0,d}}{A} = \frac{225,34 \cdot 10^3}{720 \cdot 10^2} = 3,13 \text{ N/mm}^2 \]

\[\sigma_{m,y,d} = \frac{M_{m,m,d}}{W_y} = \frac{11,03 \cdot 10^6}{3600 \cdot 10^3} = 3,06 \text{ N/mm}^2 \]

\[\tau_{y,d} = 1,5 \cdot \frac{V_d}{A} = 1,5 \cdot \frac{5,55 \cdot 10^3}{720 \cdot 10^2} = 0,12 \text{ N/mm}^2 \]
KOEFICIJENT IZVIJANJA OKO OSI y:

\[l_{ef,y} = 2,08 \text{ m} \]

\[\lambda_y = \frac{l_{ef,y}}{\sqrt{I_y / A}} = \frac{208}{\sqrt{\frac{54000}{720}}} = 24,02 \]

\[\lambda_{rel,c,y} = \frac{\lambda_y}{\pi} \cdot \frac{f_{c,0.1}}{E_{0.05}} = \frac{24,02}{\pi} \cdot \sqrt[2]{\frac{23}{8000}} = 0,40996 \]

\[k_y = 0,5(1 + \beta c(\lambda_{rel,c,y} - 0,3) + \lambda_{rel,c,y}^2) = 0,5(1 + 0,2(0,40996 - 0,3) + 0,40996^2) = 0,59503 \]

\[k_{c,y} = \frac{1}{k_y + \sqrt{k_y^2 - \lambda_{rel,c,y}^2}} = \frac{1}{0,59503 + \sqrt{0,59503^2 - 0,40996^2}} = 0,97437 \]

KOEFICIJENT IZBOČAVANJA

\[l_{ef,y} \cdot h / b^2 = \frac{208 \cdot 30}{24^2} = 10,83 < 140 \rightarrow \text{km} = 1,0 \text{ (nema izbočavanja)} \]

PROVJERA NAPREZANJA

\[\frac{\sigma_{x,0.d}}{k_{x,y} \cdot f_{c,0.d}} + \frac{\sigma_{m,y,d}}{k_{m} \cdot f_{m,y,d}} = \frac{3,13}{0,974 \cdot 10,615} + \frac{3,06}{1,0 \cdot 13,846} = 0,30 + 0,22 = 0,52 < 1,0 \]

\[\frac{\tau_{y,d}}{f_{y,d}} = \frac{0,12}{1,385} = 0,09 < 1,0 \]

ZADOVOLJAVA, 53% ISKORISTIVOSTI
4.1.2. DONJI POJAS

PRETPOSTAVLJENI POPRECNI PRESJEK: b/h= 20/24 cm

Slika 4.2.1.1. Poprečni presjek donjeg pojasa

A= b·h= 24·30= 720,0 cm²

\[I_y = \frac{b \cdot h^3}{12} = \frac{24 \cdot 30^3}{12} = 54000,0 \text{ cm}^4 \]

\[I_z = \frac{h \cdot b^3}{12} = \frac{30 \cdot 24^3}{12} = 34560,0 \text{ cm}^4 \]

\[W_y = \frac{b \cdot h^2}{6} = \frac{24 \cdot 30^2}{6} = 3600,0 \text{ cm}^3 \]

PRORAČUNSKE SILE: \[N_d = 215,66 \text{ kN (Vlak)} \]

\[M_d = 11,37 \text{ kNm} \]

\[V_d = 6,16 \text{ kN} \]

PRORAČUN NAPREZANJA

\[\sigma_{1,t,0,d} = \frac{N_{1,t,0,d}}{A_{i (net)}} = \frac{215,66 \cdot 10^3}{0,8 \cdot 720 \cdot 10^2} = 3,74 \text{ N/mm}^2 \]

\[\sigma_{1,m,n,d} = \frac{Msd}{W_y} = \frac{11,37 \cdot 10^6}{3600 \cdot 10^3} = 3,16 \text{ N/mm}^2 \]

\[\tau_{y,d} = 1,5 \cdot \frac{V_d}{A} = 1,5 \cdot \frac{6,16 \cdot 10^3}{720 \cdot 10^2} = 0,13 \text{ N/mm}^2 \]
PROVJERA NAPREZANJA

\[
\frac{\sigma_{1,0,d}}{f_{1,0,d}} + \frac{\sigma_{1,m,n,d}}{f_{nd}} = \frac{3,74}{8,308} + \frac{3,16}{13,846} = 0,45 + 0,23 = 0,68 < 1,0
\]

\[
\frac{\tau_{y,d}}{f_{v,d}} = \frac{0,13}{1,385} = 0,09 < 1,0
\]

ZADOVOLJAVA, 68% ISKORISTIVOSTI
4.1.3. VERTIKALE

PRETPOSTAVLJENI POPRECNI PRESJEK: b/h = 2 x 8/20 cm

Slika 4.1.3.1. Poprečni presjek vertikale

\[A = b \cdot h = 2 \cdot 8 \cdot 20 = 320,0 \text{ cm}^2 \]

\[I_y = \frac{2 \cdot b \cdot h^3}{12} = \frac{2 \cdot 8 \cdot 20^3}{12} = 10666,7 \text{ cm}^4 \]

\[I_z = \frac{2 \cdot h \cdot b^3}{12} = \frac{2 \cdot 20 \cdot 8^3}{12} = 1706,7 \text{ cm}^4 \]

PRORAČUNSKE SILE

\[N_{t,0,d} = 59,94 \text{ kN (Vlak)} \]

PRORAČUN NAPREZANJA

\[\sigma_{t,0,d} = \frac{N_{t,0,d}}{A_N} = \frac{59,94 \cdot 10^3}{0,8 \cdot 320 \cdot 10^2} = 1,87 \text{ N/mm}^2 \]

PROVJERA NAPREZANJA

\[\frac{\sigma_{t,0,d}}{f_{t,0,d}} = \frac{1,87}{8,308} = 0,23 < 1,0 \]

ZADOVOLJAVA 23% ISKORISTIVOSTI
4.1.4. DIJAGONALE

PRETPOSTAVLJENI POPRECNI PRESJEK: b/h= 24/20 cm

\[A = b \cdot h = 24 \cdot 20 = 480,0 \text{ cm}^2 \]

\[I_y = \frac{b \cdot h^3}{12} = \frac{24 \cdot 20^3}{12} = 16000,0 \text{ cm}^4 \]

\[I_z = \frac{h \cdot b^3}{12} = \frac{24 \cdot 20^3}{12} = 23040,0 \text{ cm}^4 \]

\[W_y = \frac{b \cdot h^2}{6} = \frac{24 \cdot 20^2}{6} = 1600,0 \text{ cm}^3 \]

PRORAČUNSKE SILE

\[N_{c,0,d} = -43,91 \text{ kN (Tlak)} \]

EKSCENTRICITET

Spoj u čvoru 5 : t_{c5} = 4 \text{ cm}

\[e = \frac{h}{2} - \frac{t_{c5}}{2} = \frac{20}{2} - \frac{4}{2} = 8 \text{ cm} \]

PRORAČUN NAPREZANJA

\[M_{y,d} = N_e \cdot e = 43,91 \cdot 5 \cdot 10^{-2} = 3,51 \text{ kNm} \]
\[\sigma_{c,0,d} = \frac{N_{c,0,d}}{A} = \frac{43.74 \cdot 10^3}{280 \cdot 10^2} = 1.562 \text{ N/mm}^2 \]

\[\sigma_{m,y,d} = \frac{M_{m,m,d}}{W_y} = \frac{3.51 \cdot 10^6}{1600 \cdot 10^3} = 2.19 \text{ N/mm}^2 \]

DOKAZ STABILNOSTI ZA OS Y

\[l_{e,y} = 2.64 \text{ m} \]

\[\lambda_y = \frac{l_{e,y}}{\sqrt{\frac{I_y}{A}}} = \frac{2.64 \cdot 10^2}{\sqrt{16000} / 480} = 45.73 \]

\[\lambda_{rel,c,y} = \frac{45.37}{\pi} \cdot \sqrt{\frac{23}{8000}} = 0.85 \]

\[k_y = 0.5 \cdot \left[1 + 0.2 \cdot (0.78 - 0.3) + 0.78^2 \right] = 0.85 \]

\[k_{c,y} = \frac{1}{0.85 + \sqrt{0.85^2 - 0.78^2}} = 0.84 \]

PROVJERA NAPREZANJA

\[\frac{\sigma_{c,0,d}}{k_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{my,d}} = \frac{0.91}{0.84 \cdot 10.615} + \frac{2.19}{13.846} = 0.20 + 0.16 = 0.26 < 1.0 \]

ZADOVOLJAVA, 26% ISKORISTIVOSTI
4.2. DIMENZIONIRANJE PODROŽNICA

PRETPOSTAVLJENI POPRECNI PRESJEK: b/h= 20/20 cm

Slika 4.2.1.1. Poprečni presjek podrožnice

DJELOVANJA

\[G_k = 0,40 \times 2,08 = 0,832 \text{ kN/m} \]

\[S_k = 1,00 \times 2,08 = 2,080 \text{ kN/m} \]

\[E_d = 1,35 \cdot G_k + 1,5 \cdot S_k = 1,35 \cdot 0,832 + 1,5 \cdot 2,08 = 4,24 \text{ kN/m} \]

\[E_y, d = E_d \cdot \sin(16^\circ) = 4,24 \cdot \sin(16^\circ) = 1,17 \text{ kN/m} \]

\[E_z, d = E_d \cdot \cos(16^\circ) = 4,24 \cdot \cos(16^\circ) = 4,08 \text{ kN/m} \]

KARAKTERISTIKE POPREČNOG PRESJEKA

\[A = b \cdot h = 20 \cdot 20 = 400,0 \text{ cm}^2 \]

\[I_y = I_z = \frac{b \cdot h^3}{12} = \frac{20 \cdot 20^3}{12} = 13333,3 \text{ cm}^4 \]

\[W_y = W_z = \frac{b \cdot h^2}{6} = \frac{20 \cdot 20^2}{6} = 1333,3 \text{ cm}^3 \]
REZNE SILE

\[M_{z,d} = \frac{E_{z,d} \cdot L^2}{8} = \frac{1.17 \cdot 5.0^2}{8} = 3.65 \text{ kNm} \]

\[M_{y,d} = \frac{E_{z,d} \cdot L^2}{8} = \frac{4.08 \cdot 5.0^3}{8} = 12.75 \text{ kNm} \]

\[V_{z,d} = \frac{E_{z,d} \cdot L}{2} = \frac{4.08 \cdot 5.0}{2} = 10.20 \text{ kN} \]

\[V_{y,d} = \frac{E_{z,d} \cdot L}{2} = \frac{1.17 \cdot 5.0}{2} = 2.92 \text{ kN} \]

PRORAČUN NAPREZANJA

\[\sigma_{m,z,d} = \frac{M_z}{W_z} = \frac{3.65 \cdot 10^6}{1333.3 \cdot 10^3} = 2.74 \text{ N/mm}^2 \]

\[\sigma_{m,y,d} = \frac{M_y}{W_y} = \frac{12.75 \cdot 10^6}{1333.3 \cdot 10^3} = 9.56 \text{ N/mm}^2 \]

\[\tau_{z,d} = 1.5 \cdot \frac{V_{z,d}}{A} = 1.5 \cdot \frac{10.20 \cdot 10^3}{400 \cdot 10^2} = 0.38 \text{ N/mm}^2 \]

\[\tau_{y,d} = 1.5 \cdot \frac{V_{y,d}}{A} = 1.5 \cdot \frac{2.92 \cdot 10^3}{400 \cdot 10^2} = 0.11 \text{ N/mm}^2 \]

KOEFICIJENT IZBOČAVANJA

\[\frac{l_{cf} \cdot h}{b^2} = \frac{500 \cdot 20}{20^2} = 25.0 < 140 \rightarrow \text{km} = 1.0 \text{ (nema izbočavanja)} \]

\[K_{red} = 0.70 \]
DOKAZ NOSIVOSTI I STABILNOSTI

\[k_{\text{red}} \cdot \frac{\sigma_{m,y,d}}{k_m \cdot f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1,0 \]

\[\frac{0.7 \cdot 9.56}{1.0 \cdot 13.846} + \frac{2.74}{13.846} \leq 1,0 \]

0.48 + 0.19 ≤ 1,0

0.67 < 1,0

\[\left(\frac{\tau_{y,d}}{f_{v,d}} \right)^2 + \left(\frac{\tau_{z,d}}{f_{v,d}} \right)^2 \leq 1,0 \]

\[\left(\frac{0.11}{1.385} \right)^2 + \left(\frac{0.38}{1.385} \right)^2 = 0.08 < 1,0 \]

ZADOVOLJAVA, 84% ISKORISTIVOSTI
5. **PRORAČUN SPOJEVA**

5.1 DETALJ 1 – DVOSTRAKI ZASJEK

![Diagram of the joint detail](image)

Slika 5.1.1. Dvostruki zasjek

$b / h = 24 / 30$ cm

$N_d = 225,34$ kN

$t_{v,\text{max}} = \frac{h}{4} = \frac{30}{4} = 7,5$ cm

$t_{v,1} = 6$ cm $< 7,5$ cm

$t_{v,2} = 7$ cm $< 7,5$ cm

$y = 16^\circ$

PREDNJI ZASJEK

$$R_{l,d} = f_{c,\alpha,d} \cdot A_l$$

$$f_{c,\alpha,d} = \frac{f_{c,0,d}}{\sqrt{\left(\frac{f_{c,0,d}}{2 \cdot f_{c,90,d}} \cdot \sin^2 \alpha \right)^2 + \left(\frac{f_{c,0,d}}{2 \cdot f_{v,d}} \cdot \cos^2 \alpha \right)^2 + \cos^4 \alpha}}$$

$$\alpha = \frac{y}{2} = \frac{16^\circ}{2} = 8^\circ$$
$f_{c,a,d} = \frac{10,615}{\sqrt{(10,615 \cdot \sin^2 8)^2 + (10,615 \cdot \cos^2 8)^2 + \cos^4 8}}$

$f_{c,a,d} = 9.50 \text{ N/mm}^2$

$A_1 = \frac{b_1 \cdot t_{v,1}}{\cos \alpha} = \frac{24 \cdot 6}{\cos 8^\circ} = 145.42 \text{ cm}^2$

$R_{1,d} = 9.50 \cdot 145.42 \cdot 10^2 = 138,144.41 \text{ N}$

$R_{1,d} = \frac{R_{1,d}}{\cos \alpha} = \frac{138,144.41}{\cos 8^\circ} = 139502 \text{ N}$

STRAžNI ZASJEK

$R_{2,d} = f_{c,a,d} \cdot A_2$

$\alpha = y = 16^\circ$

$f_{c,a,d} = \frac{10,615}{\sqrt{(10,615 \cdot \sin^2 16^\circ)^2 + (10,615 \cdot \cos^2 16^\circ)^2 + \cos^4 16^\circ}}$

$f_{c,a,d} = 7.53 \text{ N/mm}^2$

$A_2 = \frac{b_2 \cdot t_{v,2}}{\cos \alpha} = \frac{24 \cdot 7}{\cos 16^\circ} = 149,80 \text{ cm}^2$

$R_{2,d} = 7.53 \cdot 149,80 \cdot 10^2 = 112,801,75 \text{ N}$

$R_{2,d} = 112,801,75 \text{ N}$

$R_{\text{tot,d}} = R_{1,d} + R_{2,d} = 139502,0 + 112801,75 = 252,30 \text{ kN}$

$R_{\text{tot,d}} = 252,3 \text{ kN} > N_d = 225,34 \text{ kN}$

DOKAZ

$\frac{N_d}{R_{\text{tot,d}}} = \frac{225,34}{252,30} = 0,89 < 1,0$

ZADOVOLJAVA
POSMIĆNA NAPREZANJA

\[
\frac{\tau_d}{f_{v,d}} \leq 1,0
\]

\[
\tau_d = \frac{F_{0,d}}{A}
\]

\[
F_{0,d} = N_d \cdot \cos \alpha = 225,34 \cdot \cos 16 = 216,62 \text{ kN}
\]

\[
l_{v,1} = \min \left\{ l_v \cdot (8 \cdot t_{v,1}) \right\}
\]

\[
8 \cdot t_{v,1} = 8 \cdot 6 = 42 \text{ cm}
\]

\[
\Rightarrow \text{odabran} \ l_{v,1} = 46 \text{ cm}
\]

\[
l_{v,2} = \min \left\{ l_{1-2} \cdot (8 \cdot t_{v,1}) \right\}
\]

\[
\frac{30}{a} = \sin 16^\circ
\]

\[
\Rightarrow a = 108,9 \text{ cm}
\]

\[
\frac{7,0}{b} = \tan 16^\circ
\]

\[
\Rightarrow b = 24,4 \text{ cm}
\]

\[
\frac{c}{6} = \tan 8^\circ
\]

\[
\Rightarrow c = 0,9 \text{ cm}
\]

\[
1_{1-2} = 108,6 \cdot 24,4 - 0,9 = 83,6 \approx 84 \text{ cm} \geq 8 \cdot t_{v,2} = 8 \cdot 7 = 57 \text{ cm}
\]

\[
l_{v,\text{tot}} = 84 + 46 = 130 \text{ cm}
\]

\[
A = 24 \cdot 130 = 3120 \text{ cm}^2
\]

\[
\tau_d = \frac{216,62 \cdot 10^3}{3120 \cdot 10^2} = 0,69 \text{ N / mm}^2
\]

\[
\frac{\tau_d}{f_{v,d}} = \frac{0,69}{1,385} = 0,49 \approx 1,0
\]
KONTROLA NETTO PRESJEKA

\[N_{1,t,d} = 215.66 \, kN \]
\[M_{1,y,d} = N_{1,t,d} \cdot e = 215.66 \cdot 0.035 = 7.55 \, kNm \]

\[A_{l,n} = 24 \cdot 23 = 552 \, \text{cm}^2 \]
\[W_{l,n} = \frac{24 \cdot 23^2}{6} = 2116 \, \text{cm}^3 \]

\[\sigma_{1,t,0,d} = \frac{215.66 \cdot 10^3}{552.0 \cdot 10^2} = 3.51 \, \text{N} / \text{mm}^2 \]
\[\sigma_{1,m,y,d} = \frac{7.55 \cdot 10^6}{2116.0 \cdot 10^1} = 3.57 \, \text{N} / \text{mm}^2 \]

DOKAZ

\[\frac{\sigma_{1,t,0,d}}{f_{t,0,d}} + \frac{\sigma_{1,m,y,d}}{f_{m,d}} \leq 1.0 \]
\[\frac{3.51}{8.308} + \frac{3.57}{13.846} = 0.42 + 0.26 = 0.68 < 1.0 \]

ZADOVOLJAVA

KONTROLA NETTO PRESJEKA

\[R_d = 62.11 \, kN \]
\[f_{c,90,d} = 1.25 \, \text{N} / \text{mm}^2 \]

\[A_{ef} = 24 \cdot 30 = 720 \, \text{cm}^2 \]

\[\sigma_{c,90,d} = \frac{R_d}{A_{ef}} = \frac{62.11 \cdot 10^3}{720.0 \cdot 10^3} = 0.86 \, \text{N} / \text{mm}^2 \]
\[k_{c,90} = 1.5 \]

DOKAZ

\[\frac{\sigma_{c,90,d}}{k_{c,90} \cdot f_{c,90,d}} = \frac{0.86}{1.5 \cdot 1.25} = 0.46 < 1.0 \]

ZADOVOLJAVA
5.2 DETALJ 2 – ZASJEK I ČAVLANI SPOJ

Slika 5.2.1. Zasjek i čavlani spoj

JEDNOSTRUKI ZASJEK

b / h = 24 / 30 cm (gornji pojas), b / h = 24 / 20 cm (dijagonala)

N_d = 43,91 kN

\[t_{v,max} = \frac{h}{6} = \frac{30}{6} = 5 \text{ cm} \]

\[t_v = 4 \text{ cm} < 5 \text{ cm} \]

\[y = 57^\circ \quad (\text{ne treba interpolacija}) \]

\[\frac{\sigma_{c,a,d}}{f_{c,a,d}} \leq 1.0 \]

\[\sigma_{c,a,d} = \frac{F_{c,a,d}}{A} \]
\[F_{c,a,d} = N_d \cdot \cos \alpha = 43,91 \cdot \cos 28,5 = 38,95 \text{kN} \]
\[\alpha = \frac{y}{2} = \frac{57^\circ}{2} = 28,5^\circ \]
\[A = \frac{b_1 \cdot t_y}{\cos \alpha} = \frac{24 \cdot 4}{\cos 28,5^\circ} = 109,24 \text{cm}^2 \]
\[\sigma_{c,a,d} = \frac{F_{c,a,d}}{A} = \frac{38,59 \cdot 10^3}{109,24 \cdot 10^2} = 3,53 \text{N / mm}^2 \]
\[f_{c,d} = \frac{f_{c,0,d}}{\sqrt{\left(\frac{f_{c,0,d}}{2} \cdot \sin^2 \alpha \right)^2 + \left(\frac{f_{c,0,d}}{2} \cdot \cos \alpha \cdot \sin \alpha \right)^2 + \cos^4 \alpha}} \]
\[f_{c,d} = \frac{10,615}{\sqrt{\left(\frac{10,615}{2 \cdot 1,25} \cdot \sin^2 28,5 \right)^2 + \left(\frac{10,615}{2 \cdot 1,385} \cdot \cos 28,5 \cdot \sin 28,5 \right)^2 + \cos^4 28,5}} \]
\[F_{c,a,d} = 5,23 \text{N / mm}^2 \]

DOKAZ

\[\frac{\sigma_{c,a,d}}{f_{c,a,d}} = \frac{3,53}{5,23} = 0,68 < 1,0 \]

ZADOVOLJAVA

ČAVLANI SPOJ

b/h = 24/30 cm (gornji pojas), b/h = 2 x 8/20 cm (vertikala)

\[N_d = 20,72 \text{kN} \]

Čavli Na 6,0 x 180 mm – bušeni
\[f_{u,k} = 600 \text{N/mm}^2 \]

Puno drvo C 30 – \(\rho_k = 380 \text{ kg / m}^3 \)

\[k_{mod} = 0,6 \]
\[y_m = 1,3 \text{ (drvo)} \]
\[y_m = 1,1 \text{ (čavli)} \]
KARAKTERIŠTICNE VRIJEDNOSTI TLAČNE ČVRSTOĆE PO PLAŠTU RUPE I MOMENTA POPUŠTANJA

\[f_{h,1,k} = 0,082 \cdot (1 - 0,01 \cdot d) \cdot \rho_k = 0,082 \cdot (1 - 0,01 \cdot 6,0) \cdot 380 = 29,29 \text{ N/mm}^2 \]

\[M_{y,k} = 0,3 \cdot f_{u,k} \cdot d^{2,6} = 0,3 \cdot 600 \cdot 6,0^{2,6} = 18987,41 \text{ Nmm} \]

\[\beta = 1,0 \]

Karakteristična vrijednost nosivosti po reznoj ravnini

\[R_k = \sqrt{2 \cdot M_{y,k} \cdot f_{h,0k} \cdot d} \]

\[R_k = \sqrt{2 \cdot 18987,41 \cdot 29,29 \cdot 6,0} = 2583,35N \]

Minimalna dubina zabijanja u zadnje drvo

\[t_{req} = 1,15 \cdot \left(2 \cdot \sqrt{\frac{\beta}{1,0 + \beta}} + 2 \right) \cdot \frac{M_{y,k}}{f_{h,1k} \cdot d} \]

\[t_{req} = 1,15 \cdot \left(2 \cdot \sqrt{\frac{1,0}{1,0 + 1,0}} + 2 \right) \cdot \frac{18987,41}{29,29 \cdot 6,0} \]

\[t_{req} = 40,81 \text{ mm} < 100 \text{ mm} \]

UVJET ZADOVOLJAVA

Proračunska vrijednost nosivosti čavla po rezu

\[R_d = k_{mod} \cdot \frac{R_{k,red}}{\gamma_M} = 0,6 \cdot \frac{2583,35}{1,1} = 1409,10 \text{ N} \]

Potreban broj čavala

\[n = \frac{N}{R_d} = \frac{20,72 \cdot 10^3}{1409,10} = 14,70 \approx 16 \text{ kom} \]

Odabran : 16 čavala

DOKAZ

\[\frac{N}{R_{d,red}} = \frac{20,72 \cdot 10^3}{16 \cdot 1409,10} = 0,92 < 1,0 \]

ZADOVOLJAVA
Konstruktivni zahtjevi (bušeni čavli)
- međusobno paralelni sa vlakancima (dvodijelni štap)

\[
a_{1,req} = (3 + 2 \cdot \cos \alpha) \cdot d = (3 + 2 \cdot \cos 0^\circ) \cdot 6,0 = 30 \text{ mm} < 40 \text{ mm}
\]

- okomito na vlakanca (dvodijelni štap)

\[
a_{2,req} = 3 \cdot d = 3 \cdot 6,0 = 18 \text{ mm} < 40 \text{ mm}
\]

- paralelni od opterećenog kraja (dvodijelni štap)

\[
a_{1,t,req} = (7 + 5 \cdot \cos \alpha) \cdot d = (7 + 5 \cdot \cos 0^\circ) \cdot 6,0 = 72 \text{ mm} < 90 \text{ mm}
\]

- okomito od neopterećenog ruba

\[
a_{2,t,req} = 3 \cdot d = 3 \cdot 6,0 = 18 \text{ mm} < 80 \text{ mm}
\]
5.3 DETALJ 3 – VLAČNI NASTAVAK, SPOJ TIJESNO UGRADENIM VIJCIMA

Slika 5.3.1. Vlačni nastavak

TIJESNO UGRADENI VIJCI (PB)

\[N_d = 178,34 \text{ kN} \]

Tijesno ugrađeni vijci M-16 / 8.8

Puno drvo C 30 – \(\rho_k = 380 \text{ kg/m}^3 \)

\[A = 24 \cdot 30 = 720,0 \text{ cm}^2 \]

\[A_n = A - 2 \cdot 2 \cdot 18 \cdot 1,6 = 604,8 \text{ cm}^2 \]

\[\sigma_{t,0,d} = \frac{N}{A_n} = \frac{178,34 \cdot 10^3}{604,8 \cdot 10^2} = 2,95 \text{ N/mm}^2 \]

DOKAZ

\[\frac{2}{3} \cdot \sigma_{t,0,d} = \frac{2,95}{8,308} = 0,53 < 1,0 \]
Karakteristične vrijednosti tlačne čvrstoće po plaštu rupe i momenta popuštanja

Vezica:

\[f_{n,0k} = 0,082 \cdot (1 - 0,01 \cdot d) \cdot \rho_k = 0,082 \cdot (1 - 0,01 \cdot 16) \cdot 380 = 26,17 \text{ N/mm}^2 \]

Štap:

\[M_{y,k} = 0,3 \cdot f_{u,k} \cdot d^{2,6} = 0,3 \cdot 800 \cdot 16^{2,6} = 324282 \text{ Nmm} \]
\[\beta = 1,0 \]

Karakteristična vrijednost nosivosti vijka po rezu

\[R_k = \sqrt{2 \cdot M_{y,k} \cdot f_{h,0k} \cdot d} \]
\[R_k = \sqrt{2 \cdot 324282 \cdot 26,17 \cdot 16} = 16479,28 \text{ N} \]

Tražene debljine elemenata za punu nosivost

Vezice:

\[t_{req} = 1,15 \cdot \left(2 \cdot \sqrt{\frac{\beta}{1,0 + \beta}} + 2 \right) \cdot \sqrt{\frac{M_{y,k}}{f_{h,0k} \cdot d}} \]
\[t_{req} = 1,15 \cdot \left(2 \cdot \sqrt{\frac{1,0}{1,0 + 1,0}} + 2 \right) \cdot \sqrt{\frac{324282}{26,17 \cdot 16}} \]
\[t_{req} = 109,27 \text{ mm} > 80 \text{ mm} \]

UVJET NE ZADOVOLJAVA - smanjenje nosivosti

\[R_{k,red} = R_k \cdot \frac{t}{t_{req}} = 16479,28 \cdot \frac{80}{109,27} = 12065 \text{ N} \]

Štap nije potrebno kontrolirati.

Proračunska vrijednost nosivosti vijka po rezu

\[R_d = k_{mod} \cdot R_{k,red} = 0,6 \cdot \frac{12605}{1,1} = 6580,90 \text{ N} \]

Potreban broj vijaka

\[n = \frac{N}{R_d} = \frac{178,34 \cdot 10^3}{6580,90 \cdot 2} = 13,54 \approx 18 \text{ kom} \]

Odabrano : 18 vijaka
Smanjenje nosivosti zbog opasnosti od cijepanja kod ugradnje više vijaka u jednom redu paralelno sa vlakancima

\[n_{ef} = \left[\min \left\{ n : n^{0.9} \cdot \frac{a_1}{10 \cdot d} \right\} \right] \cdot \frac{90 - \alpha}{90} + 2 \cdot \frac{\alpha}{90} \]

\[\alpha = 0^\circ \quad n = 6 \quad a_1 = 120 \text{ mm} \]

\[n_{ef} = \left[\min \left\{ 6 : 6^{0.9} \cdot \frac{120}{10 \cdot 16} \right\} \right] \cdot \frac{90 - 0}{90} + 2 \cdot \frac{0}{90} \]

\[n_{ef} = [\min \{6 ; 4,668\}] \cdot \frac{90 - 0}{90} + 2 \cdot \frac{0}{90} \]

\[n_{ef} = 4,668 \]

DOKAZ

\[\frac{N}{R_{d, tot}} = \frac{178,34 \cdot 10^3}{3 \cdot 4,668 \cdot 2 \cdot 6580,90} = 0,97 < 1,0 \]

ZADOVOLJAVA

Konstruktivni zahtjevi

-međusobno paralelni sa vlakancima (dvodijelni štap)

\[a_{1,req} = (3 + 2 \cdot \cos \alpha) \cdot d = (3 + 2 \cdot \cos 0^\circ) \cdot 16 = 80 \text{ mm} < a_1 = 120 \text{ mm} \]

-paralelni od opterećenog kraja (dvodijelni štap)

\[a_{1,req} = 7 \cdot d = 7 \cdot 16 = 112 \text{ mm} < a_1 = 120 \text{ mm} \]

-okomiti međusobni opterećenog ruba i od neopterećenog ruba

\[a_{2,req} = 3 \cdot d = 3 \cdot 16 = 45 \text{ mm} < a_1 = 75 \text{ mm} \]
5.4 DETALJ 4 – ZASJEK I ČAVLANI SPOJ

Slika 5.4.1. Zasjek i čavlani spoj

JEDNOSTRUKI ZASJEK

\[\frac{b}{h} = 24 / 30 \text{ cm (donji pojas)}, \quad \frac{b}{h} = 24 / 20 \text{ cm (dijagonala)} \]

\[N_d = -43.91 \text{ kN} \]

\[t_{r,\max} = \frac{h}{6} = \frac{30}{6} = 5 \text{ cm} \]

\[t_r = 4 \text{ cm} < 5 \text{ cm} \]

\[y = 41^\circ \quad \text{(ne treba interpolacija)} \]
\[
\frac{\sigma_{c.a.d}}{f_{c.a.d}} \leq 1,0
\]
\[
\sigma_{c.a.d} = \frac{F_{c.a.d}}{A}
\]
\[
F_{c.a.d} = N_d \cdot \cos \alpha = 43,91 \cdot \cos 20,5 = 41,13 \text{kN}
\]
\[
\alpha = \frac{y}{2} = \frac{41}{2} = 20,5^\circ
\]
\[
A = \frac{b_i \cdot t_i}{\cos \alpha} = \frac{24 \cdot 4}{\cos 20,5^\circ} = 102,49 \text{ cm}^2
\]
\[
\sigma_{c.a.d} = \frac{F_{c.a.d}}{A} = \frac{41,13 \cdot 10^3}{102,49 \cdot 10^2} = 4,01 \text{ N / mm}^2
\]
\[
f_{c.a.d} = \frac{f_{c.0,d}}{\sqrt{\left(\frac{f_{c.0,d}}{2 \cdot f_{c.90,d}} \cdot \sin^2 \alpha \right)^2 + \left(\frac{f_{c.0,d}}{2 \cdot f_{c,d}} \cdot \cos \alpha \cdot \sin \alpha \right)^2 + \cos^4 \alpha}}
\]
\[
f_{c,a.d} = \frac{10,615}{\sqrt{\left(\frac{10,615}{2 \cdot 1,25} \cdot \sin^2 20,5\right)^2 + \left(\frac{10,615}{2 \cdot 1,385} \cdot \cos 28,5 \cdot \sin 20,5\right)^2 + \cos^4 20,5}}
\]
\[
f_{c.a.d} = 6,55 \text{ N / mm}^2
\]

DOKAZ
\[
\frac{\sigma_{c.a.d}}{f_{c.a.d}} = \frac{4,01}{6,56} = 0,61 < 1,0
\]

ZADOVOLJAVA
ČAVLANI SPOJ

b/h = 24/30 cm (donji pojas), b/h = 2 x 8/20 cm (vertikala)

\(N_d = 59,94 \text{kN} \)

Čavli Na 6,0 x 180 mm – bušeni

\(f_{uk} = 600 \text{N/mm}^2 \)

Puno drvo C 30 – \(\rho_k = 380 \text{kg/m}^3 \)

\(k_{mod} = 0,6 \)

\(y_m = 1,3 \) (drvo)

\(y_m = 1,1 \) (čavli)

KARAKTERISTIČNE VRJEDNOSTI TLAČNE ČVRSTOĆE PO PLAŠTU RUPE I MOMENTA POPUŠTANJA

\(f_{h,1,k} = 0,082 \cdot (1 - 0,01 \cdot d) \cdot \rho_k = 0,082 \cdot (1 - 0,01 \cdot 6,0) \cdot 380 = 29,29 \text{N/mm}^2 \)

\(M_{y,k} = 0,3 \cdot f_{uk} \cdot d^{2,6} = 0,3 \cdot 600 \cdot 6,0^{2,6} = 18987,41 \text{Nmm} \)

\(\beta = 1,0 \)

Karakteristična vrijednost nosivosti po reznoj ravnini

\[R_k = \sqrt{2 \cdot M_{y,k} \cdot f_{h,0k} \cdot d} \]

\[R_k = \sqrt{2 \cdot 18987,41 \cdot 29,29 \cdot 6,0} = 2583,35N \]

Minimalna dubina zabijanja u zadnje drvo

\[t_{req} = 1,15 \cdot \left(\frac{\beta}{1,0 + \beta} + 2 \right) \cdot \sqrt{\frac{M_{y,k}}{f_{h,1,k} \cdot d}} \]

\[t_{req} = 1,15 \cdot \left(\frac{1,0}{1,0 + 1,0} + 2 \right) \cdot \sqrt{\frac{18987,41}{29,29 \cdot 6,0}} \]

\[t_{req} = 40,81 \text{mm} < 100 \text{mm} \]

UVJET ZADOVOLJAVA

Proračunska vrijednost nosivosti čavla po rezu

\[R_d = k_{mod} \cdot \frac{R_{k,red}}{\gamma_M} = 0,6 \cdot \frac{2583,35}{1,1} = 1409,10 \text{N} \]
Potreban broj čavala

\[n = \frac{N}{R_d} = \frac{59,94 \cdot 10^3}{1409,10} = 42,53 \approx 48 \text{ kom} \]

Odabranо : 48 čavala

DOKAZ

\[\frac{N}{R_{d, tot}} = \frac{59,64 \cdot 10^3}{48 \cdot 1409,10} = 0,89 < 1,0 \]

ZADOVOLJAVA

Konstruktivni zahtjevi (bušeni čavli)

- međusobno paralelni sa vlakancima (dvodijelni štap)
 \[a_{1,req} = (3 + 2 \cdot \cos \alpha) \cdot d = (3 + 2 \cdot \cos 0^\circ) \cdot 6,0 = 30 \text{ mm} < 40 \text{ mm} \]

- okomito na vlakanca (dvodijelni štap)
 \[a_{2,req} = 3 \cdot d = 3 \cdot 6,0 = 18 \text{ mm} < 30 \text{ mm} \]

- paralelni od opterećenog kraja (dvodijelni štap)
 \[a_{1,1,req} = (7 + 5 \cdot \cos \alpha) \cdot d = (7 + 5 \cdot \cos 0^\circ) \cdot 6,0 = 72 \text{ mm} < 90 \text{ mm} \]

- okomito od neopterećenog ruba
 \[a_{2,req} = 3 \cdot d = 3 \cdot 6,0 = 18 \text{ mm} < 25 \text{ mm} \]
5.5 DETALJ 5 – ČAVLANI SPOJ

Slika 5.5.1. Čavlani spoj

ČAVLANI SPOJ

b/h = 24/30 cm (donji pojas) , b/h = 2 x 8/20 cm (vertikala)

N_a = 59,94 kN

Čavlani Na 6,0 x 180 mm – bušeni
f_u,k = 600 N/mm²

Puno drvo C 30 – ρ_k = 380 kg / m³

k_mod = 0,6

y_m = 1,3 (drvo)
y_m = 1,1 (čavlani)

KARAKTRISTIČNE VRIJEDNOSTI TLAČNE ČVRSTOĆE PO PLAŠTU RUPE I MOMENTA POPUŠTANJA

f_{k,1,k} = 0,082 · (1 - 0,01 · d) · ρ_k = 0,082 · (1 - 0,01 · 6,0) · 380 = 29,29 N/mm²
\[M_{yk} = 0,3 \cdot f_{uk} \cdot d^{2,6} = 0,3 \cdot 600 \cdot 6,0^{2,6} = 18987,41 \text{ Nmm} \]

\[\beta = 1,0 \]

Karakteristična vrijednost nosivosti po reznoj ravnini

\[R_k = \sqrt{2 \cdot M_{yk} \cdot f_{h0k} \cdot d} \]

\[R_k = \sqrt{2 \cdot 18987,41 \cdot 29,29 \cdot 6,0} = 2583,35 N \]

Minimalna dubina zabijanja u zadnje drvo

\[t_{req} = 1,15 \left(2 \cdot \frac{\beta}{1,0 + \beta} + 2 \right) \cdot \sqrt{\frac{M_{yk}}{f_{h1k} \cdot d}} \]

\[t_{req} = 1,15 \left(2 \cdot \frac{1,0}{1,0 + 1,0} + 2 \right) \cdot \sqrt{\frac{18987,41}{29,29 \cdot 6,0}} \]

\[t_{req} = 40,81 \text{ mm} < 100 \text{ mm} \]

UVJET ZADOVOLJAVA

Proračunska vrijednost nosivosti čavla po rezu

\[R_d = k_{mod} \cdot \frac{R_{k,red}}{\gamma_M} = 0,6 \cdot \frac{2583,35}{1,1} = 1409,10 \text{ N} \]

Potreban broj čavala

\[n = \frac{N}{R_d} = \frac{59,94 \cdot 10^3}{1409,10} = 42,53 \approx 48 \text{ kom} \]

Odabrano : 48 čavala

DOKAZ

\[\frac{N}{R_{d,\text{tot}}} = \frac{59,64 \cdot 10^3}{48 \cdot 1409,10} = 0,89 < 1,0 \]

ZADOVOLJAVA
Konstruktivni zahtjevi (bušeni čavli)

- međusobno paralelni sa vlakancima (dvodijelni štap)

$$ a_{1,eq} = (3 + 2 \cdot \cos \alpha) \cdot d = (3 + 2 \cdot \cos 0^\circ) \cdot 6,0 = 30 \text{ mm} < 40 \text{ mm} $$

- okomito na vlakanca (dvodijelni štap)

$$ a_{2,eq} = 3 \cdot d = 3 \cdot 6,0 = 18 \text{ mm} < 30 \text{ mm} $$

- paralelni od opterećenog kraja (dvodijelni štap)

$$ a_{1,1,eq} = (7 + 5 \cdot \cos \alpha) \cdot d = (7 + 5 \cdot \cos 0^\circ) \cdot 6,0 = 72 \text{ mm} < 90 \text{ mm} $$

- okomito od neopterećenog ruba

$$ a_{2,eq} = 3 \cdot d = 3 \cdot 6,0 = 18 \text{ mm} < 25 \text{ mm} $$
6. GRAFIČKI PRILOZI
GENERALNI NACRT GLAVNOG NOSAČA MJ 1:200

TLOCRT

1. GLAVNI NOSAČI
2. PODROŽNICE
3. SPREGOVI

POPREČNI PRESJEK

1. GLAVNI NOSAČ
2. PODROŽNICE
3. SPREGOVI

UZDUŽNI PRESJEK

1. GLAVNI NOSAČI
2. PODROŽNICE
3. SPREGOVI

DRVENE KONSTRUKCIJE

PRORAČUN DRVENE KONSTRUKCIJE REŠETKASTOG KROVIŠTA

ANTE PLAZONIĆ

CIP

UZDUŽNI PRESJEK

1. GLAVNI NOSAČI
2. PODROŽNICE
3. SPREGOVI
4. DONJI POJAS
5. GORNJI POJAS
6. DIJAGONALE
7. VERTIKALE

BROJ PRILOGA: 1

ISKAZ MATERIJALA ZA JEDAN OKVIR

<table>
<thead>
<tr>
<th>POZICIJA</th>
<th>OZNAKA</th>
<th>DULJINA (cm)</th>
<th>POP. PRESJ.</th>
<th>KOMADA</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>POZ 1</td>
<td>GP1</td>
<td>832</td>
<td>24/30</td>
<td>2</td>
<td>1,198</td>
</tr>
<tr>
<td>POZ 2</td>
<td>DP1</td>
<td>748</td>
<td>24/30</td>
<td>1</td>
<td>0,538</td>
</tr>
<tr>
<td>POZ 3</td>
<td>DP2</td>
<td>948</td>
<td>24/30</td>
<td>1</td>
<td>0,682</td>
</tr>
<tr>
<td>POZ 4</td>
<td>V1</td>
<td>57</td>
<td>2X8/20</td>
<td>2</td>
<td>0,036</td>
</tr>
<tr>
<td>POZ 5</td>
<td>V2</td>
<td>115</td>
<td>2X8/20</td>
<td>2</td>
<td>0,073</td>
</tr>
<tr>
<td>POZ 6</td>
<td>V3</td>
<td>172</td>
<td>2X8/20</td>
<td>2</td>
<td>0,110</td>
</tr>
<tr>
<td>POZ 7</td>
<td>V4</td>
<td>229</td>
<td>2X8/20</td>
<td>1</td>
<td>0,073</td>
</tr>
<tr>
<td>POZ 8</td>
<td>D1</td>
<td>208</td>
<td>24/20</td>
<td>2</td>
<td>0,200</td>
</tr>
<tr>
<td>POZ 9</td>
<td>D2</td>
<td>231</td>
<td>24/20</td>
<td>2</td>
<td>0,223</td>
</tr>
<tr>
<td>POZ 10</td>
<td>D3</td>
<td>264</td>
<td>24/20</td>
<td>2</td>
<td>0,253</td>
</tr>
</tbody>
</table>

UKUPNO 3,386
Sidreni vijci 4 x HZV Ø12 l = 250 mm
Vijak M12 x 4 (konstruktivno)

Vijak M12 x 4 (konstruktivno)

Vijak M12 (konstruktivno)

Vijak M12 (konstruktivno)
DETALJ 4
MJ 1:10

ANTE PLAZONIĆ

DETALJ 4 - ZASJEK I SPOJ

DRVENE KONSTRUKCIJE

PRORAČUN DRVENE KONSTRUKCIJE REŠETKASTOG KROVIŠTA

STUDENT: ANTE PLAZONIĆ

SADRŽAJ: DETALJ 4 - ZASJEK I SPOJ

TEMA: DRVENE KONSTRUKCIJE

M 1:10

BROJ PRILOGA: 6
DETALJ 5
MJ 1:10

Vijak M12
(konstruktivno)

48 Na 6,0 x 180

DRVENE KONSTRUKCIJE

PRORAČUN DRVENE KONSTRUKCIJE REŠETKASTOG KROVIŠTA

ANTE PLAZONIĆ

DETALJ 4 - VLAČNI NASTAVAK

rujan 2017.
ISKAZ MATERIJALA

ISKAZ MATERIJALA ZA JEDAN OKVIR

<table>
<thead>
<tr>
<th>POZICIJA</th>
<th>OZNAKA</th>
<th>DULJINA (cm)</th>
<th>POP. PRESJ.</th>
<th>KOMADA</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>POZ 1</td>
<td>GP1</td>
<td>832</td>
<td>24/30</td>
<td>2</td>
<td>1,198</td>
</tr>
<tr>
<td>POZ 2</td>
<td>DP1</td>
<td>748</td>
<td>24/30</td>
<td>1</td>
<td>0,538</td>
</tr>
<tr>
<td>POZ 3</td>
<td>DP2</td>
<td>948</td>
<td>24/30</td>
<td>1</td>
<td>0,682</td>
</tr>
<tr>
<td>POZ 4</td>
<td>V1</td>
<td>57</td>
<td>2X8/20</td>
<td>2</td>
<td>0,036</td>
</tr>
<tr>
<td>POZ 5</td>
<td>V2</td>
<td>115</td>
<td>2X8/20</td>
<td>2</td>
<td>0,073</td>
</tr>
<tr>
<td>POZ 6</td>
<td>V3</td>
<td>172</td>
<td>2X8/20</td>
<td>2</td>
<td>0,110</td>
</tr>
<tr>
<td>POZ 7</td>
<td>V4</td>
<td>229</td>
<td>2X8/20</td>
<td>1</td>
<td>0,073</td>
</tr>
<tr>
<td>POZ 8</td>
<td>D1</td>
<td>208</td>
<td>24/20</td>
<td>2</td>
<td>0,200</td>
</tr>
<tr>
<td>POZ 9</td>
<td>D2</td>
<td>231</td>
<td>24/20</td>
<td>2</td>
<td>0,223</td>
</tr>
<tr>
<td>POZ 10</td>
<td>D3</td>
<td>264</td>
<td>24/20</td>
<td>2</td>
<td>0,253</td>
</tr>
</tbody>
</table>

UKUPNO: 3,386 m³

ISKAZ MATERIJALA - UKUPNO

<table>
<thead>
<tr>
<th>OZNAKA</th>
<th>POP. PRESJ</th>
<th>m³/ PO OKVIR</th>
<th>KOMADA</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP1</td>
<td>24/30</td>
<td>1,198</td>
<td>11</td>
<td>13,178</td>
</tr>
<tr>
<td>DP1</td>
<td>24/30</td>
<td>0,538</td>
<td>11</td>
<td>5,918</td>
</tr>
<tr>
<td>DP2</td>
<td>24/30</td>
<td>0,682</td>
<td>11</td>
<td>7,502</td>
</tr>
<tr>
<td>V1</td>
<td>2X8/20</td>
<td>0,036</td>
<td>11</td>
<td>0,396</td>
</tr>
<tr>
<td>V2</td>
<td>2X8/20</td>
<td>0,073</td>
<td>11</td>
<td>0,803</td>
</tr>
<tr>
<td>V3</td>
<td>2X8/20</td>
<td>0,110</td>
<td>11</td>
<td>1,210</td>
</tr>
<tr>
<td>V4</td>
<td>2X8/20</td>
<td>0,073</td>
<td>11</td>
<td>0,803</td>
</tr>
<tr>
<td>D1</td>
<td>24/20</td>
<td>0,200</td>
<td>11</td>
<td>2,200</td>
</tr>
<tr>
<td>D2</td>
<td>24/20</td>
<td>0,223</td>
<td>11</td>
<td>2,453</td>
</tr>
<tr>
<td>D3</td>
<td>24/20</td>
<td>0,253</td>
<td>11</td>
<td>2,783</td>
</tr>
</tbody>
</table>

UKUPNO: 37,246 m³

TEMA: PRORAČUN DRVENE KONSTRUKCIJE REŠETKASTOG KROVIŠTA

STUDENT: ANTE PLAZONIĆ

SADRŽAJ: ISKAZ MATERIJALA

DATUM: rujan 2017.
7. LITERATURA