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Abstract: Thyroglobulin (Tg) is an iodoglycoprotein produced by thyroid follicular cells which acts
as an essential substrate for thyroid hormone synthesis. To date, only one genome-wide association
study (GWAS) of plasma Tg levels has been performed by our research group. Utilizing recent
advancements in computation and modeling, we apply a Bayesian approach to the probabilistic
inference of the genetic architecture of Tg. We fitted a Bayesian sparse linear mixed model (BSLMM)
and a frequentist linear mixed model (LMM) of 7,289,083 variants in 1096 healthy European-ancestry
participants of the Croatian Biobank. Meta-analysis with two independent cohorts (total n = 2109)
identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) within the ST6GAL1
gene (p < 5× 10−8). BSLMM revealed additional association signals on chromosomes 1, 8, 10, and
14. For ST6GAL1 and the newly uncovered genes, we provide physiological and pathophysiological
explanations of how their expression could be associated with variations in plasma Tg levels. We
found that the SNP-heritability of Tg is 17% and that 52% of this variation is due to a small number
of 16 variants that have a major effect on Tg levels. Our results suggest that the genetic architecture
of plasma Tg is not polygenic, but influenced by a few genes with major effects.

Keywords: genome-wide association study; thyroglobulin; thyroid; ST6GAL1; LMM; BSLMM

1. Introduction

Thyroglobulin (Tg) is the most abundant protein produced by the thyroid gland. This
660 kDa iodoglycoprotein serves as a storehouse of thyroid hormones since Tg proteolysis
releases thyroxine (T4) and triiodothyronine (T3) [1]. Tg is synthesized in thyrocytes. Fol-
lowing the post-translational modifications occurring in the rough endoplasmic reticulum
and the Golgi apparatus, Tg is released into the follicular lumen where Tg iodination and
hormone production occur [2,3]. Mature Tg is then transferred back to the thyrocytes by
endocytosis. In the thyrocytes, Tg proteolysis occurs and thyroid hormones are released
into the bloodstream on the basolateral membrane [1]. Some portion of intact Tg (mostly
poorly sialylated or iodinated) can be transferred by transcytosis from the follicular lumen
to the bloodstream [4]. In addition to transcytosis, Tg can be released into the blood from
disrupted follicles. Moreover, plasma Tg levels are increased in thyroid pathology, and
plasma Tg levels have been shown to correlate with thyroid mass [5]. A twin study showed
that the observed variability in serum Tg levels has a strong genetic component [6].
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Approximately 10% of Tg molecular mass is glycosylated [7]. The glycosylation of Tg is
crucial for the synthesis of thyroid hormones because it has been shown that unglycosy-
lated Tg has no potential for the synthesis of thyroid hormones [8]. Glycosylation is also
important for Tg folding, iodination, trafficking and immunoreactivity [1]. Sialylation is a
late post-translational modification of Tg that occurs in the Golgi apparatus [1]. ST6GAL1
(β-galactoside α-2,6-sialyltransferase), also known as sialyltransferase 1, catalyzes the addi-
tion of α-2,6 bound sialic acid to N-glycosylated proteins [9]. It is involved in the sialylation
of Tg since α-2,6 bound sialic acid residues are detected at Tg [10,11]. Both ST6GAL1
mRNA [12–14] and protein [13,14] were detected in the thyroid gland. This membrane-
bound enzyme is mainly found in the Golgi apparatus [15]. Sialylation is important for
many Tg functions: immunoreactivity, autoregulation, and recycling. The desialylation
of Tg increases its immunoreactivity [16,17]. In addition, poorly iodinated or sialylated
Tg has a higher potential to trigger Tg-mediated signaling [18]. Sialylation also affects Tg
recycling because it is important for binding Tg to its transmembrane receptor [17]. The
importance of Tg sialylation for its proper functioning is evident from the case of a patient
with congenital goiter with hypothyroidism. This patient had severely hyposialylated Tg
and insufficient α-2,6 sialyltransferase activity [10].

Our recent genome-wide association study (GWAS) showed an association of 16 vari-
ants within the ST6GAL1 gene with plasma Tg levels in healthy individuals [19]. This was
the first GWAS to investigate genes associated with plasma Tg levels. The linear mixed
model (LMM) used in our study has become a standard for genome-wide association map-
ping because it efficiently controls for both population structure and relatedness among
individuals. However, LMMs as well as other frequentist methods only test one single nu-
cleotide polymorphism (SNP) at a time. On the other hand, methods that relate phenotypic
variation to multiple genetic variants simultaneously could further increase the power
to detect causal variants. Multiple SNP modeling extensions of the standard LMM have
been proposed from a Bayesian perspective by considering alternative prior distributions
on the genetic effects. In the current study, we included an additional 1096 individuals
and conducted association mapping using both frequentist and Bayesian approaches, as
well as SNP heritability estimation and genomic prediction using Bayesian approaches.
We aimed to replicate the significant findings to further confirm the association of the
ST6GAL1 gene with plasma Tg levels in healthy individuals. Additionally, we sought to
elucidate the genetic architecture of Tg by using Bayesian multi-SNP approaches. Finally,
we meta-analyzed our new GWA results with our previously published GWA results in a
combined dataset of 2190 individuals. The outcome of such a comprehensive approach
will be the generation of new knowledge on the genetic background of Tg that will lead to
a better understanding of the biological pathways related to thyroid function.

2. Results
2.1. Genome-Wide Association Analyses

In the new LMM association analysis, a total of 18 SNPs reached genome-wide sig-
nificance. Of the significantly associated SNPs, 15 were located within the ST6GAL1 gene
on chromosome 3, and 3 were located within the PDPN gene on chromosome 1 (Table 1).
Among the 15 SNPs within the ST6GAL1 gene that reached genome-wide significance, 11
were replications of our previously published discovery phase genome-wide significant
results. The other five genome-wide significant variants from the discovery phase were
also replicated at the 1× 10−4 p-value threshold (Supplementary Table S4).
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Table 1. SNPs passing genome-wide significance threshold (5× 10−8) in the single-SNP LMM analysis and their corresponding PIPs from the multi-SNP BSLMM
analysis of cohorts Korcula2 and Korcula3.

SNP Chr Position Gene Ref. Allele Effect Allele EAF
Single-SNP LMM

Analysis in Cohorts
Korcula2 and Korcula3

Multi-SNP BSLMM
Analysis in Cohorts

Korcula2 and Korcula3
β (p-Value) β (PIP)

rs10937280 3 186738033 ST6GAL1 G A 0.35 −0.31 (9.09× 10−12) −0.29 (0.21)
rs5001409 3 186735690 ST6GAL1 A C 0.35 −0.31 (9.44× 10−12) −0.295 (0.07)
rs9863411 3 186737820 ST6GAL1 C T 0.35 −0.31 (1.06× 10−11) −0.283 (0.2)
rs7634389 3 186738421 ST6GAL1 T C 0.35 −0.31 (1.12× 10−11) −0.292 (0.08)
rs967367 3 186734466 ST6GAL1 G A 0.35 −0.31 (1.15× 10−11) −0.29 (0.12)

rs3821819 3 186732725 ST6GAL1 G A 0.35 −0.31 (1.31× 10−11) −0.292 (0.06)
rs4686838 3 186743053 ST6GAL1 A G 0.45 −0.3(2.33× 10−11) −0.27 (0.08)
rs10212190 3 186731157 ST6GAL1 A T 0.34 −0.29 (1.73× 10−10) −0.28 (0.003)
rs4012172 3 186741511 ST6GAL1 C T 0.36 −0.29 (2.19× 10−10) −0.27 (0.0003)
rs3872724 3 186741221 ST6GAL1 C T 0.37 −0.28 (2.37× 10−10) −0.27 (0.001)
rs3872723 3 186741131 ST6GAL1 C T 0.36 −0.28 (3.4× 10−10) 0 (0)
rs28674898 3 186744563 ST6GAL1 G A 0.39 0.28 (5.81× 10−10) −0.28 (0.003)
rs4686844 3 186765135 ST6GAL1 G A 0.56 −0.25 (1.83× 10−10) −0.15 (0.0007)
rs78946539 1 13921500 PDPN A G 0.04 −0.63 (2.1× 10−8) −0.51 (0.03)

rs143154928 1 13921447 PDPN G A 0.04 −0.63 (2.32× 10−8) −0.5 (0.03)
rs12566684 1 13922117 PDPN A G 0.04 −0.64 (2.46× 10−8) −0.5 (0.02)

rs257104 3 186775807 ST6GAL1 G A 0.4 0.24 (3.33× 10−8) 0.17 (0.002)

Statistical analyses were performed with GEMMA LMM and BSLMM. p-values < 5× 10−8 are genome-wide significant. SNPs are sorted by ascending LMM p-value. BSLMM, Bayesian
sparse linear mixed model; Chr, chromosome; EAF, effect allele frequency; LMM, linear mixed model; PIP; posterior inclusion probability; SNP, single nucleotide polymorphism.
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In the BSLMM association analysis, 16 SNPs were identified as having a major sparse
effect on plasma Tg levels and these variants were estimated to have a sparse effect
in ≥1.6% of BSLMM chain iterations (i.e., posterior inclusion probability (PIP) ≥ 0.016)
(Supplementary Table S3). Moreover, the top four SNPs were identified as having a sparse
effect on Tg levels in more than 10% of chain iterations (PIP > 0.1) and all were located
within the ST6GAL1 gene. There was a complete overlap in the significant results identified
in single-SNP LMM association analysis and multi-SNP BSLMM analysis for the variants
located within the ST6GAL1 gene on chromosome 3 and PDPN gene on chromosome 1
(Table 1). The BSLMM approach uncovered additional association signals on chromosome
8 (rs10283166—PVT1 gene intron variant), chromosome 14 (rs35862113—MARK3 gene
intron variant, rs61972442—OR6J1 gene intron variant), chromosome 3 (rs1631354—RARB
gene intron variant), and chromosome 10 (rs11202702—RNLS gene intron variant). Results
from the single-SNP association analysis (LMM) and the multi-SNP association analysis
(BSLMM) are plotted in parallel in Manhattan plots in Figure 1.

Figure 1. Manhattan plots of single-SNP and multi-SNP association mapping in cohorts Korcula2 and
Korcula3. (A) Manhattan plot of single-SNP LMM analysis. The x axis represents the chromosomal
position of SNPs and the y axis represents their −log10(p-values) obtained by the LMM analysis.
Each dot on the Manhattan plot signifies an SNP. Because the strongest associations have the smallest
p-values (e.g., 10−12), their negative logarithms will be the greatest (e.g., 12). The red horizontal
line indicates the genome-wide significance threshold (p = 5× 10−8), while the blue horizontal line
indicates the suggestive threshold of significance (p = 5× 10−6). (B) Manhattan plot of multi-SNP
BSLMM analysis. The x axis represents the chromosomal position of SNPs, and the y axis represents
their posterior inclusion probabilities (PIPs) obtained by the BSLMM analysis.
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2.2. SNP Heritability Estimation

In our previous work [19], the top rs4012172 SNP was estimated to explain 3.19% of
the variance in Tg levels. In the current study, we estimated the proportion of variance in
phenotypes explained by all available genotypes (PVE) or the “chip heritability”, as well
as the proportion of genetic variance explained by variants with major effect (PGE). The
PVE estimate from the BSLMM with 7,289,083 SNPs indicated that 17% of the variation
in plasma Tg levels was explained by all available genotypes and that 52% (PGE) of this
variation was due to 16 SNPs with relatively large phenotypic effects. These results describe
the genetic architecture of plasma Tg and imply that it is not purely polygenic but rather
favors the sparse assumption on the variant effects. Means, medians and 95% equal tail
posterior probability intervals (95% ETPPIs) of the hyperparameters estimated from the
BSLMM are reported in Supplementary Table S5.

2.3. Genetic Prediction of Thyroglobulin Levels (Polygenic Score PGS Analysis)

To measure the prediction performance, we calculated the correlation coefficient of
predicted and observed values in the test data. Keeping in mind that the PVE was estimated
to be 0.17 by the BSLMM, 0.17 was considered as a theoretical upper bound for the accuracy
of the predictive model. The Pearson’s correlation coefficient was equal to −0.05 (95% CI
[−0.1, 0.0004]) with a p-value of 0.052. This result implies that we have constructed a
genomic predictor of plasma Tg levels which, with the inclusion of additional training and
test data, is expected to pass the 5% statistical significance threshold.

2.4. Meta-Analysis

To attain the largest available sample size for this study, the discovery and replication
datasets were meta-analyzed in order to uncover additional signals hidden in the separated
discovery and replication analyses due to a lack of power. There was little evidence for
population stratification at the replication-level (λKorcula2&3 = 1.004) or meta-analysis level
(λ = 1.029). In the meta-analysis phase, 83 SNPs within the ST6GAL1 gene on chromosome 3
reached genome-wide significance (Figure 2 and Supplementary Table S6). The most significant
SNP was rs5001409 (p = 1.85× 10−20). The regional association plot of the ST6GAL1 region is
shown in Figure 3. The minor C allele (MAF = 0.38) of the rs5001409 was associated with lower
Tg levels (β = −0.297, SE = 0.03). Effect sizes were in the same direction in all datasets. The
forest plot of the effect sizes is shown in Supplementary Figure S1.

2.5. Colocalization Analysis

Our analysis supports a strong colocalization of GWAS signals with eQTLs of the
ST6GAL1 gene in thyroid tissue with an SS p-value of 1× 10−7. The colocalization analysis
is visualized in Figure 4. According to the GTEx portal, the most significantly associated
SNP, rs5001409, was also strongly associated with the expression of the ST6GAL1 gene
in the thyroid tissue (p = 1.7× 10−18). The association is visualized in the violin plot
(Supplementary Figure S2). A normalized effect size (NES) is defined as the slope of the
linear regression and is computed as the effect of the alternative allele (C allele) relative to
the reference allele (A allele) in the human reference genome (i.e., the eQTL effect allele
is the ALT allele). The NES of the C allele at rs5001409 was −0.33, while the median
normalized expression of the ST6GAL1 gene was 0.1952 for genotype AA, −0.0174 for
genotype AC and −0.5219 for genotype CC.
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Figure 2. Manhattan plot and quantile–quantile (Q-Q) plot of the meta-analysis results for thyroglob-
ulin (Tg) levels. (A) Manhattan plot of single nucleotide polymorphisms (SNP) for Tg levels. The
x axis represents the chromosomal position of SNPs and the y axis represents their −log10(p-values)
obtained by combined analysis. Each dot on the Manhattan plot signifies an SNP. The red horizontal
line indicates the genome-wide significance threshold (p = 5× 10−8), while the blue horizontal line
indicates the suggestive threshold of significance (p = 5× 10−6). (B) In the Q-Q plot, we see a strong
deviation from the null distribution (the distribution of p-values under the null hypothesis of no true
association is indicated by the red line).

Figure 3. Regional association plot of the ST6GAL1 region. The most significant SNP (rs5001409) is
shown in purple. The colors of the circles denote their correlations (LD r2) with the top SNP (lead SNP
in purple, high LD SNPs with r2 ≥ 0.8 in red, orange for 0.8 > r2 ≥ 0.6, green for 0.6 > r2 ≥ 0.4, light
blue for 0.4 > r2 ≥ 0.2 and dark blue for r2 < 0.2). The figure was generated using the LocusZoom
tool [20].
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Figure 4. Colocalization analysis of thyroglobulin GWAS signals with eQTL signals of ST6GAL1 gene
in thyroid tissue. Filled circles represent thyroglobulin GWAS −log10(p-values) (left y axis). The
rs5001409 SNP was defined as the lead SNP and is presented in purple. The LD information is similar
to LocusZoom. The LD information was computed from the European 1000 Genomes subset (phase
1, version 3) [21] in reference to the lead SNP. The gray line represents the eQTL signals and traces the
lowest p-value (right y axis, showing −log10(p-values)). Gene track information is from GENCODE
v19 (hg19 coordinates). The figure was generated using the LocusFocus tool [22].

3. Discussion

This study confirmed the results of our recent discovery GWAS on the association of
the ST6GAL1 gene with Tg plasma levels in healthy individuals [19]. In the meta-analysis,
we confirmed 16 variants within the ST6GAL1 gene previously associated with plasma
Tg levels [19] and detected an additional 67 variants within the ST6GAL1 gene that were
associated with plasma Tg levels. The strongest association with plasma Tg levels was
observed for the ST6GAL1 gene rs5001409 SNP (p = 1.85× 10−20). The C allele of this
polymorphism was associated with lower plasma Tg levels. The highest expression of the
ST6GAL1 gene was found in the liver, lymph node, spleen, thyroid, and prostate tissue [23].
According to the GTEx portal, the strongest eQTL signals for the lower expression of
the ST6GAL1 gene in thyroid tissue are rs967367, rs3821819, rs10937280, rs17776120 and
our top SNP, rs5001409, with an expression p-value of 1.7 × 10−18. The top six eQTL
signals were also in the top seven signals associated with lower Tg levels in our meta-
analysis. Additionally, these SNPs are in high LD with our top rs5001409 variant. This
overlap was further confirmed by our colocalization analysis. We offer several explanations
of how a decreased ST6GAL1 expression may be associated with decreased plasma Tg
levels. The first possibility is the association of ST6GAL1 and Tg via the Wnt/β-catenin
signaling pathway. ST6GAL1 activates the Wnt/β-catenin signaling pathway through the
PI3K/Akt/GSK-3β signaling pathway [24]. Lower ST6GAL1 expression leads to a lower
activation of the PI3K/Akt/GSK-3β signaling pathway, resulting in the lower activation
of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin signaling pathway
activates the expression of thyroid transcription factor 1 (TTF-1)[25] (a transcription factor
involved in TG transcription [26]), the lower activation of this pathway leads to lower levels
of TTF-1 and consequently lower Tg levels. The second possibility of ST6GAL1 and Tg
association is via the thyroid-stimulating hormone (TSH) receptor. Namely, ST6GAL1 adds
sialic acid to the TSH receptor [27]. The sialylation of the TSH receptor increases the level
of intracellular cAMP [28] (increased concentration of intracellular cAMP means that the
TSH receptor is activated and the activation of this receptor is associated with an increased
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expression of the TG gene). Thus, a lower ST6GAL1 gene expression leads to lower TSH
receptor sialylation and lower TSH receptor activation. The result is a lower transcription of
the TG gene. The third possibility is the association of ST6GAL1 and Tg through Tg. Tg has
autoregulatory potential and can suppress its own expression [29,30]. Sue et al. suggested
that Tg that is poorly iodinated or sialylated has a higher potential to trigger Tg-mediated
signaling [18] and also has a higher affinity for the asialoglycoprotein (ASGP) receptor
(one of the proposed receptors that could be involved in Tg-mediated signaling) [31,32].
Thus, a lower ST6GAL1 expression could lead to a decrease in Tg sialylation. This would
result in a higher concentration of poorly sialylated Tg which has a higher potential to
trigger Tg-mediated signaling. Tg-mediated signaling can suppress TG gene expression.
The disadvantage of this explanation is that the role of ASGPR in Tg-mediated signaling has
not been thoroughly investigated, and several authors have pointed out that it is necessary
to further investigate the signal transduction that occurs after Tg binding to ASGPR [31–33].
In addition, since lower ST6GAL1 expression could result in a higher concentration of
poorly sialylated Tg, this could increase the amount of Tg in the blood. Specifically, it is
known that preferentially immature Tg (desialylated or poorly sialylated) is transferred to
the blood by transcytosis [19,34].

In addition to the standard frequentist approach to GWA mapping, we performed a
Bayesian multi-SNP mapping by fitting a BSLMM on 7,289,083 SNPs and 1096 individuals.
The multi-SNP BSLMM approach uncovered additional association signals outside of the
ST6GAL1 gene. This study showed that the T allele in rs10283166 SNP located within
the intronic region of the noncoding PVT1 gene on chromosome 8 is associated with
decreased plasma Tg levels. The PVT1 gene encodes a long noncoding RNA that has
an oncogenic role in various types of cancer [35]. Zhou et al. have shown that PVT1
can contribute to tumorigenesis in thyroid cancer [36]. Additionally, Zhou et al. have
shown that the silencing of PVT1 reduces TSH receptor expression [36]. Because increased
TSH receptor activation was associated with increased TG gene expression, an increase
in PVT1 levels would be associated with an increase in Tg levels. Given the important
role of both Tg and PVT1 in thyroid cancer, the effect of the rs10283166 SNP on PVT1
expression should be further investigated. On chromosome 1, the G allele, A allele, and G
allele within rs78946539, rs143154928, and rs12566684 SNPs, respectively, were associated
with lower plasma Tg levels. These SNPs are located within the intronic region of the
PDPN gene. According to the GTEx portal, these SNPs affected the expression of the
RP11-474O21.5 gene in the adrenal gland, but were not associated with changes in PDPN
gene expression. The expression of both the RP11-474O21.5 (GEPIA database [37]) and
PDPN [38] is increased in thyroid carcinoma. An increased expression of PDPN has been
observed in papillary thyroid carcinoma (PTC) [38], and it has been suggested that PDPN
may be a pro-metastatic factor in PTC [38,39]. It has been suggested that the pro-metastatic
activity of PDPN in PTC could be through the activation of the ezrin–radixin–moesin
(ERM) proteins [40]. Interestingly, moesin (ERM protein) has been shown to activate the
Wnt/β-catenin signaling pathway [41] whose increased activation was associated with
increased TG transcription (described earlier in the text) [26].

This study showed that the T allele in rs35862113 SNP located on chromosome 14
is associated with increased plasma Tg levels. This SNP is located in the intronic region
of the Microtubule Affinity Regulating Kinase 3 (MARK3) gene. According to the GTEx
portal, this SNP was associated with a reduced MARK3 expression in thyroid tissue. Thus,
lower MARK3 expression results in increased plasma Tg levels. The possible association of
MARK3 with Tg is through Plakophilin-2 (PKP2) since PKP2 is one of the targets of MARK3.
The phosphorylation of PKP2 by MARK3 creates a 14–3–3 binding site [42] and it has been
suggested that the phosphorylation of PKP2 by MARK3 and subsequent binding by 14–3–3
prevents the nuclear localization of PKP2 [43]. According to Niell et al., PKP2 antagonizes
Wnt/β-catenin signaling [44] (thus, it may consequently lead to lower TG transcription
(described earlier) [26]). Additionally, this study showed that the C allele in rs1631354 SNP,
located in the intronic region of retinoic acid receptor beta gene (RARB) on chromosome
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3, is associated with increased plasma Tg levels. According to the Human Protein Atlas,
RARβ expression is high in the thyroid [13,14] while RARβ expression is reduced in thyroid
carcinomas [45,46]. One previous study showed that treatment with RARβ binding retinoic
acid (a metabolite of vitamin A) inhibited TG gene expression [47] while another showed
that retinoic acid treatment increased TG gene expression [48].

Finally, allele A in rs11202702 SNP, on chromosome 10, was associated with an increase
in Tg plasma levels. According to the GTEx portal, this allele is also associated with an
increase in Ankyrin repeat domain-containing protein 22 (ANKRD22) expression in the
esophageal mucosa (although a significant association between this SNP and ANKRD22
expression was not observed in thyroid tissue). ANKRD22 can activate the Wnt/β-catenin
signaling pathway [49] (thus, it can consequently lead to an increase in TG transcription
(described earlier in the text) [26]). This SNP (rs11202702) is located within the intronic
region of the renalase gene (RNLS). To date, it has not been shown whether rs11202702
SNP affects RNLS gene expression. RNLS can activate AKT [50] which activates the Wnt/β-
catenin signaling pathway [51] (therefore, it can consequently lead to an increase in TG
transcription [26]).

In conclusion, the use of frequentist and Bayesian methods in inferring the genetic
background of plasma Tg levels led to the confirmation of our previous results and the
assessment of new parameters. We performed association mapping with both single-SNP
and multi-SNP approaches. The results of the multi-SNP BSLMM approach are consistent
with the results of our recent frequentist GWAS that showed an association of the ST6GAL1
gene with plasma Tg levels in healthy individuals [19]. In the meta-analysis, we increased
the sample size (from 1094 to 2190 healthy individuals) and with 16 confirmed variants [19],
we found an additional 67 variants within the ST6GAL1 gene associated with plasma Tg
levels. We further fine-mapped the genetic architecture of Tg by estimating the PVE, PGE,
and polygenic score. We found that all available variants explained approximately 17% of
the variance in Tg levels and that 52% of this variation is due to a relatively small number
of 16 variants that have a major effect on Tg levels. We constructed a predictive polygenic
score of plasma Tg levels. Although polygenic predictions are of little use in the clinical
setting, they facilitate new experimental designs and discoveries. For example, they can
be used in a newly genotyped cohort to correlate the observed phenotypic traits with the
genetic prediction of another trait. This approach yields a powerful design because if
there exists an association between the traits, it must be due to genetic factors since there
are no shared environmental factors [52]. This approach will be the scope of our future
studies investigating the genetic factors underlying thyroid function. Because the most
significant association signals in our meta-analysis were associated with both lower plasma
Tg levels and lower ST6GAL1 gene expression, we offered several explanations of how a
lower ST6GAL1 gene expression may lead to a decrease in plasma Tg levels. The molecular
background of the influence of ST6GAL1 on Tg levels should be examined in vitro and
in vivo. Although our data strongly suggest the existence of additional effects beyond
the ST6GAL1 gene, further studies are needed to functionally characterize these complex
effects. In addition, since Tg levels are altered in various thyroid diseases, the association
of the identified genes in patients with different thyroid diseases needs to be examined.
Moreover, our recent study observed an increase in ST6GAL1 in various well-differentiated
thyroid carcinomas (I.G., unpublished data). Finally, the conclusion of this study is that the
genetic architecture of plasma Tg is not purely polygenic, but rather sparse, i.e., influenced
by a few genes with major effects.

4. Materials and Methods
4.1. Study Population

This study was performed on participants originating from two Croatian cohorts: from
the mainland city of Split (CROATIA_Split) and the island of Korcula (CROATIA_Korcula),
derived from the “10,001 Dalmatians project” [53], which was part of the Croatian Biobank
program. Participants were recruited from the island of Korcula in three rounds and subco-
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horts were named CROATIA_Korcula 1, CROATIA_Korcula 2, and CROATIA_Korcula 3,
each subcohort consisting of 1000 participants. We excluded participants who could have
any type of thyroid disease according to anamnestic data and detailed biochemical findings.
Individuals who self-reported thyroid disorder, individuals taking thyroid medication or
who underwent thyroid surgery, as well as individuals with Tg, TSH, free T3 (fT3), free T4
(fT4), Tg autoantibodies (TgAb), or thyroid peroxidase antibodies (TPOAb) levels outside
of the normal reference range for our population were excluded. The published discov-
ery phase [19] included 1094 participants from CROATIA_Split and CROATIA_Korcula
1 cohorts, and in the current study, we included an additional 1096 participants from the
CROATIA_Korcula 2 and CROATIA_Korcula 3 cohorts. The final number of participants in
the combined dataset for the meta-analysis was 2190. The characteristics of the cohorts are
shown in Table 2. Written informed consent was obtained from participants and the study
protocol was approved by the Ethical board of the University of Split, School of Medicine
(No: 2181-198-03-04-14-0031 and 2181-198-03-04- 19-0022).

Table 2. Characteristics of the study population.

Cohort Split Korcula 1 Korcula 2 Korcula 3

N 605 489 593 505
Women 321 (53%) 297 (61%) 328 (55.3%) 294 (58.2%)

Age 51 (39, 61) 56 (46, 67) 54 (40, 65) 54 (39, 65)
Tg 9.20 (4.80, 14.50) 10.20 (6.40, 15.70) 10.1 (5.6, 16.4) 10.6 (7.5, 16.1)

Values in the table represent median (interquartile range) or n (%). n, number of participants; Tg, thyroglobulin.

4.2. Genotyping and Imputation

Genotyping platforms and quality control procedures are summarized in Supplemen-
tary Table S1. Cohorts CROATIA_Korcula 2 and CROATIA_Korcula 3 were genotyped
together using a mix of Illumina genotyping platforms CNV370v1, CNV370-Quadv3, and
OmniExpressExome-8v1-2_A. Quality control (QC) steps were applied to all genotyping
array data. The minimum call rate was 98% for SNPs and 97% for individuals, and au-
tosomal SNPs not in Hardy–Weinberg equilibrium (p-value < 1× 10−6) were excluded.
SHAPEIT v2.r873 and the Positional Burrows–Wheeler Transform (PBWT) [54] provided
by the Wellcome Sanger Institute were used for phasing and imputing data into the Haplo-
type Reference Consortium (HRC) reference panel [55]. Additional QC was performed on
imputed data. Imputed variants not in Hardy–Weinberg equilibrium (p-value < 1× 10−6),
with minor allele frequency (MAF) < 0.01 or with an information score < 0.4, were excluded.
Sex chromosomes were not analyzed. Due to the heavy computational burden of fitting
a multi-SNP approach, only variants with an information score ≥ 0.9 were used for the
Bayesian modeling, and the compared LMM analysis. The final number of SNPs tested
for association with Tg levels was 7,289,083 for both frequentist and Bayesian approaches,
and 6,554,718 overlapping SNPs for the meta-analysis. Cohorts CROATIA_Korcula 2 and
CROATIA_Korcula 3 were merged with an earlier genotyped CROATIA_Korcula 1 cohort
and this merged dataset was used for prediction analyses. The final number of SNPs used
in the estimation of hyperparameters and prediction analyses was 7,289,083.

4.3. Biochemical Measurements

Levels of thyroid hormones and antibodies in the plasma of participants were deter-
mined by immunoassay methods with the Liaison XL Biomedica Chemiluminescence
Analyzer. Reference ranges for the study population were: Tg 0.2–50 ng/mL, TSH
0.3–3.6 mIU/L, fT3 3.39–6.47 pmol/L, fT4 10.29– 21.88 pmol/L, TgAb 5–100 IU/mL, and
TPOAb levels 1–16 IU/mL. All biochemical measurements were performed in the Biochem-
istry Laboratory in the Department of Nuclear Medicine at the University Hospital Split.
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4.4. Genome-Wide Association Analyses

Genome-wide association analyses in cohorts CROATIA_Split and CROATIA_Korcula
1 were performed in our previously conducted discovery GWAS [19]. We conducted a new
GWAS in an independent combined dataset CROATIA_Korcula2 and CROATIA_Korcula 3
consisting of 1096 participants. For the association analysis, we considered two different
approaches: the frequentist LMM and Bayesian BSLMM, both implemented using the
software GEMMA 0.98.5 [56]. The phenotype used in both approaches was the same; Tg
levels were firstly regressed on sex and age using R statistical software [57] and regression
residuals were further quantile normalized to a standard normal distribution.

4.4.1. Linear Mixed Model (LMM)

We fit a standard LMM using GEMMA 0.98.5. in the following form:

y = Wα + xβ + u + ε (1)

u ∼ MVNn(0, λτ−1K) (2)

ε ∼ MVNn(0, τ−1In) (3)

where y is a vector of Tg residuals corrected for age and sex for n = 1096 individuals, W is
a n× c matrix of covariates (fixed effects) in our case; a column of 1s, α is a c-vector of the
intercept; x is an n-vector of marker genotypes, β is the effect size of the marker, u is an n-
vector of random effects; ε is an n-vector of errors; τ−1 is the variance of the residual errors,
λ is the ratio between the two variance components, K is a known n× n relatedness matrix
and In is an n× n identity matrix. MVNn denotes the n-dimensional multivariate normal
distribution. Effect sizes represent the change in adjusted Tg levels for each additional
effect allele in the genotypes of participants.

4.4.2. Bayesian Framework

LMM implemented in GEMMA with Equation (1) tests the alternative hypothesis
H1 : β 6= 0 against the null hypothesis H0 : β = 0 for each SNP in turn. Extensions of LMM
that jointly account for the effects of variants across multiple loci could further increase
power to detect causal variants. Bayesian LMMs are capable of modeling all markers jointly
by assuming different prior distributions on the marker effects and sampling from their
posterior distribution. Bayesian models developed for the estimation of the SNP effect sizes
start with a simple linear model that relates genotypes X to phenotypes y:

y = 1nµ + Xβ + ε (4)

ε ∼ MVNn(0, τ−1In) (5)

where y is a vector of phenotypes measured on n individuals, X is a n × p matrix of
genotypes measured on that same n individuals at p genetic markers, β is a p-vector of
genetic marker effects, 1n is an n-vector of 1 s, µ is a scalar of the phenotype mean, and ε is
an n-vector of error terms that have variance τ−1. Our aim was to estimate the parameter
β, that is, the effects of genetic markers, however, since the number of genetic markers p
in our study (7,289,083) was considerably larger than the number of individuals n (1096),
we needed to make some modeling assumptions for SNP effect sizes β. These different
assumptions on the priors vary from the infinitesimal (i.e., the polygenic) model which
assumes that all SNPs have a non-zero effect, to the direct opposite, the sparse model
which assumes that a relatively small proportion of all variants affect the phenotype. The
performance of the model depends on the underlying true genetic architecture of the
studied trait. However, in general, this true genetic architecture is unknown. The most
commonly used polygenic modeling approach assumes that all SNPs affect the phenotype
(have a non-zero effect) with normally distributed effect sizes:
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β ∼ N(0, σ2
β) (6)

Equation (1) with the normality assumption (6) for effect sizes β yields a model referred
to as the linear mixed model (LMM) for its resulting random effect term of the combined
genetic effects.

4.4.3. Bayesian Sparse Linear Mixed Model (BSLMM)

A more general assumption, which includes both polygenic and sparse modeling as-
sumptions as special cases, is that the effect sizes come from a mixture of two
normal distributions:

βi ∼ πN(0, (σ2
a + σ2

b )/pτ) + (1− π)N(0, σ2
b /pτ) (7)

where π is the proportion of SNPs with large effects, and therefore the model is interpreted
under the assumption that all variants have at least a small effect, where σ2

b /pτ is the
variance of small effects, and σ2

a /pτ is the additional variance of large effects. The resulting
model is the Bayesian sparse linear mixed model (BSLMM) proposed by Zhou et al. [58]. By
assuming a combination of polygenic and sparse effects for the prior distribution of effect
sizes, BSLMM is capable of adapting to different genetic architectures of the studied traits.
Multi-SNP association mapping in BSLMM accounts for relatedness among individuals and
population stratification by including a genomic kinship matrix as a random effect term. It
also accounts for linkage disequilibrium (LD) between SNPs by estimating SNP effect sizes
β while controlling for other SNPs included in the model [58]. BSLMM uses a Markov chain
Monte Carlo algorithm to sample from the posterior to obtain the SNP effect size β. As
opposed to p-values from LMM, for each SNP, it outputs a posterior inclusion probability
(PIP), which is the probability that the marker is associated with the trait given the data,
calculated as a proportion of chain iterations in which that SNP has a large effect. SNPs that
are most robustly associated with the phenotype are therefore expected to have large PIPs
and these SNPs are the most probable candidates for being the functional variants affecting
plasma Tg variation. We ran a BSLMM on the same dataset (1096 individuals and 7,289,083
variants) as in our primary frequentist LMM association analysis in order to compare the
single-SNP and multi-SNP approaches and to possibly reduce the incidence of false positive
and false negative findings. BSLMM chain was run with default 1,000,000 sampling steps
and 100,000 burn-in iterations. We used the estimated PIPs from the BSLMM output for the
additional fine-mapping of the genomic regions significantly associated with Tg levels in
the standard LMM analysis. The p-values from the LMM were plotted in parallel with PIPs
from the BSLMM analysis in the Manhattan plots using the R package “CMplot” [59].

4.5. SNP Heritability Estimation

We estimated the proportion of variance in phenotypes explained by all available
genotypes (PVE), also referred to as the “chip heritability”, by assuming that the SNP
effect sizes follow a mixture of two normal distributions (Equation (7)), as implemented in
GEMMA BSLMM.

4.6. Genetic Prediction of Thyroglobulin Levels (Polygenic Score PGS Analysis)

Predicting phenotypes from genotypes for newly observed individuals can greatly aid
the development of precision medicine. However, predictions require the development of
statistical methods that can accurately model the polygenic architecture of the studied trait.
This is achieved by constructing a polygenic score (PGS). The simplest PGS is essentially a
weighted sum of genotypes across SNPs, where weights are the estimated genetic effect
sizes (β) [60]. We decided to utilize the BSLMM model for genomic prediction since this
method was designed for use on individual-level data and has been demonstrated to
outperform several other genomic prediction methods [58]. Tg levels were firstly regressed
on sex and age using the R software. Derived residuals were quantile normalized to a
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standard normal distribution in R before the PGS analysis. Because GEMMA requires that
the input genotype file for the PGS analysis contains both training and test data, Cohorts
CROATIA_Korcula 2 and CROATIA_Korcula 3 were merged with the earlier genotyped
CROATIA_Korcula 1 cohort and this merged dataset was used for constructing the PGS.
Sample data from the combined cohorts CROATIA_Korcula 2 and CROATIA_Korcula 3
were used as training data, and sample data from the CROATIA_Korcula 1 cohort were
used as test data. A Bayesian sparse linear mixed model was then fitted on the training
data and its prediction performance was evaluated by calculating the Pearson’s correlation
coefficient between the predicted and observed values in the test data. The estimate of PVE
for the SNPs used in the prediction analysis represents the potential upper bound for the
performance of PGS [60]. Because of this, we expected that the prediction accuracy of the
most efficient PGS would not exceed the estimated value of PVE.

4.7. Meta-Analysis

We combined our previously conducted and published GWAS results in the CROA-
TIA_Split and CROATIA_Korcula1 cohorts with our newly conducted GWAS in the CROA-
TIA_Korcula 2 and 3 cohorts using a fixed-effect inverse-variance weighted model. To
visualize the meta-analysis results, a Manhattan plot and a quantile–quantile (Q-Q) plot
were generated using the R package “qqman” [61]. A regional association plot for the
genomic region within 500 Kb of the top hit was generated using LocusZoom software [20],
and a forest plot for the most significant SNP association was generated using the R package
MetABEL.

4.8. GTEx Project

The Genotype-Tissue Expression (GTEx) project [23] provides the scientific community
with a resource to study human gene expression and regulation and its relationship with
genetic variation. By analyzing global RNA expression within individual tissues and
treating the expression levels of genes as quantitative traits, variations in gene expression
that are highly correlated with genetic variation can be identified as expression quantitative
trait loci or eQTLs. The GTEx Project database contains the analyses of mRNA levels
in 49 different tissues, including thyroid tissue obtained from 574 donors with available
genotype data. The data used for the analyses described in this manuscript were obtained
from the GTEx portal.

4.9. Colocalization Analysis

Colocalization testing brings it closer to establishing causal relationships. If an SNP
is significantly associated with both Tg levels and the gene’s expression (i.e., it is an
expression quantitative trait locus, eQTL), then this may suggest a regulatory role of the
SNP on gene expression in the pathway to Tg levels, which can also be regarded as vertical
pleiotropy. Using the LocusFocus tool [22], we tested whether our meta-analysis signals
were colocalized with the eQTL signals. The LocusFocus tool implements a frequentist
colocalization framework—the Simple Sum (SS) developed by Gong et al. [62]. The SS is
more powerful for colocalization than existing methods, particularly in regions of high
linkage disequilibrium (LD) and allelic heterogeneity. The performance of SS relative to
other frequently implemented Bayesian colocalization methods designed for summary-
level data was documented by Gong and collaborators [62]. To perform the colocalization
analysis, we integrated our meta-analysis summary statistics data with cis-eQTL data from
thyroid tissue from the GTEx project v8.
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19. Matana, A.; Popović, M.; Boutin, T.; Torlak, V.; Brdar, D.; Gunjača, I.; Kolčić, I.; Boraska Perica, V.; Punda, A.; Rudan, I.; et al.
Genetic Variants in the ST6GAL1 Gene Are Associated with Thyroglobulin Plasma Level in Healthy Individuals. Thyroid 2019,
29, 886–893. [CrossRef]

20. Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasis, G.R.; Willer, C.J. LocusZoom:
Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26, 2336–2337. [CrossRef]

21. Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.;
Gabriel, S.B.; et al. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65.

22. Panjwani, N.; Wang, F.; Mastromatteo, S.; Bao, A.; Wang, C.; He, G.; Gong, J.; Rommens, J.M.; Sun, L.; Strug, L.J. LocusFocus:
Web-based colocalization for the annotation and functional follow-up of GWAS. PLoS Comput. Biol. 2020, 16, e1008336. [CrossRef]
[PubMed]

23. Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The
Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [CrossRef] [PubMed]

24. Wei, A.; Fan, B.; Zhao, Y.; Zhang, H.; Wang, L.; Yu, X.; Yuan, Q.; Yang, D.; Wang, S. ST6Gal-I overexpression facilitates prostate
cancer progression via the PI3K/Akt/GSK-3beta/beta-catenin signaling pathway. Oncotarget 2016, 7, 65374–65388. [CrossRef]
[PubMed]

25. Gilbert-Sirieix, M.; Makoukji, J.; Kimura, S.; Talbot, M.; Caillou, B.; Massaad, C.; Massaad-Massade, L. Wnt/beta-catenin signaling
pathway is a direct enhancer of thyroid transcription factor-1 in human papillary thyroid carcinoma cells. PLoS ONE 2011,
6, e22280. [CrossRef]

26. Civitareale, D.; Lonigro, R.; Sinclair, A.J.; Di Lauro, R. A thyroid-specific nuclear protein essential for tissue-specific expression of
the thyroglobulin promoter. EMBO J. 1989, 8, 2537–2542. [CrossRef] [PubMed]

27. Frenzel, R.; Krohn, K.; Eszlinger, M.; Tonjes, A.; Paschke, R. Sialylation of human thyrotropin receptor improves and prolongs its
cell-surface expression. Mol. Pharmacol. 2005, 68, 1106–1113. [CrossRef] [PubMed]

28. Korta, P.; Pochec, E. Glycosylation of thyroid-stimulating hormone receptor. Endokrynol. Pol. 2019, 70, 86–100. [CrossRef]
29. Huang, H.; Shi, Y.; Liang, B.; Cai, H.; Cai, Q. Iodinated TG in Thyroid Follicular Lumen Regulates TTF-1 and PAX8 Expression

via TSH/TSHR Signaling Pathway. J. Cell Biochem. 2017, 118, 3444–3451. [CrossRef]
30. Suzuki, K.; Lavaroni, S.; Mori, A.; Ohta, M.; Saito, J.; Pietrarelli, M.; Singer, D.S.; Kimura, S.; Katoh, R.; Kawaoi, A.; et al.

Autoregulation of thyroid-specific gene transcription by thyroglobulin. Proc. Natl. Acad. Sci. USA 1998, 95, 8251–8256. [CrossRef]
31. Sellitti, D.F.; Suzuki, K. Intrinsic Regulation of Thyroid Function by Thyroglobulin. Thyroid 2014, 24, 625–638. [CrossRef]
32. Ulianich, L.; Suzuki, K.; Mori, A.; Nakazato, M.; Pietrarelli, M.; Goldsmith, P.; Pacifico, F.; Consiglio, E.; Formisano, S.; Kohn, L.D.

Follicular thyroglobulin (TG) suppression of thyroid-restricted genes involves the apical membrane asialoglycoprotein receptor
and TG phosphorylation. J. Biol. Chem. 1999, 274, 25099–25107. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1365-2265.1994.tb02786.x
http://dx.doi.org/10.1023/A:1010016520778
http://dx.doi.org/10.1074/jbc.270.50.29881
http://www.ncbi.nlm.nih.gov/pubmed/8530385
http://dx.doi.org/10.1002/2211-5463.12745
http://www.ncbi.nlm.nih.gov/pubmed/31622539
http://dx.doi.org/10.1016/S0021-9258(18)53736-4
http://dx.doi.org/10.1089/thy.2005.15.645
http://www.ncbi.nlm.nih.gov/pubmed/16053379
http://dx.doi.org/10.1126/science.aal3321
http://www.ncbi.nlm.nih.gov/pubmed/28495876
http://dx.doi.org/10.1126/science.1260419
http://www.ncbi.nlm.nih.gov/pubmed/25613900
http://dx.doi.org/10.1158/0008-5472.CAN-07-1340
http://dx.doi.org/10.1016/S0021-9258(18)66845-0
http://dx.doi.org/10.1016/j.bbrc.2012.03.046
http://dx.doi.org/10.1089/thy.2018.0661
http://dx.doi.org/10.1093/bioinformatics/btq419
http://dx.doi.org/10.1371/journal.pcbi.1008336
http://www.ncbi.nlm.nih.gov/pubmed/33090994
http://dx.doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
http://dx.doi.org/10.18632/oncotarget.11699
http://www.ncbi.nlm.nih.gov/pubmed/27588482
http://dx.doi.org/10.1371/journal.pone.0022280
http://dx.doi.org/10.1002/j.1460-2075.1989.tb08391.x
http://www.ncbi.nlm.nih.gov/pubmed/2583123
http://dx.doi.org/10.1124/mol.105.012906
http://www.ncbi.nlm.nih.gov/pubmed/16014806
http://dx.doi.org/10.5603/EP.a2018.0077
http://dx.doi.org/10.1002/jcb.26001
http://dx.doi.org/10.1073/pnas.95.14.8251
http://dx.doi.org/10.1089/thy.2013.0344
http://dx.doi.org/10.1074/jbc.274.35.25099
http://www.ncbi.nlm.nih.gov/pubmed/10455190


Int. J. Mol. Sci. 2022, 23, 2173 16 of 17

33. Luo, Y.; Ishido, Y.; Hiroi, N.; Ishii, N.; Suzuki, K. The Emerging Roles of Thyroglobulin. Adv. Endocrinol. 2014, 2014, 1–7.
[CrossRef]

34. Marino, M.; McCluskey, R.T. Role of thyroglobulin endocytic pathways in the control of thyroid hormone release. Am. J. Physiol.
Cell Physiol. 2000, 279, C1295–C1306. [CrossRef] [PubMed]

35. Onagoruwa, O.T.; Pal, G.; Ochu, C.; Ogunwobi, O.O. Oncogenic Role of PVT1 and Therapeutic Implications. Front. Oncol. 2020,
10, 17. [CrossRef] [PubMed]

36. Zhou, Q.; Chen, J.; Feng, J.; Wang, J. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2
and regulating thyroid-stimulating hormone receptor (TSHR). Tumor Biol. 2016, 37, 3105–3113. [CrossRef] [PubMed]

37. Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and
interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [CrossRef] [PubMed]
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