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1 Introduction

Helium has been a bountiful model element for an abundance of scienti�c studies for a
long time now, mainly because of its unique phase diagram, the only one among elements
with liquid phase in the limit of absolute zero. Natural helium comes in two isotopes,
bosonic 4He and fermionic 3He. Among the many areas of study of low-energy and ultra-
cold physics regarding helium, the phenomena that stand out the most are condensation
and super�uidity. Both are purely quantum - impossible for classical systems.
Condensation is an occurrence where the macroscopic part of the system falls into a

single state, below some temperature. Obviously, it is only possible for bosonic systems,
since the Pauli exclusion principle prevents any two fermions from being in one same
state. A condensed system is called Bose-Einstein condensation (BEC), in honor of
Albert Einstein and Satyendra Nath Bose, two physicists who predicted this phenomenon
in 1924. In an attempt to explain super�uidity, the ability of quantum systems to �ow
without friction, London used the concept of BEC. The experimental observation of
super�uid transition temperature Tλ = 2.17 K gave rise to the two �uid model for 4He,
with a fraction of the system behaving completely without friction, while the rest behaves
as a normal liquid. London proposed that the super�uid fraction is actually condensed
in the lowest single-particle state. Contrary to that, Landau explained super�uidity as a
combination of liquid in ground state as super�uid component, and �uid of quasiparticles
as normal component, with no mention of BEC.
London vs. Landau controversy is very much alive, even nowadays. It is still debatable

if the occurrence of condensation and super�uidity are connected on a level deeper than
coincidental. Still, many modern studies seem to be more inclined towards Landau,
viewing the two simply as separate quantum phenomena, and therefore studying one
regardless of the other. From a very large number of studies conducted in this niche
of physics ever since, one can highlight D. M. Ceperley in 1995 [1], who rounded up R.
Feynman's formulation of quantum mechanics from 1948 [2], into a powerful technique
for computer simulations.
The focus of this work is the study of super�uidity of bosonic 4He in porous media.

A study has been conducted by L. Vranje² Marki¢ and H. Glyde [3], presenting path
integral Monte Carlo simulations of various properties of liquid 4He in nanopores. One
focal point of the study was the fact that helium seems to scale as a system of di�erent
dimensionality, depending on radius of the pores. Speci�cally, for a very narrow nanopore,
it scales as a one-dimensional (1D) liquid. The interesting part is the theory describing a
low-energy one-dimensional quantum system - Tomonaga-Luttinger liquid. This e�ective
theory is valid for virtually any one-dimensional system, which makes studying that
model applicable to many others. In 1D, long range order is not possible. Instead, 1D
Luttinger liquid exhibits long range correlations decaying by power law, even in the limit

1



CHAPTER 1. INTRODUCTION 2

of absolute zero. So, the correct terminology in 1D is quasi-solid, quasi-condensate and
quasi-super�uid.
The aforementioned study consisted of simulations of low temperature helium liquid

con�ned inside a cylinder whose order of magnitude is in angstroms. This work continues
the in-silico study of 4He in very narrow nanopores, but with an addition of disorder,
in the form of foreign �xed particles in the outer layers of the cylinder. The disorder
will a�ect the potential that atoms of helium feel. The goal is to observe if the addition
of disorder con�rms or breaks the Tomonaga-Luttinger model and possibly provide an
explanation why, with the target property of interest being the super�uid density.
In 1D there is a prediction that, depending on the so-called Luttinger parameter K,

which is connected to the density of the system, di�erent physical regimes are observed.
For K < 1/2 the system is in the quasi-solid regime. Otherwise it is in super�uid (or
more precisely in quasi-super�uid) regime. Furthermore, it has been predicted that for
K > 3/2, the super�uid is robust to disorder, while for lower K the super�uidity should
be destroyed [4]. The aim of this work is also to observe in the quasi-1D geometry the
change in the super�uid response with the density and speci�cally to observe if and how
one can di�erentiate these di�erent regimes.
The second chapter of this thesis will present two theories relevant for this study - path

integral formulation of quantum mechanics and the Tomonaga-Luttinger model. The
third chapter will review Monte Carlo methods of computation, their implementation
with the path integral theory, and the way relevant observables are calculated. The
fourth chapter will explain in detail the setting of the system, present already known
results and the new results, comparing them with the predictions of Luttinger liquid
model. Finally, the results will be discussed in the �fth chapter.



2 Theory

In this chapter we will review important theoretical concepts behind the calculations
of low temperature helium many-body systems. Since the computational process itself
involves the use of path integral Monte Carlo (PIMC) method, it is relevant to understand
the basis of Feynman's Path Integral formulation of quantum mechanics. Secondly,
according to the calculated properties, the system of low density bosonic helium in a
narrow nanopore seems to behave as a Luttinger liquid (LL) - an e�ective model of
low energy one-dimensional systems. The underlying theory for such a system will be
described as well.

2.1 Path integral quantum mechanics

The theory of quantum mechanics began with two mathematically equivalent, but yet
di�erent formulations - one by Schrödinger, which involves the mechanics of a wave func-
tion governed by his famous equation, and the other by Heisenberg, describing instead
the time evolution of operators when acting on a quantum state. In this section, a third
formulation will be described - one established by Richard P. Feynman in 1948. The
theory is centered around �nding a complex function whose square is the probability am-
plitude of �nding the system in some region, for minimal classical action of the system
[2]. This approach is equivalent to the principle of least action of Hamilton's classical
mechanics, passed onto the quantum framework of mind. Aside from providing a di�er-
ent insight into the fuzzy world of quantum systems, this path integral formulation (PI)
is fundamental in development of the PIMC method of stochastic computation, which
provides some bene�ts (and some weaknesses) to previously devised methods.

2.1.1 Path integral formalism

Suppose we have a particle that can have various values of a coordinate x. We can make
a certain (large) number of successive measurements of its coordinate, each separated by
some (small) time interval ε. In a classical sense, the successive values of the coordinate
de�ne a path x(t). The probability of measuring such a path is a function of successive
measurements P (x1, x2, ..., xi, ...). If one wants to know the probability of �nding the
particle in some space-time region R speci�ed by di�erent intervals of the coordinate
x at di�erent times of measurement, R = {x1 ∈ [a1, b1], x2 ∈ [a2, b2], ...}, one should
integrate the probability function over all possible values of {xi}:

PR =

ˆ
R
P (x1, x2, ..., xi, ...)dx1dx2...dxi... (2.1)

3



CHAPTER 2. THEORY 4

From classical perspective, this is completely correct because it is possible to measure
the system at any time without disturbing it.
In the quantum world, however, this is only true if such detailed series of measurements

were actually made and only the paths lying in R were taken into consideration. To
avoid ambiguous uncertainties, an ideal measurement should be made - one that only
determines if the system is in region R, without disturbing it further. It is expected that
the probability that the particle is found in R is the square of some complex number
|ϕ(R)|2 whose phase corresponds to the probability density function P found in Eq. 2.1.
To provide mathematical framework and allow computation of quantities, Feynman

formulated his theory with two postulates [2]:

1. If an ideal measurement is performed to determine whether a particle has a path
lying in a region of space-time, then the probability that the result will be a�rma-
tive is the absolute square of a sum of complex contributions, one from each path
in the region.

2. The paths contribute equally in magnitude, but the phase of their contribution is
the classical action (in units of ~); i.e. the time integral of Lagrangian taken along
the path.

To be able to calculate the action S =
´
L(ẋ, x)dt, it is necessary to have a path x(t) as

a continuous function of time, so the ε→ 0 limit is expected to be taken at some point.
The action can be expressed as

S =
∑
i

S(xi+1, xi), (2.2)

with

S(xi+1, xi) = min

ˆ ti+1

ti

L (ẋ(t), x(t)) dt. (2.3)

Lagrangian must not depend on any higher time derivatives of the position than the �rst,
or the end points are not su�cient to de�ne a classical path x(t) which minimizes the
action. This means that the contribution of the path x(t) to the function from the �rst
postulate must be proportional to exp

[
i
~S (x(t))

]
. Additionally, the sum in Eq. 2.2 is

in�nite for in�nite time intervals, so the theory has to be limited to �nite time [2].
Combining Eq. 2.2 with the postulates, one can construct a function

ϕ(R) = lim
ε→0

ˆ
R

exp

[
i

~
∑
i

S(xi+1, xi)

]
...

dxi+1

A

dxi
A
..., (2.4)

where 1
A is the normalization factor for each time (whose value is not speci�ed). Now the

complex valued function whose square is the probability amplitude to �nd the system
in a certain region of space-time has been de�ned. This completes the path integral
formulation of quantum mechanics.
It is possible to show the analogy between this function and the wave function in

the standard formulation of quantum mechanics. A certain part of the region R can be
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speci�ed as a reference to de�ne the past and the future, i.e. the given state of the system
and the experiment of measurement performed on the system, respectively. This part
can, time-wise, be as narrow as wanted. Suppose that a certain index k of consecutive
measurements xi denotes that part. Then, every measurement before, xk−1, xk−2, ...
marks the past, and every one after xk+1, xk+1, ... the future. This splits the region R
into two parts: R′ for the past, and R′′ for the future. To get ϕ, Eq. 2.4 is applied on
both of the intervals, and then integral is taken over the one remaining measurement xk.
The index can be omitted here so the measurement is simply called x.

ϕ(R) =

ˆ
χ∗(x, t)ψ(x, t)dx. (2.5)

Here, ψ stands for the function from Eq. 2.4 integrated over the past R′, and χ∗ the
same function1 integrated over the future R′′. Since x appears as the k− th index of the
action sum exponent in both integrals, it is the only measurement on which both functions
depend after the integration. Now it is valid to say that |ϕ(R)|2 =

∣∣´ χ∗(x, t)ψ(x, t)dx
∣∣2 is

the probability that the system initially in state ψ will be found in state χ by experiment.
Then, both of these functions can be considered wave functions, one for the state before
the experiment, and one after. Also, if two systems are prepared in a di�erent way,
meaning they come from di�erent past space-time regions, but yield the same ψ, then
the future measurements cannot distinguish the region from which the system came.
Likewise, if two systems yield the same χ for di�erent measurement experiments, then
those experiments are equivalent [2].
Feynman showed that the wave function de�ned this way satis�es the Schrödinger

equation under certain conditions. According to Eq. 2.4, computing the function ψ in
the next instant of time, after one small time interval ε, would result in

ψ(xk+1, t) =

ˆ
exp

[
i

~
S(xk+1, xk)

]
ψ(xk, t)

dxk
A
. (2.6)

The equivalence between Eq. 2.6 and the wave equation is only true in the limit ε→ 0.
The expansion of this equation in the �rst order of ε is considered to be valid for very small
time intervals. Also, this illustration will be done for particle in one spatial dimension in
a potential V (x). This way, it is possible to approximate the action with a very simple
expression:

S(xi+1, xi) =
mε

2

(
xi+1 − xi

ε

)2

− εV (xi+1). (2.7)

This case can easily be generalized to more dimensions and coordinates other than Carte-
sian. With some algebra and after integration, Eq. 2.6 becomes

ψ(x, t+ ε) = exp

(
−iεV (x)

~

) √2π~εi
m

A

[
ψ(x, t) +

~εi
2m

∂2ψ

∂x2
+ ...

]
. (2.8)

1The asterisk marks complex conjugation. It is more convenient to de�ne this function as a complex
conjugate of some function χ.
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This can be expanded in the �rst order of ε, with the left-hand side changing to ψ (x, t+ ε) =

ψ (x, t) + ε∂ψ(x,t)∂t and the exponent containing potential to exp
(
−iεV (x)

~

)
= 1 − iεV (x)

~ .

Also, to keep both sides of the equation in the same order of ε, it is necessary that

A =
√

2π~εi
m . Then, the equation changes to

− ~
i

∂ψ

∂t
=

1

2m

(
~
i

)2 ∂2

∂x2
ψ + V (x)ψ, (2.9)

which is exactly the Schrödinger equation in one dimension [2]. It may be worthwhile
to mention that this demonstration was carried out for the case of Lagrangian being the
quadratic function of velocities, which enables the easier calculation of the integrals over
classical path taken by a free particle.
The equation 2.6, which describes the evolution of a wave function in a small time

interval, is the physical expression of the Huygens' principle, for quantum objects. The
principle states that, if one knows the amplitude of a wave on a certain surface, the
amplitude in a nearby point is a sum of contributions from all the points on the surface.
The contributions are delayed in phase according to the time it would take to get from
the point on the surface to the given point along the path of the least time. In a similar
fashion, one can consider the amplitude of the wave function ψ at some time t + ε as
the sum of all contributions of the wave function from a �surface� of points x in some
previous moment t. The contributions are delayed in phase by the amount of action
required to move from the surface to the given point along the path of the least action,
which is the classical action in Eq. 2.7 [2].
It is clear that, in this comparison, time is replaced by action and plays a similar role.

This concludes the analogy between the wave function in standard and PI formulations
of quantum mechanics.

2.1.2 Imaginary time path integrals

Suppose we have a system prepared in an initial state ψ at some time t0 and we want
to calculate the probability that the system will be found in a later state χ at a time tj .
The result will be the square of the transition amplitude〈

χtj
∣∣ψt0〉 = lim

ε→0

ˆ
...

ˆ
χ∗ (x, t)× exp

(
i

~
S

)
ψ(x, t)

dx0
A
...

dxj
A
. (2.10)

From the perspective of interaction picture representation of standard quantum me-

chanics, this is nothing but a matrix element of exp
(
− i(tj−t0)Ĥ

~

)
between states ψt0 and

χtj . Matrix elements of any function of the coordinates F can be calculated by simply
adding it into the product of states:〈
χtj
∣∣F ∣∣ψt0〉 = lim

ε→0

ˆ
...

ˆ
χ∗ (x, t)F (x0, ..., xj)× exp

(
i

~
S

)
ψ(x, t)

dx0
A
...

dxj
A
. (2.11)

In the ε → 0 limit, F becomes a functional of the path x(t). Similarly to the standard
formulation condition that we can measure only Hermitian operators, or observables,



CHAPTER 2. THEORY 7

here we establish a condition that we can measure only those functionals that can be
de�ned by the changes produced by the possible changes in action S. Such quantities
are denoted as observable functionals [2]. This class of functionals is restricted by the
restrictions on action originating from the condition that the Lagrangian be a quadratic
function of velocities.
Following a similar approach as presented so far, it is possible to determine how to

measure quantities of a quantum statistical system. For a quantum system in thermal
equilibrium, all the properties can be calculated from the thermal density matrix [1, 5].
For Hamiltonian Ĥ and at temperature T , the thermal density matrix is

ρ̂ =
1

Z
e−βĤ =

1

Z

∑
i

e−βEi |ψi〉 〈ψi| . (2.12)

Here, β = 1
kBT

, where kB is the Boltzmann constant, ψi are eigenfunctions of Hamiltonian

Ĥ with eigenvalues Ei, and Z is the partition function

Z = Tr(e−βĤ) =
∑
i

e−βEi . (2.13)

Any observable Ô can be calculated via density matrix as

Ô = Tr
(
Ôρ̂
)

=
1

Z

∑
i

e−βEi 〈ψi|Ô|ψi〉 . (2.14)

In the coordinate representation, all elements of the thermal density matrix are non-
negative and thus can represent probability. We will denote with Rm = {r1,m, ..., rN,m}
a set of coordinates rj,m, or a con�guration, of N particles, with m being the index of the
con�guration and j of an individual particle [5]. In the position space, density matrix is
a function of two con�gurations R1 and R2, so 6N variables, with a parameter β [1]:

ρ̂(R1,R2;β) = 〈R1|e−βĤ |R2〉 =
1

Z

∑
i

ψ∗i (R1)e
−βEiψi(R2). (2.15)

The expectation value of any observable operator Ô can be calculated as

〈Ô〉 =

ˆ
dR1dR2 ρ̂(R1,R2;β) 〈R1|Ô|R2〉 . (2.16)

The property of the density matrix crucial for the development of PIMC method is the
convolution of exponential operators [1]

e−(β1+β2)Ĥ = e−β1Ĥ−β2Ĥ . (2.17)

This means that the product of two density matrices is also a density matrix, with a
di�erent parameter equal to the sum of component parameters. In the position repre-
sentation, this convolution is written as

ρ̂(R1,R3;β1 + β2) =

ˆ
dR2 ρ̂(R1,R2;β1) ρ̂(R2,R3;β2). (2.18)
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It is simple to extend this to the product of more than two density matrices. The
parameter β can be separated into M equal parameters ε = β

M , and thus the density
matrix into a product of M density matrices, each with the parameter ε. Then the
convolution of operators in Eq. 2.17 becomes

e−βĤ =
(
e−εĤ

)M
, (2.19)

and the convolution of density matrices in Eq. 2.18 changes to [1, 5]

ρ̂(R1,RM+1;β) =

ˆ
dR2dR3...dRM ρ̂(R1,R2; ε) ρ̂(R2,R3; ε)... ρ̂(RM ,RM+1; ε)

(2.20)
This formula is central to the Monte Carlo implementation of the Path Integral for-

malism. Consider that the form of Eq. 2.12 de�nes the density matrix as an evolution
operator in imaginary time t = iβ. Then Eq. 2.20 describes the evolution in imaginary
time of an initial con�guration R1 to the �nal con�guration RM+1, written through M
intermediate steps, each with an individual con�guration Ri. This sequence of con�gu-
rations R1, R2, ..., RM+1 can be interpreted as path in imaginary time. Additionally,
since the imaginary time parameter β is closely tied to temperature, so are the smaller
parameters ε. In fact, the intermediate steps represent a division of the time evolution
into evolutions with a smaller time interval t′ = iε = t

M . This means that the tem-
perature of the system for each smaller time evolution is MT . Loosely speaking, this
can be interpreted as measuring the system M consecutive times on M times the higher
temperature. Even for �nite M ≥ 1, the Eq. 2.20 is exact. Of course, one can make the
M → ∞, or ε → 0 limit to make the path continuous [5]. This makes the temperature
in�nite and measurements completely classical.
The action of a system is minus the natural logarithm of the density matrix

S = − ln [Zρ̂] . (2.21)

Just like in Eq. 2.2, or considering the density matrix convolution Eq. 2.18, we can
separate the action into smaller pieces [5]

Sm = − ln [ρ̂(Rm−1,Rm; ε)] . (2.22)

This way, the exact thermal density matrix from Eq. 2.20 becomes [1]

ρ̂(R1,RM+1;β) =

ˆ
dR2dR3...dRM × exp

[
M+1∑
m=2

Sm

]
. (2.23)

Since the exact thermal density matrix is calculated from the Hamiltonian Ĥ = K̂ + V̂ ,
Eq. 2.22 suggests that the action will also have kinetic and potential parts. The exact
kinetic action Km between (m− 1)-th and m-th time interval is

Km =
3N

2
ln(4πλε) +

(Rm−1 −Rm)2

4λε
, (2.24)
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where λ = ~2
2m . The potential part of the action Um, or the inter-action [1], is what

remains:
Um = Sm −Km. (2.25)

To calculate the matrix elements of observables, a su�cient approximation is required
for action, and therefore the density matrix. This will be reviewed in the next chapter.

2.1.3 The classical isomorphism

Path integral formulation of a thermal quantum system allows making of an important
interpretation that may shed some light on what we can expect from its properties.
Firstly, notice that by dividing the imaginary time into M smaller time intervals ε,

the system of N particles is actually represented by M di�erent con�gurations. One
con�guration, represented by the set of coordinates Rm, is called a time slice or time

sweep. Following the logic of depicting imaginary time as the actual, real time, each
con�guration will be connected only to the previous and the next one, which expresses
the physical causality. This connection is de�ned by the action Eq. 2.22 and is called a
link [1, 5].
Although it may be tempting to see imaginary time as just a di�erent way of intro-

ducing time, it's actually not a time at all, in a physical sense. In fact, imaginary time
is by all accounts another spatial dimension in physical systems. However, being that
one cannot just introduce a new spatial dimension to a quantum system, this has a dis-
tinct interpretation, that is, a connection to the classical systems. Every d-dimensional
quantum system in imaginary time can be mapped onto a classical system of d + 1 di-
mensions, where the quantum imaginary time direction plays the role of an additional
classical spatial dimension [6]. So, a quantum system of N particles with M di�erent
con�gurations is analogous to a classical system of N ×M particles. Each particle here
is called a bead [5] and speci�ed by the coordinate rj,m of each con�guration Rm.
Each particle can interact only with other particles in the same con�guration. However,

each particle is also propagated in imaginary time, so it is connected to the previous and
next versions of itself, forming a path in imaginary time. The kinetic action connects
a bead with other beads of the same index j and in di�erent con�gurations m. This
just means that the kinetic energy propagates the particles in time. The potential action
connects the beads with di�erent j in the same con�gurations m, which accounts for
physical interactions dependent on the coordinates of particles. In a classical analogy,
this means that the kinetic action of the form Eq. 2.24 connects the beads with a
quadratic spring potential, so the particles form chains in what would be the imaginary
time. These chains are called polymers [1, 5]. The interpolymeric potential is peculiar
in a classical sense, since it only interacts in the same link, or at the same time in a
quantum sense.
Furthermore, convolution property of the density matrix produces a periodic boundary

condition R1 = RM+1 as a necessary demand for calculation of diagonal observable
averages. This means that the polymers in the classical system are closed rings. All
this is schematically shown in Fig. 2.1. In a classical system, the action from Eq. 2.21
represents a potential energy function divided by a �ctive temperature factor kBT . One
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Figure 2.1: A classical isomorphism of a quantum system in an imaginary time. Only two
polymers are shown. The beads with the same number represent particles on
di�erent polymers at the same time. Red springs represent kinetic action
between beads in a single polymer, while blue dashed lines represent the
interpolymeric potential acting in the same time slice. This potential can, of
course, originate from all particles of the same time slice.

polymer corresponds to a path of a particle in imaginary time. Just like real polymers,
these paths are actually fractals by nature [1] - if the number of time slices, and thus the
beads, is in�nite, they will not occupy the whole space, but rather a �nite region.
This analogy between a quantum system of N particles and a classical system of N ring

polymers with M links is the essence of PI formulation. Partition functions of the two
systems are equal and all of the correlations are calculated the same way. This means
that many properties of the quantum system can be understood in terms of classical
statistical mechanics. Actually, one important remark for this work - super�uidity in the
quantum model, is equal to the presence of macroscopic polymers in the classical model.
There are, however, some con�icts in quantum and classical terminology that may

cause misconceptions, mostly regarding the relation between velocity and temperature.
At low temperatures, system particles are expected to be delocalized - spread out because
of the uncertainty relations. On the other hand, since the velocity is de�ned as the
displacement of beads between consecutive time slices divided by ε, spread out particles
will have higher velocity, which contributes to the higher temperature in a classical sense.
It is important to notice that, for a classical bead-spring model, temperature introduced
in quantum system is not a temperature at all, but just a constant divisor of the potential
energy [5].
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2.2 Luttinger liquid model

This section deals with the theoretical model for one-dimensional system of interacting
quantum particles. A starting point for the description of these systems is the Fermi gas
- a phase of matter comprising large number of non-interacting fermions, particles that
obey the Pauli exclusion principle, which prevents them from condensing into a single
state like bosons. At absolute zero, the gas is degenerate, meaning that the system's
ground state can be obtained by �lling all single-particle states up to the Fermi energy
[7].
The expansion of this model into the interacting fermions was introduced by Landau

in 1956, and is called Fermi liquid [8]. The main idea is to adiabatically introduce
the interactions into the non-interacting system, thus transforming its ground state.
The adiabatic nature of this transition conserves the quantum numbers of the occupied
states, while changing their dynamical properties. This means that there is a one-to-
one correspondence between Fermi gas excited states and Fermi liquid states, also called
quasi-particles. In a physical sense, these quasiparticles can be thought of as propagating
fermions that are �dressed� by the interactions, meaning that they are altered by their
surroundings to have di�erent e�ective mass and dynamical properties. Even at T =
0 K, the Fermi surface of this system is destroyed by the interaction, and in fact has a
discontinuity, which makes a big di�erence in comparison to the Fermi gas [7, 8].
In one dimension, however, the Fermi surface is actually only two points of positive

and negative Fermi momentum. The Fermi liquid model breaks down in this case. The
simplest model of a system like this describes the low-lying excitations around those two
points of a one-dimensional Fermi gas with density-density interactions. This is called
the Tomonaga-Luttinger liquid [9].

2.2.1 One-dimensional fermion system

We start by observing the dispersion relation of a one-dimensional system with density-
density interactions. Since we are studying the low-lying excitations, most of its physics
comes from the vicinity of two Fermi points, which is an equivalent of a Fermi surface in
one dimension. Then, the system's dispersion relation can be treated as linear, as shown
in Fig. 2.2. This is the Tomonaga-Luttinger model, describing a chiral liquid consisting
of two parts, one made up of left moving, and the other of right moving fermions [7, 9].
Second quantization Hamiltonian of this model is

Ĥ =
∑
α=±1

vF

ˆ
dxψ†α(iα∂x − kF )ψα −

1

2

ˆ
dxdx′ρ(x)V (x− x′)ρ(x′). (2.26)

Here, the index α is +1 for right moving subsystem with corresponding �eld ψ+, and −1
for left moving subsystem with �eld ψ−, vF is the Fermi velocity, and ρ = ψ†−ψ−+ψ†+ψ

†
+

is the total density. This microscopic Hamiltonian is exact and is a realistic description
of a system with interaction V . However, since we are studying a strongly interacting
system with multiparticle excitations, it is very di�cult to treat it exactly, so an e�ective
theory is more desirable. Note, however, that Eq. 2.26 makes no distinction between
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(a) (b)

Figure 2.2: Dispersion relation of a one-dimensional system. Horizontal green lines de-
note the Fermi energy level, while red lines represent �lled states. (a) A more
realistic realization that corresponds to a parabolic band in a one-dimensional
crystal. Blue line is the liearization of the band near the point of positive
Fermi momentum. (b) Dispersion of the Tomonaga-Luttinger model, consist-
ing of right and left moving fermions and an unphysical in�nite �sea� of �lled
states.

fermions and bosons because, in essence, there is not much di�erence in 1D [7]. In fact,
using the bosonization method, it is possible to express the fermionic �elds in terms of
bosonic �elds.
Let's begin with one-dimensional bosonic �eld theory, where the �eld φ is governed by

the non-linear Schrödinger equation (NLSE) for spinless particles of mass m and with
density-density interaction [7]:

i
∂φ(x, t)

∂t
= − 1

2m

∂2φ(x, t)

∂x2
+

ˆ
dx′φ†(x′, t)V (x− x′)φ(x, t), (2.27)

with ~ = 1. The system obeys a periodic boundary condition φ(x+L) = φ(x). Since the
physical objects in question are still particles, assume that x is discrete and �elds can be
written as φ(xi, t) = φi(t). Then the action is

S =

ˆ
dt

[∑
i

φ†i i∂tφi −H

]
. (2.28)

This form highly resembles the action of a set of canonical variables, usually written as
S =

´
dt [pq̇−H(p, q)]. The �elds φ and φ† are indeed canonically conjugate variables,

which implies the following commutation relation:[
φi(t), φ

†
j(t)
]

= δij . (2.29)



CHAPTER 2. THEORY 13

Whichever parametrization we chose for our �elds, there must always be a pair of canon-
ical variables with a delta function commutator. There is one such representation for the
creation �eld that can always be used:

φ† =
√
ρeiϕ, (2.30)

where ρ represents the density, and ϕ represents the phase of the �eld. For N particles
at positions xn, the density is just a sum of delta functions [7, 8]:

ρ(x) ≡
N∑
n=1

δ(x− xn). (2.31)

If the parametrization in Eq. 2.30 is inserted into Eq. 2.29 and the discrete terminology
is used, assuming the variables on di�erent sites of the lattice commute, one gets[

ρi, e
iϕj
]

= eiϕjδij , (2.32)

which immediately leads to
[ϕi, ρj ] = iδij . (2.33)

It is now clear that the density factor ρ and the phase factor ϕ can be considered canon-
ically conjugate variables.
The next step is to go back to the continuum description via the mean �eld approach.

Keep in mind that the low momentum, that is long wavelength part of the theory is being
studied. For a system of N particles periodic in L, the short distance cuto� is a = L/N ,
and the high momentum cuto� is just the average density ρ0 = N/L. One simple way
to set up a continuum approximation for Eq. 2.33 would be[

ϕ(x), ρS(x′)
]

= iδ(x− x′). (2.34)

The index �S� stands for smooth or smeared density. However, Eq. 2.34 is not compatible
with the general de�nition of density in Eq. 2.31, so ρS cannot be the full density. Still,
it is a component of ρ corresponding to the low momentum and long wavelength [7], in
accordance with the cuto�s.
It may seem that this crude approximation dismisses the �ne particle e�ects on mi-

croscopic scale because of the density smearing. It is possible to reintroduce particle
e�ects, even in the low momentum approximation, by introduction of a new �eld θ in
new parametrization of the density:

ρS(x) = ρ0 + Π(x) =
1

π

∂θ(x)

∂x
. (2.35)

Here, a new �eld Π is also introduced as the shift of ρS from the mean density ρ0, and
it it also canonically conjugate to ϕ. Eq. 2.35 leads to the commutator [ϕ(x), θ(x′)] =
iπ
2 sign(x−x′). The new angular �eld θ is a convenient way to count the particles because
it increases by π for every particle, so θ(xn) = nπ, where xn is the coordinate of n-th
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particle. With the introduction of new �elds in mind, the density can once again be
rede�ned as [7, 8]

ρG(x) =
1

π
∂xθ(x)

N∑
n=1

δ (θ(x)− nπ) . (2.36)

This formula is Haldane's ansatz [7, 10] for the granular (index �G�) density operator and
it is central to this combination of mean �eld and microscopic approach. The density ρG
is now actually compatible with the de�nition in Eq. 2.31. Poisson summation formula
can be applied to Eq. 2.36, leading to [8, 10]

ρG(x) =
1

π
∂xθ(x)

∞∑
m=−∞

ei2mθ(x). (2.37)

This form is convenient for approximations since it allows keeping only a certain number
of low terms.
At this point, it is possible to reconstruct the actual �elds of creation and annihilation

φ† and φ. Although the starting point was a bosonic theory, the whole procedure would
have marginal di�erence for fermions, allowing one to express the local fermion �elds in
terms of low momentum boson �elds. This essential idea is the reason this method is
referred to as bosonization. In the virtue of Eq. 2.30 and Eq. 2.37, the bosonic creation
operator is de�ned as

Ψ†B(x) = A

{√
ρ0 + Π(x)

∑
m

ei2mθ(x)

}
eiϕ(x) (2.38)

up to an unspeci�ed normalization constant A. The term in {...} brackets is the density
factor in the form of Eq. 2.37, while the rest is an exponential of the phase factor, just
like in Eq. 2.30. The fermion operator is obtained by simply boosting the index of the
boson operator by +1/2:

Ψ†F (x) = A

{√
ρ0 + Π(x)

∑
m

ei(2m+1)θ(x)

}
eiϕ(x), (2.39)

which then satis�es the Fermi statistics [7]. It may be worthwhile to mention the lowest
approximations of these two �elds:

Ψ†B(x) ≈ √ρ0eiϕ, (2.40)

Ψ†F (x) ≈ √ρ0
(
eiθ(x) − e−iθ(x)

)
eiϕ. (2.41)

2.2.2 Properties of a Luttinger liquid

Now that the way to determine the �elds has been constructed, the Hamiltonian of this
theory can be expressed. In the expansion of energy around constant density and zero
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current, dominating terms will be of the second order. So, the most general e�ective
Hamiltonian is [10]

Ĥ =
~

2π

ˆ
dx
[
vJ(∂xϕ)2 + vN (∂xθ − πρ0)2

]
, (2.42)

where ~ was returned for completeness. Two free parameters vN and vJ are velocities
that depend on the interaction and come from the exact microscopic Hamiltonian in Eq.
2.26. In a 1D Galilean invariant system, the parameters are

~vJ =
π~2ρ0
m

, (2.43)

~vN = (πρ20κ)−1, (2.44)

where κ is the compressibility. The Hamiltonian is sometimes de�ned with di�erent
parameters [8]:

Ĥ =
~

2π

ˆ
dx

[
vSK

~2
(∂xϕ)2 +

vS
K

(∂xθ − πρ0)2
]
, (2.45)

whereK =
√
vJ/vN is called Luttinger parameter and vS =

√
vJvN is the speed of sound.

Either way, the parameters originate from the �ne details of the elusive microscopic
Hamiltonian. However, they are independent of the thermodynamical properties such as
temperature. This means that, once the parameters of a certain system are set, they are
valid for all of its realizations, as long as it is within the theoretical framework of used
approximations. They can be calculated for one known realization and reliably used in
others.
Basically, a Luttinger liquid spreads any excitation rapidly throughout the entire sys-

tem. Imagine introducing a localized low-energy excitation, for example acceleration
of one particle. This change will spread to the nearest neighbors, who will in turn
spread it onto their neighbors, and so on. The di�erence between this occurrence in
one-dimensional and multi-dimensional systems is that in 1D, the excitations are strictly
longitudinal; there are no possible transverse components, no dissipation and thus all
the excitations are smeared through the system easily. There are no quasiparticles and
any disturbance quickly gives rise to a collective excitation [4, 11]. That is why it is nec-
essary to combine the mean �eld and particle approaches to obtain the coarse-grained
approximation in Eq. 2.36.
Still, the derivations and conclusions presented in the previous section are mostly

heuristic - to obtain the exact results, one would have to start from the microscopic
Hamiltonian in Eq. 2.26 and arrive at the outcome through series of manipulations.
Nevertheless, there is a bene�t from the heuristic approach. The particles are never
actually speci�ed as bosons, fermions, some multiparticle excitations or anything really,
so the physics can e�ectively apply to a wide array of systems. Furthermore, the Luttinger
liquid theory is generic and applicable as an e�ective low-energy theory to virtually all

one-dimensional systems, making it a de facto �xed point of all such theories [7, 8, 10].
The theory is qualitatively valid even in more realistic cases of non-linear dispersion, as
long as it is within the low energy region.
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Luttinger liquid theory is dependent on two generally unde�ned parameters and once
they are calculated, all the properties of systems can be obtained exactly. The parame-
ters control all the correlation functions and are thus enough to obtain all the low-energy
properties of the model. Speci�cally, as a very important remark, all asymptotic proper-
ties have exponentially decaying dependence on the parameter K. The parameters can
be computed analytically using perturbation or numerically if no analytical method is
available for a given system. They can be linked with thermodynamic properties, which
means they have to be less susceptible to �nite-size e�ects. It is possible to evaluate
them based on some general rules. For instance, for fermions, K > 1 means attractive
interaction, while K < 1 means repulsive interactions [8]. Also, as a property of interest
for this work, studies show that in disorder, robust super�uidity is possible for K > 3/2,
while for K < 3/2 the system is in Bose glass phase [4].

2.2.3 Super�ow

As for the properties of super�ow, one must measure the super�uid fraction of a system,
that is super�uid density divided by the density of the system. Super�uidity phenomenon
is often distinguished as a response to movement of the boundaries enclosing the system.
The fraction of the system that does not respond to rotations of the walls is considered
to be normal, while the rest is in super�uid phase. In 1D, super�uidity is possible only if
state of the system is a superposition of special, topologically coherent states with a slow
phase gradient. The reason for this is found in current of particles J through the periodic
boundaries of the system. Existence of super�uidity indicates that J is a good quantum
number, which is valid only if its eigenstates are orthogonal, meaning their overlap is
zero. This is true if they are very di�erent everywhere in available space; that is, if their
phase gradient is macroscopically slow [6]. This is in agreement with the description of
excitations in LL theory.
In path integral calculations of systems in imaginary time, like the one we are dealing

with, it is more convenient to use the current's dual coordinate - winding number W :

W =
1

L

N∑
n=1

(xPn − xn), (2.46)

where L is the system box size, xn is the original coordinate of a n-th particle, and xPn is
the destination coordinate some �time� τ later and after invoking the periodic boundary
conditions [12, 13]. If they have not been invoked, the di�erence in Eq. 2.46 is zero,
and if they have been invoked multiple times, the results also multiply. Essentially, the
winding number calculates the net number of times particle �paths� have wound around
the periodic unit cell. Generally, the winding number is a vector, containing components
for each dimension of a system with periodic boundary conditions. Also, it is important
to note that Eq. 2.46 de�nes the winding number as an integer, so it is quantized. This
topic will be revisited in section 3.2.3.
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The distribution of winding numbers W in 1D is given by the expression [13]:

P (W ) =
e−W

2πLT/2~vJ

ϑ3
(
0, e−πLT/2~vJ

) , (2.47)

where ϑ3(z, q) is Jacobi theta function of third order. Finite super�uid response is pos-
sible only when the oscillations of the �eld ϕ are suppressed, and in turn 〈J〉 ≈ 0 [13].
In 1D, super�uid density2 ρs/ρ, is directly proportional to the second moment of distri-
bution of winding numbers [12]:

ρs
ρ

=
πLT

~vJ
〈
W 2
〉
. (2.48)

Thus, introducing Eq. 2.47 to relation for the super�uid fraction in Eq. 2.48 we obtain
[14]

ρs
ρ

=
πLT

4~vJ

∣∣ϑ′′3 (0, e−πLT/2~vJ )∣∣
ϑ3
(
0, e−πLT/2~vJ

) , (2.49)

where ρ = ρs + ρn ≡ ρ0 is total density and ϑ′′j (z, q) ≡ ∂2xxϑj(z, q). In Eqs. 2.47, 2.48
and 2.49, kB = 1 was used.
This theoretical prediction will be used as a model function for further studies of the

super�uid density. For now, keep in mind that the expressions in both Eq. 2.47 and Eq.
2.49 are scaling functions of the product LT , and not box length L or temperature T
individually, and since Luttinger parameters are insensitive to temperature and �nite-size
e�ects, they must be �xed and valid for any L and T of the low-energy theory [8].

2Not to be confused with the smeared density ρS in Eq. 2.34.



3 Method

This chapter will present the development of theoretical concepts of Path Integral formal-
ism of quantum mechanics into the computational algorithm called Path Integral Monte
Carlo (PIMC). A general approach to the Monte Carlo method of stochastic computation
will be described and the way to implement PI formulation to it, as well as a unique way
to sample the permutation space of quantum objects, called the worm algorithm. Since
the simulations of physical systems generally require approximations to function more
e�ciently, a section of this chapter will be dedicated to the approximations for kinetic
and potential action and the estimators used to calculate the physical properties. Finally,
the code for the algorithm, written in C++, will be brie�y reviewed.

3.1 Path Integral Monte Carlo simulations

Two major contemporary methods of simulating physical systems are molecular dynam-
ics, which relies on application of Newton's equations to present real-time motion of
classical particles, and the stochastic computation method well known as Monte Carlo,
which is based around generating random numbers according to various probability dis-
tribution functions that are often used for calculations of multidimensional integrals. The
later method is almost essential for any kind of simulations regarding quantum systems.
The basic goal of our simulations is to evaluate the integral in Eq. 2.20 in order to know
elements of the thermal density matrix ρ̂ and therefore all the quantities of the thermal
system derived from it. To understand the simulation process itself, it is necessary to
have an insight into the way that Monte Carlo methods work and how they can reproduce
the desired solutions.

3.1.1 Monte Carlo methods

Monte Carlo is a widely known term for a broad class of computational methods that
rely on stochastic sampling to obtain numerical results. The core of every Monte Carlo
algorithm is the usage of random numbers, done in order to create a certain probability
distribution speci�c to the problem at hand. These methods have found use in many areas
and disciplines, including economics, computer graphics, visual design and of course,
science. They are of particular value for the calculation of multidimensional integrals in
systems with a large number of degrees of freedom.
Suppose we have a system3 consisting of in�nite number of states µ, each with some

3The system need not be physical at all. For this reason, links to the actual physical applications will
be avoided for a few paragraphs, although the scienti�c approach might be simpler for understanding.

18
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weight ωµ, and we want to calculate the average of some quantity F . The average is

〈F 〉 =
∑
µ

ωµFµ, (3.1)

where
∑

µ ωµ = 1. The problem with this sum is that it consists of in�nite number of
elements, which is quite often impossible to calculate analytically. One useful approach
in its evaluation is to calculate the sum in Eq. 3.1 numerically. This method is approxi-
mative, for it necessarily reduces the summation to a �nite number of components, but
it can still be quite e�ective and precise in determining the value of 〈F 〉 [5]. For better
results, a large enough number of elements is needed to ensure the convergence of the
average.
To calculate the averages of �nite number M of system states µ with weights ωµ and

sampled according to the probability pµ we use the formula

〈F 〉 =

∑M
µ=1 ωµp

−1
µ Fµ∑M

µ=1 ωµp
−1
µ

, (3.2)

which is derived from the central limit theorem. Obviously, the choice of probability
distribution pµ, from which we are sampling our con�guration, strongly a�ects the e�-
ciency of this calculation. One approach is to sample the states according to the uniform
random distribution over the domain of states. However, it is often the case that only
a small number of states contributes strongly to the averages, while the rest in�uence
it with negligible contributions. An example a case like this is the Boltzmann distri-
bution pµ = Z−1e−βEµ [5]. If we are not able to e�ectively produce the probability
distribution speci�c to our problem, the calculation will converge slowly because too
much computational time will be wasted on the states with small contributions. For this
reason, methods of importance sampling have been developed. This process consists of
selectively accepting the contributions of certain states in accordance with the desired
probability distribution.
One of such schemes of importance sampling is called Metropolis algorithm [5, 15, 16].

It is based around the idea of sampling a �more likely� regions of phase space - the ones
with the higher probability density. The Metropolis algorithm is essentially a Markov
chain - a sequence of stochastic events created to produce some probability distribution,
in which every event depends only on the previous one, and not the entire chain of events.
The evolution of such a process, represented by Π (µi → µi+1), where µi and µi+1 are
two consecutive states in the chain of events, satis�es the detailed balance condition

Π (µi → µi+1) p(µi) = Π (µi+1 → µi) p(µi+1). (3.3)

This is the only condition, which gives us some freedom in choosing Π (µi → µi+1). For
convenience, we can separate the process into a composition of two subprocesses [5]

Π (µi → µi+1) = C (µi → µi+1)T (µi → µi+1) , (3.4)

where C (µi → µi+1) is the change we make to the state µi to advance it to the state
µi+1 and T (µi → µi+1) represents the means of calculating the probability of accepting
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or not accepting that change. In general, C is arbitrary, while T is calculated from C
to satisfy the detailed balance condition in Eq. 3.3. If C is chosen to also satisfy the
detailed balance, then T can be calculated from the formula [5, 15, 16]

T (µi → µi+1) = min

[
1,
p(µi+1)

p(µi)

]
. (3.5)

The Metropolis algorithm can be used in evaluation of averages that have the form

〈F 〉 =

´
F (x)p(x)dx´
p(x)dx

. (3.6)

Here, p(x) is the desired probability distribution function, the variable x can represent
any number of degrees of freedom and the integration is carried out over the domain of
possible inputs for x. In a numerical evaluation, the average can be calculated statistically
[15, 16]:

〈F 〉 =
1

M

M∑
µ=1

F (xµ), (3.7)

where the points xµ are sampled according to p(x). The purpose of this method is to
calculate the integral in numerator of Eq. 3.6, which is precisely the form of the integral
in Eq. 2.16.
The process of the algorithm consists of several steps:

1. Propose a trial state µtrial = µi + δi, where δi is a random value selected according
to the uniform distribution from the interval [−δ, δ]. This represents the change C
in the stochastic process.

2. Calculate the number α = p(µtrial)
p(µi)

, a ratio of trial and initial probability.

3. Accept the transition to the trial state with probability α. This represents the
calculation of probability in Eq. 3.5 , and includes the following:

a) if α ≥ 1, then accept the movement, µi+1 = µtrial

b) if α < 1, generate a random number r ∈ [0, 1〉
c) if r ≤ α, accept the movement, µi+1 = µtrial

d) if r > α, discard the movement, that is, keep the system in the initial state:
µi+1 = µi

4. Repeat to generate the chain of events µi+2, µi+3, ...

This algorithm can sample any probability distribution, but it is not without �aws.
Firstly, the results are correct only asymptotically and secondly, two consecutive states
in the Markov chain are strongly correlated with each other.
To overcome the �rst issue, one needs to allow the equilibration of the system. When

the system has reached it's asymptotic regime, we discard the certain number of initial
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states from the calculation of averages. There is no analytical way to do this, however.
Usually, the user just observes the calculated observables to the point at which the
system no longer �uctuates and decides manually to ignore a number of initial results.
This method is rather robust because it relies on a human factor and can't account for
possible metastable states in the asymptotic regime, but works su�ciently well for large
enough simulations.
The second problem is relevant for the calculations of statistical errors of the averages.

It can be resolved with data blocking method [5]. It consists of separating a sequence of
M calculated values into m smaller groups of data, each consisting of K = M

m values. By
averaging the calculated data (which is the estimates of the observables) inside groups,
we get K values of averages of observables, Fj . The average of those Fj is independent
of m and is still an estimate of the actual average 〈F 〉. If K is large enough, data groups
can be considered as statistically independent and we can calculate the errors using the
formula

σF =

√√√√ 1

m(m− 1)

m∑
j=1

(Fj − 〈F 〉). (3.8)

Finally, one last way to accelerate the convergence of the values to the asymptotic
regime is connected to the size of proposed updates to the states δi. If the updates
are too large and they considerably shift the con�guration of the system, then most
of them will be rejected since they will transition the system into states with lower
probability density. This will cause the process to converge slowly towards the wanted
probability density. On the other hand, if the updates are very small, they will keep the
system in the region of high probability density without exploring the regions of lower
probability density, which can impair the ergodicity of the system and produce incorrect
values of observable averages. A good compromise between these two cases is to keep
the acceptance rate at about 50%, which is done by dynamically adjusting the interval
[−δ, δ] based on the aggregated acceptance rate [5].

3.1.2 Path Integral implementation of Metropolis algorithm

The scheme described in the previous section can be used to calculate the value of
integrals and averages de�ned by the Path Integral formulation for thermal quantum
systems. The goal of our simulaions is to reliably sample the probability density to
determine the physical quantities of a system at �nite temperature T . We are simulating
a canonical ensemble; the system is at constant �nite volume Ω and with constant number
of particles N . To this end, we will revisit the classical mapping of a quantum system in
imaginary time, presented in section 2.1.3.
The system consists of N particles with paths in imaginary time. We discretize the

imaginary time dimension of classical space into M parts. This way, every quantum
particle is split intoM beads, which are equivalent to classical particles of a ring polymer,
connected through imaginary time with kinetic action spring propagators and interacting
with coordinate-dependent potential action inside a single time slice. The schematic
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(a) (b)

Figure 3.1: World line example of particle paths in imaginary time. Every bead of an
individual particle is connected with lines to the previous and the next bead,
with respect to the time slice. (a) Particle z coordinates are presented in
dependance of imaginary time value ε. Individual beads are marked by dots.
(b) Paths that the particles form, plotted in x − z plane. Because of the
periodic boundary condition for imaginary time dimension, they form closed
polymers. Large circles represent initial and �nal beads.

representation of this system is shown in Fig. 3.1. This portrayal of the paths is called
the world-line representation.
In section 2.1.2, convolution property of the density matrix was described, leading to

the Eq. 2.20 and in accordance with discretization of imaginary time, ε = β
M . This can

be used to calculate the average of any observable F , following the example presented in
Eq. 2.16. These expectation values can then be written as [5]

〈F 〉 =

ˆ M∏
j=1

dRjF (Rj)ρ̂(Rj ,Rj+1; ε). (3.9)

This is exactly the form of integrals found in Eq. 3.6 that the Metropolis algorithm is
best used to solve. It is important to highlight that the presence of partition function
Z in the de�nition of density matrix in Eq. 2.12 makes it normalized.4 Combined with
the fact that every element of the density matrix is positive de�nite in the coordinate

4In some literature, the density matrix is purposely de�ned not divided by the partition function, and
thus not normalized.
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representation, we can interpret

p(R1, ...,RM ) =
M∏
j=1

ρ̂(Rj ,Rj+1; ε) (3.10)

as probability density [5]. Then, the integral in Eq. 3.9 is suitable for evaluation by Monte
Carlo method. One must sample all the degrees of freedom R1, R2, ..., RM according
to this probability density and simply statistically calculate the averages of observables.
Having the classical representation in mind, it is viable to construct a Metropolis

algorithm implementation of Path Integral formulation, that is, of the bead-polymer
model. The steps of this procedure are as follows:

1. Initiate the coordinates of all beads of all particles. This constructs the initial
paths in imaginary time. One common practice for this is to have all the beads of
a single particle at the same coordinate, making the world line picture just straight
lines, and place particles on a lattice or randomly, depending on the system one is
simulating.

2. Pick one bead (of any particle) at random and propose a new position. This is
shown in Fig. 3.2.

3. Accept this movement with probability

T (Rinitial → Rtrial) = min

[
1,

ρ̂trial
ρ̂initial

]
. (3.11)

Since moving a single bead changes the kinetic action only between the previous
and the next bead and potential action of only a single time slice, only those
contributions will a�ect the trial and initial density matrix ratio.

4. Calculate the averages of physical observables in the fashion of Eq. 3.9.

5. Go back to step 2.

To calculate the quantities more accurately and accelerate the convergence to the
desired probability density, proper approximations for action and the density matrix are
needed. These approximations often rely on the fact that the imaginary time step ε is
small enough to neglect higher orders of the expansion. They will be reviewed in the
next section, but for now let us consider that, for small enough ε, Lagrangian can be
evaluated as [16]

L = −m
2

(
∆x

ε

)2

− V (x) = −E. (3.12)

Since this is a time-independent constant, using the de�nitions from Eq. 2.12 and Eq.
2.22, we can rewrite the density matrix as

ρ̂(Rm,Rm+1; ε) = Z−1e−S = Z−1e−ε(K̂+V̂ ). (3.13)
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Figure 3.2: Single bead update of a single particle polymer, presented in one spatial
dimension x. The old path and the new path di�er in one bead, red for
the new path and blue for the old. The update is accepted according to the
scheme presented in section 3.1.1.

It is clear that the density matrix actually has the form of an imaginary time action
propagator. Furthermore, the density matrix ratio in Eq. 3.11 is actually de�ned by
the probability density in Eq. 3.10 for di�erent sets of con�gurations. This ratio is well
illustrated with exp(−Strial)/ exp(−Sinitial) [5]. Since the density matrix convoluted
product represents probability density, by operating with Metropolis algorithm, we are
also sampling paths with more likely action, the most likely being the classical action.
This shows that the PIMC algorithm inherently implements the minimization of action
- Hamilton's principle, in quantum mechanics.
Although the results are always approximate because the M is �nite, it is possible, for

large enough M , to reduce the systematic errors so much that they are lower than the
inevitable statistical errors attributed to the Monte Carlo procedure. Because of this,
virtually exact averages of observables 〈F 〉 can be recovered, practically in the M →∞
limit. Therefore, the Path Integral Monte Carlo method is often considered the exact

computational method [1, 5].

3.1.3 Worm algorithm

The Metropolis scheme for path integral formulation described in the previous section
is actually e�ectively �awed for quantum particles. While the principle is admissible
for sampling the systems e�ciently, it still requires a very relevant �ne-tuning to be
applicable to a wider variety of physical systems. The most prominent �aw in this
remark is the inability to sample di�erent permutations of quantum particles.
This is where the analogy with the classical system fades - to sample all the possible

permutations of a quantum system, one must sample many di�erent classical systems
of bead polymers, the di�erences being links between beads. Particle exchange is rep-
resented by changing the kinetic action link to another particle, as portrayed in Fig.
3.3. While this is not unordinary for a quantum system, the classically isomorphous one
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(a) (b)

Figure 3.3: An example of possible system transition representing particle exchange.
Since quantum particles do not have identities, exchanges are possible with
any particle of the same kind. This translates into the world line picture
as change of the kinetic link from one particle-polymer to the other, which
may result in polymers creating a tangled weave of connections. The end
beads in both (a) and (b) are the same because of the R1 = RM+1 boundary
condition.

becomes something else entirely, with the possibility of intertwining, connected polymers.
So far, we have described a scheme that would sample only a single permutation

of particles. When we include additional permutations, we must deal with the fact
that quantum states, and therefore the density matrix, must be either symmetric or
antisymmetric to the permutation. One convenient way to de�ne ρ̂ in accordance with
this is to sum all density matrices of all possible permutations:

ρ̂full(R1,R2; ε) =
1

N !

∑
P

(±1)P ρ̂(R1,PR2; ε) (3.14)

where P is one of the N ! possible permutations of N particles, and P is the number
of transpositions in a given permutation. In the (±1) term, the + sign is chosen when
dealing with Bose-Einstein statistics, and − sign for Fermi-Dirac statistics. Using this
de�nition, the way observable averages in Eq. 3.9 are calculated must be updated [5]:

〈F 〉full =
1

N !

∑
P

ˆ M∏
j=1

dRjF (Rj) (±1)P ρ̂(Rj ,PRj+1; ε). (3.15)

Fortunately, this changes nothing in Eq. 3.10 and Metropolis algorithm can still be
applied using the updated density matrix to de�ne the probability density. Sampling over
all the possible permutations must be included. A scheme to sample the permutations
directly has been developed, but clearly the direct sampling becomes impractical with the
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increase of number of particles. Additionally di�culties of PIMC algorithm are that for
some systems, single bead updates can simply never be enough to e�ciently sample the
whole con�guration space. For example, systems consisting of very heavy particles have
a very low probability of accepting a single bead move. Thus, di�erent moves must be
implemented, consisting of updating larger segments of polymers, or even whole polymers
at the same time, or changing links between polymers to sample di�erent permutations.
An e�cient method of sampling was developed to this end, called the worm algorithm

(WA) [17, 18]. It introduces a new set of moves that update the system, each accepted in
accordance with the Metropolis algorithm scheme. These moves bring the system to an
expanded ensemble, containing one more particle within a polymer called the worm. This
ensemble is still canonical, at temperature T and with volume Ω, just with one additional
particle in one time slice, which e�ectively makes the polymer open. Of course, the
R1 = RM+1 condition must still be satis�ed if we want to compute the average values of
diagonal observables, so the system must return to the regular ensemble with N particles.
This expanded ensemble will be called G-sector, while the regular ensemble will be called
Z-sector [5, 17]. G-sector contains one open world line; that is, two unconnected beads
of the worm. Last time slice and �rst time slice beads of the worm are called the head

and the tail respectively, or historically Masha and Ira [17, 18].
New moves introduced by the worm algorithm can be divided into 3 groups, by the

nature of updates. Firstly, there are updates performable in both Z and G-sector: Trans-
late and Staging. These updates do not sample di�erent permutations of particles and
are enough to ensure ergodicity in systems where permutations can be ignored. Such
types of updates also existed in the conventional PIMC algorithm [1].

(a) (b)

Figure 3.4: Translate movement of the worm algorithm, shown schematically in one di-
mension. Here, (a) shows old con�guration, and (b) shows new, with the
translated polymer colored red and previous con�guration in dashed lines.

• Translate (displace) [5]. This update moves the entire polymer as a rigid body,
not changing the links between it's beads. We select a particle index i at random



CHAPTER 3. METHOD 27

(a) (b)

Figure 3.5: Staging movement of the worm algorithm, shown schematically in one dimen-
sion. Here, (a) shows old con�guration, and (b) shows new, with the redrawn
polymer segment colored red and previous con�guration of that segment in
dashed lines.

and a movement vector ∆r = (∆x,∆y,∆z), whose coordinate values are selected
from a predetermined interval. We move every bead j of the selected polymer i as
ri,j → r

′
i,j = ri,j + ∆r. Since links are not changed, this move does not change the

kinetic energy of the system, so it can be safely avoided in movement probability
evaluation. This move is shown in Fig. 3.4.

• Staging [5] (wiggle [19]). This update recreates a segment of the selected polymer
between two beads �xed distance apart. We start by selecting a random polymer
with index i and a random bead j0 belonging to that polymer. Beads j0 and j0+l
are kept �xed, where l < M is the integer distance determined by input. We assign
new values to coordinates of every bead in between5. This move is schematically
shown in Fig. 3.5.

The second group of movements switches con�gurations back and forth between Z-sector
and G-sector: Open and Close. To satisfy the detailed balance condition, both of these
updates must happen - that is, if a polymer has been opened, it must also be closed to
return the system into diagonal con�guration.

• Open [17, 18]. This update creates two extremities from an existing polymer. It
can only be done while the system is in Z -sector and brings the system to G-sector
con�guration. We randomly select a particle index i, one of its random beads j
and an integer l ∈ [1, lmax], where lmax < M is predetermined. Then, l − 1 beads
are removed, starting from j-th. This leaves us with an unconnected segment of
the polymer, with ri,j bead being the tail, and ri,j+l the head of the newly created

5Detailed description of how this is done can be found in Refs. [5, 19].
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(a) (b)

Figure 3.6: Open movement of the worm algorithm, shown schematically in one dimen-
sion. Here, (a) shows old con�guration, and (b) shows new, with the removed
segment of the polymer in dashed blue lines and head and tail of the worm
as �lled red dots.

worm. If this update is accepted, we denote the polymer as worm, changing the
index to iW . This movement is represented in Fig. 3.6.

• Close [17, 18]. This update closes an open polymer, removing the worm from the
system. It can only be done in a G-sector con�guration and brings the system to
Z -sector. The head and the tail of the worm are l ∈ [1, lmax] beads apart, where
lmax < M is the same algorithm parameter as in Open movement. We reconstruct
the l−1 beads long segment from the tail bead riW ,j to the head riW ,j+l, previously
unconnected. This is done with the product of l free particle propagators, one for
each new link to be reconstructed. If the movement is accepted, the system returns
to a diagonal Z -sector con�guration. This update is shown in Fig. 3.7.

The third group consists of movements performed only in G-sector: Advance, recede and
Swap. Among them, Swap is of special importance interest since it accounts for particle
permutation sampling.

• Advance [17, 18]. This update propagates the tail of the worm by a random
number of time slices forward. We select a random number l ∈ [1, lW ] of beads to
be constructed, where lW ≤ lmax < M is the current number of unconnected beads
between the tail and the head of the worm, and lmax is the same maximum worm
length parameter as in Open and Close. Then, starting from the tail bead riW ,j ,
we reconstruct l beads forward in time and the links between them with the free
particle propagator. If accepted, this update makes the bead riW,j+l new tail of
the worm. Advance will never be able to close the polymer and thus remove the
worm. This is schematically shown in Fig. 3.8.
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(a) (b)

Figure 3.7: Close movement of the worm algorithm, shown schematically in one dimen-
sion. Here, (a) shows old con�guration, with the head and the tail as �leld
blue dots, and the (b) shows new con�guration, with the segment that com-
pletes the closed polymer colored red and the former head and tail as blank
red dots.

(a) (b)

Figure 3.8: Advance movement of the worm algorithm, shown schematically in one di-
mension. Here, (a) shows old con�guration, with the head and the tail as
�lled blue dots, and the (b) shows new con�guration, with the newly con-
structed segment in red lines, new head as �lled red dot and old head as blank
red dot.

• Recede [17, 18]. This movement removes a number of beads from the tail, ef-
fectively pushing the tail back backwards in time. We select a random number
l ∈ [1,M ] of beads to be deleted. Starting with the tail bead riW ,j , we remove l
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beads back, thus making the bead riW ,j−l a new tail of the worm. If accepted, this
movement increases the length of the worm by l. Recede will not be accepted if it
deletes the entire length of the open polymer. This update is shown in Fig. 3.9.

(a) (b)

Figure 3.9: Recede movement of the worm algorithm, shown schematically in one dimen-
sion. Here, (a) shows old con�guration, with the head and the tail as �lled
blue dots, and (b) shows new con�guration, with the removed segment in
dashed blue lines, the head as �lled blue dot, former tail of the worm as
blank red dot and new tail as the �lled red dot.

• Swap [5, 17, 18]. This update recreates the links between di�erent polymers of the
same particle type (i.e. identical particles), thus performing particle permutations.
It can only be done in G-sector since it requires the presence of the worm. We
start by randomly selecting an integer l ∈ [1, lmax], which is the number of beads
the update will reconstruct, and lmax < M being determined by input. Next, we
compute the following quantity for each particle i:

Πp(i) =

√
m

2π~2lε
exp

[
− m

2π~2lε
(ri,l+1 − riW ,M+1)

2
]
, (3.16)

and also

ΣW =
N∑
i=1

Πp(i). (3.17)

Then, we select a particle index iK with the probability Πp(iK)/ΣW . This polymer
represents the reconstruction partner of the worm and the main idea is to remake
a path between the tail of the worm riW ,j and the bead riK ,j+l. We recreate
the path between these two beads with the free particle propagator, similar to
Close movement, and remove beads riK ,j+1, riK ,j+2, ..., riK ,j+l−1. It is important
to ensure that this update does not bring the system into a Z -sector con�guration
and that it satis�es the detailed balance condition. If so, and if the update is
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accepted, tail of the worm has moved from riW ,j to riK ,j and the links between
polymers have been modi�ed. Note that this move does not change the length of
the worm. This move is schematically shown in Fig. 3.10.

All of the mentioned input parameters can be modi�ed to accelerate the convergence rate
of the algorithm. These updates provide scheme that can successfully sample permuta-
tions of particles and a wide variety of systems, all of which the original PIMC algorithm
was lacking.

(a) (b)

Figure 3.10: Swap movement of the worm algorithm, shown schematically in one dimen-
sion. Here, (a) shows old con�guration, with the head and the tail as �lled
blue dots, and the (b) shows new con�guration, with the new segment that
that connects the previously unconnected tail of the worm to the new poly-
mer colored red, previous part of the reconstruction partner in dashed lines,
former tail as blank red dot, new tail as �leld red dot and the unchanged
head as �lled blue dot. The system is still in an o�-diagonal G-sector con-
�guration, with a changed tail of the worm.

3.2 Approximations and estimators

The major concern of this section is computational e�ciency. In simulations of physical
systems, most important matters are speed of the calculation and accuracy of the results,
and successfulness of a simulation is often a question of balancing the former and the
later. To accelerate the computation, one must provide a suitable approximations for ab
initio de�nitions of basic physical quantities. In this case, that is kinetic and potential
action. Furthermore, to ensure the results are precise enough, one must develop a way to
calculate all the desired properties from available information. In some cases, it is more
convenient to use a statistical estimator rather that the de�nition, and sometimes there
are even multiple estimators for a single property.
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3.2.1 Action approximations

We have already observed a close relation between action and the density matrix, most
obvious being in the form of Eq. 3.13. However, this sum of potential and kinetic action
in the exponential operator is not so straightforward to evaluate as it may seem. Since
in the classical isomorphism of PIMC algorithm, it is stated that potential action acts on
the beads within only the same time slice, and kinetic action acts between neighboring
beads of the same particle imaginary-time-wise, it is desirable to separate potential and
kinetic action in di�erent expressions. This means that the exponential operator in Eq.
3.13 must be expanded in the terms of imaginary time ε. This expansion is called the
Baker-Campbell-Hausdor� formula:

e−ε(K̂+V̂ ) = e−εK̂e−εV̂ e−
ε2

2 [K̂,V̂ ]e−
ε3

6 (2[V̂ ,[K̂,V̂ ]]+[K̂,[K̂,V̂ ]])... (3.18)

This expression also has a convergence property described by the Trotter formula [5]:

e−β(K̂+V̂ ) = lim
M→∞

(
e−εK̂e−εV̂

)M
. (3.19)

This means that it is possible to give a suitable approximation based on the order of
imaginary time. Since the relation between imaginary time ε and temperature T is
reciprocal, the lower the order of ε, the higher the temperature and the number of time
slices M for the approximation.
The lowest approximation for the action is the one in the limit of very small imaginary

time ε. All the elements of the expansion Eq. 3.18 of order ε2 or higher happen to contain
commutators of kinetic and potential action and this approximation makes it that more
convenient to neglect them. Combining this with equations 2.18 and 3.13, the density
matrix then becomes

ρ̂ (R1,R2; ε) =
1

Z

ˆ
dR′ 〈R2|e−εK̂ |R′〉 〈R′|e−εV̂ |R1〉 . (3.20)

This is called the primitive approximation [5, 20]. It enables simple calculation of matrix

elements of operators e−εK̂ and e−εV̂ in coordinate representation. The kinetic operator
can be calculated exactly, from the de�nition Eq. 2.24. In coordinate representation, the
matrix element is

〈Rm+1|e−εK̂ |Rm〉 = (4πλε)−
dN
2 e−

(Rm+1−Rm)2

4λε , (3.21)

where d is the dimensionality of the system, and (Rm+1−Rm)2 =
∑N

i=1(ri,m+1− ri,m)2

abbreviation is used. Potential operator is simple to evaluate because it is diagonal in
the coordinate representation. The matrix element is

〈Rm+1|e−εV̂ |Rm〉 = e−εV (Rm)δ(Rm+1 −Rm). (3.22)

Here, we have used V (Rm) =
∑

i′<i′′ v(ri′,m − ri′′,m) as de�nition of total potential
within a single time slice with index m, where v(ri′,m − ri′′,m) is the pair potential
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between individual particles with indices i′ and i′′, such that the total potential part of
the Hamiltonian is V =

∑
i<j v(ri − rj).

Of course, the primitive approximation is only accurate to order ε2, which makes the
convergence to the exact values slow. It is suitable for systems in which the quantum
e�ects are not very pronounced, but a more accurate and reliable approximation of
the higher order is needed for more complex systems studies, such as Bose-Einstein
condensation and super�uidity properties that we are dealing with in this work. The
higher order of the approximation also means more computational complexity, so it is
important that, along with accuracy, e�ciency of the developed scheme exceeds the
primitive approximation.
Starting with Baker-Campbell-Hausdor� formula in Eq. 3.18, one could develop an

approximation of second or higher order. However, it has been shown that expansions
to the second or higher order tend to produce non-Hermitian e�ects [5]. Still, since we
are interested in thermodynamic properties of the system, non-Hermitian results can be
tolerated as long as we only take the trace of the thermal density matrix in account.
Following the example of Boninsegni in Ref. [19], chosen form of the density matrix

is:
ρ̂ (Rm,Rm+1; ε) = AF (Rm,Rm+1; ε) e

−εU(Rm). (3.23)

Here, AF is the exact density matrix of a system of N distinguishable, non-interacting
particles, de�ned as:

AF (Rm,Rm+1; ε) = ΠN
i=1ρ̂F (rm,i, rm+1,i; ε) , (3.24)

where

ρ̂F (rm,i, rm+1,i; ε) = (4πλε)−3/2 e−
(rm,i−rm+1,i)

2

4λε . (3.25)

In Eq. 3.23, function U(R1) is de�ned by

U(Rm) =
2V (Rm)

3
+ Ṽ (Rm), (3.26)

where V (Rm) is the total potential energy of a single time slice of con�guration Rm,
same the one used in Eq. 3.22, and

Ṽ (Rm) =
2V (Rm)

3
+

2λε2

9

N∑
i=1

(∇iV (Rm))2 (3.27)

is valid ifm is odd, and Ṽ (Rm) = 0 ifm is even. Here, the term ∇iV (Rm) is the gradient
of the total potential energy of Rm con�guration with respect to the coordinate rm,i of
i-th particle. This approximation is accurate to the order of ε4 of the imaginary time
power expansion of the density matrix in Eq. 3.18.
Using a fourth order approximation, it is possible to reduce the number of beads needed

to achieve ε→ 0 convergence up to the factor of 4 [20]. Further approximation schemes
have been developed using factorization form for the exponential operator [21], but in
this work, we will stick to Boninsegni's approximation.
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3.2.2 Energy estimator

One of the basic physical quantities we can compute from a simulation is energy per
particle, E/N . It can be obtained directly from a de�nition of energy of a canonical
ensemble:

E

N
= − 1

NZ

∂E

∂β
, (3.28)

where, as always, β = 1/kBT . When we introduce PIMC terminology and permutation
sampling, partition function Z of a bosonic system and �nite temperature is

Z =
1

N !

∑
P

ˆ M∏
j=1

dRj (4πλε)−
3N
2 e−S(Rj ,PRj+1;ε). (3.29)

Here, the periodic boundary condition for the imaginary time direction, RM+1 = PR1,
still stands for di�erent permutations P of particles, the system is speci�ed as three-
dimensional, hence the 3 in the −3N2 exponent, and, as previously, λ = ~2

2m is used. We can
directly evaluate the energy per particle using the predetermined action approximation,
along with de�nitions Eq. 2.22, Eq. 2.24 and Eq. 2.25. What we get is the so called
thermodynamic estimator [5] for total energy per particle:

ET
N

=

〈
3

2ε
− 1

MN

M∑
j=1

(Rj+1 −Rj)
2

4λε2
+

1

MN

M∑
j=1

∂U(Rj ,Rj+1; ε)

∂ε

〉
. (3.30)

In a fashion similar to Eq. 3.28, it is possible to derive a thermodynamic expression for
the kinetic energy per particle:

K

N
= − m

βZ

∂Z

∂m
, (3.31)

which, using the Eq. 3.29, also leads us to the thermodynamic estimator for kinetic
energy:

KT

N
=

〈
3

2ε
− 1

MN

M∑
j=1

(Rj+1 −Rj)
2

4λε2
+

m

MNε

M∑
j=1

∂U(Rj ,Rj+1; ε)

∂m

〉
. (3.32)

The potential energy estimator can then be computed as a di�erence between Eq. 3.30
and Eq. 3.32, just like the inter-action in Eq. 2.25, and it is

VT
N

=

〈
1

MN

M∑
j=1

(
∂U(Rj ,Rj+1; ε)

∂ε
− m

ε

∂U(Rj ,Rj+1; ε)

∂m

)〉
. (3.33)

In expressions Eq. 3.30, Eq. 3.32 and Eq. 3.33, the brackets 〈...〉 mean the averaging
over all sampled con�gurations. We can notice that the term 3/2ε found in Eq. 3.30 and
Eq. 3.32 is actually the energy of a classical ideal gas [5].
Unfortunately, the thermodynamic estimator for energy per particle in Eq. 3.30 has

a distinct shortcoming regarding the computation if its statistical error. Since the �rst
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two terms contain ε, they become larger as ε becomes smaller, so it gets harder to
calculate a small di�erence between two large terms. For this reason, a new estimator
was introduced, called the virial estimator [5]:

EV
N

=

〈
3

2ε
− 1

N

M∑
j=1

(RM+j −Rj)(RM+j−1 −RM+j)

4λβ2

+
1

2βN

M∑
j=1

(Rj −RC
j )

∂

∂Rj
[U(Rj ,Rj+1; ε) + U(Rj−1,Rj ; ε)]

+
1

MN

M∑
j=1

∂U(Rj ,Rj+1; ε)

∂ε

〉
, (3.34)

where RC
j =

∑M−1
l=1 (Rj+1 + Rj−l)/2M . This estimator does not have the pathology

of ever increasing terms with the reduction of imaginary time interval and makes the
estimation of total energy per particle more precise and e�cient than the thermodynamic
estimator.

3.2.3 Super�uid density estimator

We already visited the topic of super�uid density in section 2.2.2. To measure this, one
must take a closer look at moment of inertia of the system. Consider a liquid inside a
container of cylindrical geometry, in thermal equilibrium with the walls of the container.
We can measure the e�ective moment of inertia as the work done for in�nitesimally small
rotation of the walls [1, 22]:

I =
dF

dω2

∣∣∣∣
ω=0

=
d 〈L̂z〉

dω

∣∣∣∣
ω=0

. (3.35)

Here, F is the free energy, and L̂z is total angular momentum operator of rotation around
the axis of the cylindrical symmetry (designated as z), de�ned as the derivative by the
cylindrical angle θ of all particles:

L̂z = i~
N∑
i=1

∂

∂θi
. (3.36)

In contrast to this quantum de�nition, classical moment of inertia is a well known

IC =

〈 N∑
i=1

mi(r
⊥
i )2
〉
, (3.37)

where r⊥i is the cylindrical radial coordinate of i-th particle - a distance from the axis
of rotation. Then, the ratio of quantum and classical moments of inertia is de�ned as
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normal component density ρn of the liquid, and what remains is the super�uid density
ρs, with ρ = ρn + ρs being total density [1].

ρn
ρ

= 1− ρs
ρ

=
I

IC
. (3.38)

However, since rotation is a motion of a system in real time, the de�nition of super�uid
density in Eq. 3.38 is not so straightforward to implement within the PIMC algorithm
scheme, built around the theory in imaginary time. Instead of observing the system with
rotating walls, we can switch the inertial frame to one rotating with the walls. This
makes the system a moving liquid with Hamiltonian Ĥω = Ĥ0 − ωL̂z, where Ĥ0 is the
Hamiltonian of a liquid at rest [1, 22]. Starting from this, the so called area estimator

for the super�uid density has been derived for a PIMC operating simulation [1, 23]:

ρs
ρ

=
2m 〈A2

z〉
βλIC

. (3.39)

Here, the function A is the projected area of the paths, de�ned as

A =
1

2

N∑
i=1

M∑
j=1

ri.j × ri,j+1, (3.40)

and its component along the rotation axis, Az, can be understood as a projection area
of all polymers onto a plane perpendicular to the rotation axis [5]. Since the super�uid
density is a diagonal observable, the estimator in Eq. 3.39 must be evaluated in a Z -sector
con�guration of closed polymers.
But, yet again, an implementation of an additional characteristic changes the de�-

nitions used. In a system with periodic boundary conditions, which is basically every
computer simulation, cylindrical geometry is a naturally occurring feature, so it is sim-
pler to calculate the super�uid density. Every system with periodic boundary conditions
is topologically equivalent to a torus [6], so we will consider a liquid within two con-
centric cylinders with mean radius R and the spacing between the cylinders d � R.
According to Eq. 3.39, the existence of a super�uid component requires a non-zero mean
projected area of paths along the rotation axis [5]. This means that the only paths that
will contribute to ρs are the ones winding around the torus, because all the others will
have negligible e�ects when R is large enough. To this end, we de�ne a winding number

estimator [1] as
ρs
ρ

=
〈W2〉
2λβN

. (3.41)

Here, W is the winding number, de�ned as the total �ux of the paths winding around
the torus, multiplied with circumference of the torus [5]. This de�nition is similar to the
formula in Eq. 2.46, with the di�erence being that W in Eq. 3.41 is not an integer, but
instead quantized as a multiple of the box length L. From a more general perspective,
winding number can be calculated for any curve in a plane, and it represents total number
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of times the curve travels counterclockwise around a point in the plane. In a system of
polymers, the winding number can be calculated simply as

W =

N∑
i=1

M∑
j=1

ri,j+1 − ri,j . (3.42)

To gain more insight into the relation the between projected area and the winding
number, let us take a closer look into the system between two cylinders, whose classical
moment of inertia is IC = mNR2. If a path has wound around the periodic boundaries
torus n times, then the area projection is n times the surface area perpendicular to the
cylinder axis, A = R2πn. The �ux of the path, or the winding number, is n times the
circumference of the torus, W = 2Rπn. Therefore, the area is

A =
WR

2
, (3.43)

which explains how Eq. 3.41 was obtained from Eq. 3.39. All this is illustrated by Fig.
3.11.

Figure 3.11: A comparison of calculation of super�uid density by using area estimator
and winding number estimator. On the left side, a cylinder with periodic
boundary conditions is shown mapped onto a torus. The right side shows
projected area of paths in the axial direction. When the system shows
no super�uidity (top), all the contributions of path projections cancel out
and no path winds around the boundaries. When the super�uidity occurs
(bottom), the net area projection and winding number, and therefore the
calculated super�uid density, are non-zero. (Image modeled after a �gure in
Ref. [23].)
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In the classical isomorphism, a system with non-zero super�uid fraction corresponds to
the one with connected and/or intertwining polymers winding around the system bound-
aries, because in reality, particle exchange is necessary for super�uidity. To simulate
this, updates involving roughly the order of N1/3 particles are necessary [5], and PIMC
single particle updates are not nearly enough to accomplish this. Fortunately, this is a
problem also resolved by the worm algorithm sampling scheme, making it more e�cient
at calculating W reliably, and therefore the super�uid component density as well.

3.3 The Code

Writing a computer program that would include all of the so-far listed features in a
methodical, understandable and user-friendly way is a major undertaking that requires
a lot of time and e�ort. We are grateful to M. Boninsegni for providing us with the
functional written code, which will be described in this section.
The program itself is written in C++ language and completely object-oriented. The

code covers a wide variety of physical systems and circumstances, so user is almost
completely devoid of having to meddle with the source code for additional functionality.
It contains a custom-build script lexer, which obliges the user to adjust the input �les and
parameters just by writing external scripts that the program reads and processes. Also,
it comes with the well suited functionality for usage on clusters and other Linux-based
operating systems.
The only part of the code user must modify is the calculation of the potential. Since

the potential is a characteristic of every di�erent physical system, it is hardly possible to
construct a general way of implementing it within the code. Still, with this program being
passed around the scienti�c community, it already comes with many unique potentials
to choose from, and only requires a basic knowledge in C++ to create your own. For the
algorithm itself, the potential input can be realized in three di�erent ways:

• Point potential - this is a spherically central potential dependent of the distance
between two points.

• Line potential - a cylindrically central potential that depends on a distance from a
line.

• Plane potential - a potential that depends on the distance from a plane.

The user can input as many potentials as desired. To use line or plane potentials, lines
and planes must be instanced as separate objects; this is all controlled with the input
scripts. Once all the potentials are calculated, the grid containing the interaction data is
created. This way to implement the potential within a simulation is somewhat restricted
and may be seen as a weak point of the code.
An example of the input script that must be supplied by the used is given in Tab.

3.1. When the simulation is over, many output �les are provided, containing various
statistics, estimators, calculated potentials and other data, speci�c to particle types or
otherwise.
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BOX
〈
#dimensions

〉 〈x box
size

〉 〈
y box

size

〉 〈
z box

size

〉
TYPE

〈
name

〉 〈
symmetry

〉 〈 ~2

2m

〉 〈
#particles

〉 〈 input

file name

〉
LINE

〈
name

〉 〈
spatial direction

〉 〈 other

coordinate 1

〉 〈
other

coordinate 2

〉
POTL

〈
type

name 1

〉 〈
type

name 2

〉 〈
potential

number

〉 〈
lower

cutoff

〉 〈
upper

cutoff

〉 〈
grid

points

〉 [
additional

parameters

]

TEMP
〈
temperature

〉
//in Kelvins

RESTART (?) //if restarting

SLICES
〈
#time slices

〉
PASS

〈
#blocks

〉 〈
#steps

〉
AREA

〈
type

name

〉 〈
projection

coordinate

〉 〈
cutoff

〉 〈 grid

points

〉
IMD

〈
type

name

〉 〈
Ira−Masha

distance

〉
//in beads

GSECTOR/ZSECTOR (?)//if simulating either Z-sector or G-sector configuration

Table 3.1: A sample input script for the program. All values that the used is required
to input are marked by 〈...〉 parenthesis. Values with a (?) are optional.
This particular input script simulates a single type of particles interacting
with a line via cylindrically-symmetric potential. The user can add as much
TYPE arguments for di�erent particle types, LINE arguments for de�nition
of di�erent lines and POTL arguments for di�erent interactions.



4 Simulations

The focus of this chapter will be actual results from the conducted simulations, putting
into use everything discussed in two previous chapters. We will start with the full and
thorough description of a system of helium atoms in a cylinder, along with all the quan-
tities and measures. For nanopores without disorder, results from the Ref. [3] will be
presented. Then, the same will be done for the system with impurities on the walls of the
pore, starting with the changes in the system settings and potential, and some known
and relevant physical quantities as a test for the algorithm. Finally, we will review results
for the super�uid density fraction with the disorder included.

4.1 Helium in a nanopore

Lets start with the description of the model of 4He in a cylindrical cavity. This system
is described by the Hamiltonian

Ĥ = − ~2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑
i<j

U(rij), (4.1)

where N is the number of atoms of mass m, V (r) is the external con�ning potential
acting on them, and U(rij) is their interaction potential at a distance between two atoms
rij .
Experimental results show helium is highly attracted to the walls of the pore. Initially,

when 4He is introduced into the porous media, some of the liquid is deposited onto
the walls. Neutron scattering shows that these layers are comprised of amorphous solid
helium about 5 Å thick. As for the rest of 4He, it is contained as a liquid inside those
solid layers con�ned by the walls of the nanopore. The walls of solid helium are inert,
while the liquid inside can sustain super�ow and BEC [3]. This is all illustrated in Fig.
4.1.
To reduce the computational demands, we are simulating only the liquid on the inside of

inert helium layers of the pore, since only that part of the system gives rise to the relevant
physical phenomena, such as the super�ow. Still, solid 4He walls play an important
role in the potential that particles on the inside feel. This is relevant for the way the
pore itself is implemented into the simulation. Regardless of the outside media, the only
computational property that simulates the presence of the pore is the con�ning potential.

40
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Figure 4.1: A schematic representation of 4He system inside a nanopore. The mottled
area represents inert walls of solid helium of 5− 6 Å thickness. The lightblue
area represents the rest of the system as a con�ned liquid that can sustain
super�ow and BEC. L is the length of the entire pore, R is the radius and
dL the diameter of a cylinder occupied by the liquid fraction of the system,
so that the diameter of the whole nanopore is d = dL + 10 Å.

It has the form of

V (r) = 3εnπσ6
ˆ Ri

R
rsdrs

ˆ π

0
dφs[

21

32

σ6

(r2 + r2s − 2rrs cosφs)11/2
− 1

(r2 + r2s − 2rrs cosφs)5/2

]
. (4.2)

It consists of double integration by polar coordinates rs and φs of Lennard-Jones (L-
J) pair potential between 4He and medium atoms. Here, the medium begins at the
pore radius R and ends at radius chosen to be Ri = 3R. It is comprised of concentric
cylindrical surfaces of in�nite length, and incorporates both the inert helium walls and
standard pore atoms. Potential parameters have been set so that the system on the inside
of the pore remains liquid: Lennard-Jones parameters σ = 2.2 Å, ε = 3 K, and number
density of the medium ρmed = 0.078 Å−3 [3]. The resulting potential is homogenous in
both the polar angle and along the axis of the pore, so it only depends on the distance
from the axis, r. One such dependance is shown in Fig. 4.2. A cylindrically symmetric
potential de�ned this way is ideally implemented with the POTL argument mentioned
in Tab. 3.1.
As for the 4He atoms themselves, they interact with each other via Aziz interatomic

potential [3, 24]. It is a very realistic representation of the potential between helium atoms
proven to reliably simulate many size sensitive properties, with a total of 14 parameters
to be tailored for the needs of a speci�c system being simulated. More on the details and
the coe�cient values for 4He can be found in Ref. [24].
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Figure 4.2: A cylindrical cavity potential pro�le, shown for the pore of R = 3 Å. It is
homogenous in both φ and z polar coordinates, so this curve is the same, seen
from any angle and on any height. The shallow attractive medium followed by
a strong repulsive rise are enough to incorporate the presence of a nanopore
of inert helium walls and some outside media into simulation.

To summarize, we are running a series of PIMC simulations of low temperature6 4He
atoms interacting with the Aziz potential, con�ned inside a cylindrical cavity of solid
helium layers and some porous media, represented by the potential in Eq. 4.2. Radius of
this pore is chosen to be R = 3 Å always, or in other words, it is a very narrow nanopore.
Reasons for this will be discussed in the following section.

4.1.1 Known results

As mentioned previously, an extensive study in Ref. [3] has been conducted, aimed at
low energy properties of bosonic helium systems in porous media. It included calculation
of one-body density matrix and super�uid density. The purpose of this research was to
gain a better insight into scarcely explored world of systems in pores, particularly because
they seem to scale as vastly di�erent models, depending on physical circumstances.
One property we highlight in this thesis is super�uid density. Depending on the radius

of nanopores, super�uid properties seems to scale according to the models of di�erent
dimensions, as shown in Fig. 4.3. At pore radius of R ≥ 11 Å, there are indications of
both 3D and 2D �uid scaling, depending on both the temperature T and the pore length
L and approaching bulk 3D liquid. For the radius interval 4 Å ≤ R ≤ 11 Å, the liquid
scaling is predominantly 2D. In this regime, oscillations in radial density pro�les indicate
that the liquid �lls the pore in cylindrical layers, unlike the 3D scaling case, where the
oscillations are suppressed and radial density is overall smoother [3].

6Simulations will di�er by parameters such as number of particles, temperature etc. More on that topic
later on.
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Figure 4.3: Di�erent scaling of the super�uid fraction ρs/ρ as function of temperature T ,
depending on radius of the pore R, at pore length L = 60 Å. Scaling ranges
from nearly 3D bulk liquid at R = 11 Å, through 2D liquid deposited in �lm-
like layers, to 1D Luttinger liquid model at R = 3 Å. In other words, the
scaling dimension of a 4He system in a nanopore increases with the increase
of pore radius. (Image taken from Ref. [3])

Finally, one-dimensional scaling of the super�uid fraction is consistent with the pre-
dictions of Luttinger liquid theory, and Eq. 2.49. The system falls into this regime in
only the narrowest nanopores simulated, with R = 3 Å. The small radius seems to play
an important role in 1D nature of this scaling. In a narrow nanopore, the potential min-
imum in Fig. 4.2 is not attractive enough to force the particles to spread much from the
cylindrical axis, where the liquid density is at its maximum. Also, dimensions of the pore
are simply too small to enable free motion in any direction other than along the axis.
This makes the bosons that are simulated e�ectively fermions, without actually imposing
Fermi-Dirac statistics to their exchange cycles, which may account for LL scaling because
that model is generally valid for fermions. Of course, all of these conclusions are made
with respect to the hard core diameter of 4He atoms of dHC ' 2.5 Å [3].
As an extension of this study, we are interested in super�uid properties in the 1D,

Luttinger liquid scaling regime. So, the nanopores chosen for simulations have all been
set to R = 3 Å. As for the box, it is a 3D square with 4He atoms positioned around the
origin of the cylindrical cavity potential in Eq. 4.2 and periodic boundary conditions in
all directions. Of course, the boundary conditions are only expected to be invoked in
direction of the cylindrical axis, since the potential prevents the atoms from ever exiting
the pore area.
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4.2 Adding the disorder

So far, we have only discussed nanopores with a smooth, completely homogenous po-
tential con�ning the particles inside. In a realistic scenario, even a nanopore without
any other added source of interaction is an example of disordered potential. Because
of, among other reasons, inner surface deformities and varying thickness of inert helium
walls7, the potential can appear irregular. This disorder can greatly a�ect super�uid
properties, as it has been shown that adding disorder in form of some external potential
suppresses the super�uid fraction [3].
This work extends the study of disorder e�ects on super�uidity, in a literal sense.

Additional disorder potential will originate from atoms of impurities scattered around
the walls in the virtue presented in Ref. [3]. These impurities are �xed in place, which is
achieved in simulation by making their mass in�nite with λdis = 0. They do not interact
with each other, and interact with 4He atoms on the inside with a simple Lennard-Jones
potential. Then the Hamiltonian of the inside system still has the form of Eq. 4.1, with
just the addition of this static L-J interaction into external potential. The parameters
are set to σdis = 2 Å and εdis = 1.5 K, which accounts for a fairly weak interaction.
Other, much stronger interactions have already been shown to drastically suppress the
super�uid fraction [3].
Regarding the placement of these atoms, they are spread around the nanopore very

close to the surface. For every simulation, mean linear density along the pore axis is kept
at Λdis = 1 Å−1. To avoid clustering the impurities into pockets of strongly interacting
inhomogeneities, their positioning is generally preferable not to be completely random,
although this option is not intentionally avoided. Firstly, since every pore has R = 3 Å,
the radial coordinate is taken randomly from the interval rdis ∈ [2.5, 3.5] Å, and the
polar angle is chosen randomly from φdis ∈ [0, 2π]. As for their height, there are several
possible models of placement. We used two approaches - one completely random, from
the interval zdis ∈ [0, L], and one with the disorder duplicated from pores of smaller L,
copied multiple times if needed to �ll the entire length, and with respect to mean linear
density. We found that, for a pore of L = 30 Å and N = 4, results show no signi�cant
di�erence in either case. We emphasize this is not a dismissible matter and further study
is viable for di�erent models of disorder, but that was not the focus of our study. The
chosen model is random placement of disorder along the z−axis.
One thing to note here is that, even though impurities are placed according to some

rules, their presence is still meant to be random by nature. We did not introduce the
disorder in any systematic was or used any measure of classi�cation for it. There have
been attempts to classify the disorder and the e�ects it produces in other studies, such
as Ref. [4], but that is not a focus of this study. We used disorder with the intent to be
just that - a disordered, irregular and relatively random source of outside potential. An
experimental study, for instance, would likely require many di�erent realizations of this
example.
The addition of impurities distorts the potential that atoms inside of the pore feel. The

7Thickness of 5 − 6 Å translates to 1 − 1.5 layers of 4He wall atoms [3].
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randomness of their placement e�ectively breaks all homogenous properties of previously
described potential of a smooth pore in Eq. 4.2, as intended. This is shown in Fig. 4.4.
Note that the attractive minima and the repulsive centers of the potential have been
shifted in both position and value from pro�le presented in Fig. 4.2. The e�ects of these
modi�cations on physical properties will be presented in the next two sections.

4.2.1 Preliminary results

At this point, we are able to examine the results of our simulations to develop some
intuition about what kind of a system we are dealing with. Firstly we will focus on
di�erent realizations of the disorder. Altought, as mentioned in the previous section, we
do not classify the disorder in any way, it would be senseless to assume that di�erences
in disorder do not produce di�erent results. Still, we are operating under an assumption
that these di�erences are not signi�cant enough to become a prevalent issue.
The di�erences in impurity con�gurations arise from random nature of their position-

ing. Every pseudorandom number generator works by algebraically manipulating seeds -
numbers or sets of numbers given as initial values. We have tested the properties of our
system for disorder con�gurations generated from �ve di�erent seeds. Keep in mind that
their actual values are unimportant and that results would qualitatively be the same for
any other values, handpicked or generated in any other way. This test of the algorithm
was done for pores of L = 30 Å length with N = 4 atoms and at temperature T = 1 K.
Lets start with the results for energy per particle E/N and super�uid fraction ρs/ρ

for di�erent disorders. Histograms of these quantities are shown in Fig. 4.5. Results
display similar behavior for both quantities - minor o�sets of some mean well within
error bars. The conclusion we can draw from this is that E/N and ρs/ρ are not very
sensitive to di�erences in disorder realizations, at chosen values of physical parameters.
Still, it is obvious that the super�uid fraction displays more variation than energy per
particle. Although these variations are in the regime of small values ρs/ρ < 0.02 of
suppressed super�ow, it is something so acknowledge for further results and discussions.
This implies that super�uid properties are more in�uenced by �ne size local e�ects that
the disorder brings into the potential, which is not expected from an intensive property
like E/N .
Next things we explore are correlations and density. The pair-correlation function

g(r1, r2) is a measure of density variations from a reference particle. It is de�ned as
probability to �nd a particle at r2 when another particle is at r1. In a uniform system,
like 4He atoms in a nanopore, it only depends on a distance between two particles r =
|r2 − r1| [5]. Also known as radial distribution function (RDF), g(r) is used to describe
the microscopic arrangement of particles in a system. It has a characteristic shape for
di�erent phases of matter, which is highly insensitive to di�erences in quantum and
classical nature of particles, and valid for Bose and Boltzmann statistics with minimal
o�sets [1]. It is preferable to study g(z), where z is the polar coordinate, in a 1D model
where the system is expected to be distributed along the z−axis, but the simulation
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Figure 4.4: Potential pro�les for a nanopore of L = 30 Å centered at xc = yc = 13 Å,
and with Ndis = 30 atoms of disorder, in dependance of x and y coordinate.
Pro�les are shown at heights of (a) z = 0 Å, (b) z = 6 Å, (c) z = 10 Å, (d)
z = 14 Å, (e) z = 21 Å and (f) z = z = 28 Å. Upper cuto� of 1 K was used.
Distorted shapes of these pro�les originate from zones of strong repulsion
created by atoms of impurities around the surface.
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algorithm supplied us with the 3D g(r). We introduce a normalization

g1D(r) = g(r)
3r2

(L/2)2
, (4.3)

which is an arti�cial way to rescale the behavior of RDF into one-dimensional regime.
Results are shown in Fig. 4.6a. All simulation results show a well known RDF pro�le

of a liquid system. For 1D systems, pair-correlation function derived from the LL theory
contains oscillatory terms that are more pronounced for higher densities and harder to
detect for smaller L [14]. Our results show no oscillations, as expected from a liquid
of given density, although one of the RDF-s, colored blue in Fig. 4.6a, stands out with
slightly pronounced variations. Fig. 4.6b also shows a radial density pro�le for same
systems. The results practically overlap completely, as expected from a 1D scaling liquid
of given density [3]. This means that the liquid is con�ned to the center of the nanopore
in all cases of disorder.

(a) (b)

Figure 4.5: Results of 5 simulations using di�erent con�gurations of disorder of (a) energy
per particle E/N , and (b) super�uid fraction ρs/ρ, for a nanopore of L =
30 Å, N = 4 and T = 1 K. The dependance are not functional in either case
so horizontal axes have no physical meaning.

Lastly, we present a preliminary result of a temperature dependance of super�uid
fraction ρs/ρ, before moving on to di�erent dependance of this quantity. Results are
calculated for di�erent numbers of particles in a pore of L = 30 Å; that is, for di�erent
linear densities Λ = N/L. This is shown in Fig. 4.7. Looking at these results, one
might draw a conclusion that the super�uid fraction is higher for higher linear densities
and drops as the temperature increases. While this is correct for this particular case, the
system is not expected to scale with T only. As pointed out in Sec. 2.2.2, Luttinger liquid
scales with LT product, and not independently, so the dependance on just temperature
does not fall under the properties of the model we are studying. Further results for the
super�uid density in LL scaling regime will be given in the next section.
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(a) (b)

Figure 4.6: Results for 5 simulations with di�erent con�gurations of disorder originating
from di�erent seeds of a random number generator, of (a) pair-correlation
function g1D(r) and (b) radial density pro�le n(r) for a nanopore of L = 30 Å,
N = 4 and at T = 1 K. All results overlap, displaying almost identical
pro�les, except a slight variation from one of RDF-s, colored blue. This
curve still describes a liquid, though, with higher density of �rst neighbors.

Figure 4.7: Super�uid fraction ρs/ρ in dependence of temperature T , for a nanopore of
L = 30 Å and with N = 2, 3, 4, 5 atoms. Corresponding linear densities
are Λ = 0.067, 0.1, 0.133, 0.167 Å−1 respectively. Results indicate a drop
in super�uid density with the increase of temperature and a rise with the
increase of density.
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4.2.2 Super�uid density

We have discussed the topic of super�uidity on several occasions already, in Secs. 2.2.2
and 3.2.3, and had our goals set to exploration of scaling of super�uid fraction in the
low energy region, for the system of helium atoms in disordered and narrow nanopores.
Since previously known results [3] indicate that this system behaves as a one-dimensional
fermion liquid, super�uid fraction is expected to scale according to Luttinger liquid pre-
dictions, in the virtue of Eq. 2.49. The Tomonaga-Luttinger model is an e�ective theory,
valid for virtually any potential, including systems with disorder, so the presence of
impurity atoms should not be an exception for this.
Super�uid properties are closely tied to the phase factor of density �eld [6, 13]. This in-

�uence is controlled by the Luttinger parameter vJ , as displayed in Eq. 2.42 Hamiltonian.
A harmonic 1D liquid of spinless fermions, like an LL model system, is expected to scale
with a single variable x = L/(~βvJ) [3], that incorporates both LT dependance and LL
parameter vJ . The parameter is expected to be universal - insensitive to thermodynamic
variables and �nite-size e�ects, for a given model.
This has been con�rmed for homogenous nanopores in Ref. [3] with a good �t. In

this case, density of the liquid helium in the inner layer of the pore was kept close to the
density of bulk liquid helium at saturated vapor pressure (SVP). The results were �t to
Eq. 2.49 with ~vJ as a free parameter. Good agreement was shown with Eq. 2.43, thus
con�rming the LL model for uniform nanopores.
In this work, we are interested in comparison of super�uid fraction results for disordered

nanopores with the results for uniform ones. We refer to the results derived by Prokof'ev
and Svistunov in Ref. [25], which shows that in 1D, starting from two di�erent ways
of de�ning the super�uid density one gets di�erent expressions, unlike the situation in
3D. In PIMC, a thermodynamic super�uid fraction has been derived as a response to
the �ux gauge �eld, de�ned by the change in Helmholtz free energy by the super�uid
velocity: ρs/ρ = ∂(Fv/N)/∂(12mv

2) [14, 12]. This de�nition is used to obtain Eq. 2.49.
On the other hand, Prokof'ev and Svistunov de�ne a dynamical super�uid density ρDs
as a coe�cient in e�ective long-wavelength action Feff = (ρDs /2)

´
dV(∇Φ)2 of a liquid

which includes twists of phase Φ [25]. In 1D, the two expressions are di�erent. Thus,
using general relation in Eq. 2.48 a reformulation of Eq. 2.49 is introduced:

ρs
ρ

=
πLT

4~v0J

∣∣∣ϑ′′3 (0, e−πLT/2~v
D
J

)∣∣∣
ϑ3

(
0, e−πLT/2~v

D
J

) . (4.4)

Here, v0J is a constant for a given density, de�ned by Eq. 2.43 and valid in case of uniform
nanopores. Parameter vDJ is then de�ned as

vDJ =
ρDs
ρ
v0J . (4.5)

Eq. 4.4 provides a relation between ρs/ρ and ρDs /ρ. In a uniform nanopore, predictions
of LL theory are valid, therefore ρDs /ρ = 1, so that a constant vDJ = v0J de�nes Eq. 2.49.
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If they are not valid in disorder, the coe�cient ρDs /ρ can be used as a �tting parameter
for Eq. 4.4. Hence, this coe�cient contains the di�erences in 1D results arising from two
de�nitions of super�uid fraction [14].
For a disordered nanopore, we use x = L/(~βv0J) as a scaling variable for results.

Unlike Ref. [3], the density of systems we studied is not kept at bulk density at SVP -
we show results grouped by �ve di�erent linear densities. The results were �t to Eq. 4.4
using ρDs /ρ as a free �tting parameter. This is shown in Tab. 4.1, and Figs. 4.8, 4.9,
4.10, 4.11 and 4.12.

Λ [Å−1] ρDs /ρ ~v0J [KÅ] ~vDJ [KÅ] χ2

0.067 0.82018± 0.04879 2.55257 2.09357 27.4373
0.100 0.86565± 0.02283 3.80981 3.29796 37.3829
0.133 0.77213± 0.01602 5.06705 3.91242 18.6521
0.200 0.97524± 0.00829 7.61962 7.43096 21.3907
0.250 0.88489± 0.02430 9.52452 8.42812 47.4002

Table 4.1: Values of a �tting parameter ρDs /ρ, constant thermodynamic Luttinger pa-
rameter ~v0J , dynamical Luttinger parameter ~vDJ , and χ2 values of �ts, for
di�erent linear densities of Λ of helium atoms.

Figure 4.8: Super�uid fraction ρs/ρ in dependance of the scaling variable L/(~βv0J) for

linear density of Λ = 0.067 Å−1 and di�erent pore lengths and temperatures.
The results �t with a parameter value of ρDs /ρ = 0.82.

Conclusion we can draw from the presented �gures are ambiguous at best. Starting
from the lowest density Λ = 0.067 Å−1 seen in Fig. 4.8, it is obvious that the results are
barely in contact with the �tting curve and the scaling is completely broken. Similar case
occurs at the highest density Λ = 0.25 Å−1 shown in Fig. 4.12. Densities of Λ = 0.1 Å−1
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and Λ = 0.133 Å−1show similar behaviors, as seen in Figs. 4.9 and 4.10 respectively,
although with more points closer to the �ts.

Figure 4.9: Super�uid fraction ρs/ρ in dependance of the scaling variable L/(~βv0J) for

linear density of Λ = 0.100 Å−1 and di�erent pore lengths and temperatures.
The results �t with a parameter value of ρDs /ρ = 0.87.

Figure 4.10: Super�uid fraction ρs/ρ in dependance of the scaling variable L/(~βv0J) for

linear density of Λ = 0.133 Å−1 and di�erent pore lengths and temperatures.
The results �t with a parameter value of ρDs /ρ = 0.77.

Loosely speaking, the �best� scaling is seen for Λ = 0.2 Å−1 in Fig. 4.11, in a sense
that the parameter ρDs /ρ is closest to 1, and thus closest to the case of uniform nanopores
that con�rm the LL model. Still, even though some data �ts the expected curves well,
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the LL parameters vDJ is di�erent from the theoretical prediction of v0J in Eq. 2.43 for
every case. The values of �tting parameters and χ2 are listed in Tab. 4.1. Given the
expected universality of LL parameters and very high χ2 values for each �t, the only
conclusion left to make out of these results is that a system of helium atom in a narrow
disordered nanopore does not in fact scale with the LL theory of 1D fermions. Reasons
for this will be discussed in the next chapter.

Figure 4.11: Super�uid fraction ρs/ρ in dependance of the scaling variable L/(~βv0J) for

linear density of Λ = 0.200 Å−1 and di�erent pore lengths and temperatures.
The results �t with a parameter value of ρDs /ρ = 0.98.

Figure 4.12: Super�uid fraction ρs/ρ in dependance of the scaling variable L/(~βv0J) for

linear density of Λ = 0.25 Å−1 and di�erent pore lengths and temperatures.
The results �t with a parameter value of ρDs /ρ = 0.88.



5 Discussion

Considering the universality of Luttinger parameters and good agreement of results and
theory in the case of homogenous nanopores, we expected the results of nanopores with
disorder to �t well, and within error bars of �tting parameters, with the predictions
of LL model. This assumption has been further supported by the fact that di�erent
realizations of disorder seem to have only marginal in�uence on energy and super�ow
properties in Fig. 4.5, and, for all instances of disorder, the system was identi�ed as
a liquid con�ned to central axis of the nanopore by structural properties in Fig. 4.6.
Instead, our data shows a large disparity of �tting parameters, as seen in Tab. 4.1, and
overall poor agreement with the �t curves.
All of the curves that �t the data to Eq. 2.49 for used linear densities are displayed in

Fig. 5.1. If our expectations for the results had proved correct, all of the shown curves

Figure 5.1: Super�uid fraction ρs/ρ curves in dependance of L/~βv0J variable, for di�erent
linear densities we simulated. The �tting parameters are listed in Tab. 4.1
and they all di�er from the �t of smooth nanopore data.

would have the same pro�le with minimal di�erences and distances from one another.
This is obviously not the case, which demands an explanation.
Firstly, let us consider one crucial aspect of the LL model - the one-dimensionality.

The main reason for 1D scaling is the narrowness of the nanopores; at R = 3 Å, 4He
atoms of dHC ' 2.5 Å practically have only one degree of freedom, which is motion along
the pore axis. In addition, homogenous nature of the con�ning potential in the case
of uniform nanopores also accounts for the 1D scaling. While the latter is obviously

53
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not the case for disordered pores, as discussed and shown in Fig. 4.4, the former is
even more so valid. In other words, even though there are di�erences in potential along
the z-axis and the polar angle, the repulsive interactions with impurity atoms suppress
the radial and angular degrees of freedom of helium atoms even further, contributing to
their con�nement inside the pore and emphasizing the 1D scaling regime. This quasi -1D
nature is still not expected to break the scaling of the LL model.
For the density of Λ = 0.067 Å−1, the disagreement with the model is actually quite

straightforward to explain. At this density, the system is below the point of spinodal
decomposition. This unstable thermodynamic state occurs inside the in�ection curve of
Gibbs free energy in phase diagram, where its second derivative by density equals zero.
It is characterized by local to macroscopic separation of phases of a homogenous system
into a non-homogenous one [26]. For a uniform system like ours, sub-spinodal state
includes formation of liquid droplets and reduction of sound velocity to zero. In the case
of homogeneous pore, spinodal density is Λ = 0.09 Å−1 [14]. The best available measure
for existence of this state is the pair-correlation function. It is expected not to converge
towards 1, or any stable value, like a standard RDF would. Results shown in Fig. 5.2a
con�rm this notion - at this density, system is not a liquid con�ned to the center of the
pore, so the LL model is not valid.

(a) (b)

Figure 5.2: (a) Pair-correlation function g1D(r) for density of Λ = 0.067 Å−1, with pore
length L = 15 Å at various temperatures. These functions deviate from a
standard RDF pro�le of a liquid system and match a system below spinodal
point. (b) Pair-correlation function g1D(r) of density of Λ = 0.1 Å−1 for
various pore lengths and temperatures. These results show a more common
RDF pro�le, but still non-converging and in�uenced by sporadic spinodal
decomposition.
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Similarly, at density Λ = 0.1 Å−1, the system also occasionally enters the regime of
spinodal instability, although this is not equally pronounced by RDF-s shown in Fig.
5.2b. For comparison, consider density Λ = 0.133 Å−1 that we already discussed in
Fig. 4.6a. Even though these RDF-s also don't converge to 1, they still reach stability at
some point. We can attribute these non-typical behaviors to �nite-size e�ects, oscillations
normally found in pair-correlation functions and the arti�cial reformulation of the real
g(r) into 1D-scaling g1D(r) in Eq. 4.3. Still, pair-correlation function at this density is
under a great in�uence of �nite-size e�ects that would likely be reduced at lengths larger
than L = 30 Å. Other than this, RDF-s of Λ = 0.133 Å−1 don't deviate greatly from a
common pro�le of a liquid system.
All of these results can be compared to Λ = 0.2 Å−1 density RDF shown in Fig. 5.3.

This function exhibits all the expected characteristics - oscillations pronounced at higher
density, visible convergence to 1, and less susceptibility to �nite-size e�ects than RDF-s of
lower pore length presented so far. Liquids at higher densities display solid-like features
[14], as indicated by oscillations in these RDF-s.

Figure 5.3: Pair-correlation function g1D(r) for density of Λ = 0.2 Å−1, with pore length
L = 45 Å at various temperatures. The functions show oscillations expected
from this density and convergence to 1 - regular behavior for an RDF of
system like this.

Still, besides spinodal density, the question remains why the results are so incompatible
with the LL predictions. Possibility of a crossover to Bose glass has been considered. In
this process, a system in disorder falls into a localized phase [4]. In other words, domains
are formed, consisting of �lakes� of condensate separated by the repulsive regions of
disordered potential [6]. If the external potential is periodic instead of disordered, one
could consider a crossover into a Mott insulator [27], with the main di�erence being that
Bose glass is a compressible phase, unlike incompressible Mott insulator. Both of these
phases are characterized by absence of super�uidity, with super�uid density being zero.
Speci�cally, Bose glass is locally still in super�uid phase, but macroscopic super�uid
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density is negligible. Both crossovers are also marked by a discontinuity in the value of
Luttinger parameter K found in Eq. 2.45. However, we have not detected any sudden
drop in super�uid density or a discontinuity in Luttinger parameter that could signal a
transition into Bose glass. Hence, the possibility of this crossover has been discarded.
In fact, we have not detected, for any available physical quantity, a sudden drop or rise
that might signal any kind of crossover.
The Luttinger parameter is de�ned in LL theory as K = ~π

√
κρ3/m, where κ is the

compressibility. Preliminary studies show that the disorder has no signi�cant in�uence
on the values of K. In 1D, it is expected that super�uidity is robust to disorder for
K > 3/2, while this does not hold for lower K [14]. These predictions were not observed
in our data - the �ts are bad for all used densities. The region of K > 3/2 with no
spinodal decomposition is very small, practically only at Λ = 0.133 Å−1. These results
are in�uenced by �nite-size e�ects that reduce the accuracy of calculated K, and more
low-density calculations are needed for improvement. Furthermore, for Λ = 0.2 Å−1 and
Λ = 0.25 Å−1, the parameter is certainly K < 3/2 and a sudden drop in super�uid
density is expected. This was also not observed - we only detected high values of χ2. A
possible explanation is once again quasi-1D nature of our system, as discussed before.
This should be explored by further calculations.
So far, the only working theory for this system is the Tomonaga-Luttinger liquid model,

and it fails to explain the results. Other than that, there is no good theoretical expla-
nation. At this point, further study is required, as always. But, we are still restricted
by computational limitations and lacks of resources to gather additional data that would
con�rm or further disprove the LL model. Currently, the only certain results is disagree-
ment with the LL model, so any other judgment has to be put on hold for now.

5.1 Conclusion

To sum up, we have conducted a numerical study by a series of PIMC simulations of
bosonic helium in nanopores of R = 3 Å with atoms of impurities scattered around the
surface at one atom per unit of length on average. Underlying theory of path integral
quantum mechanics and the anticipated Tomonaga-Luttinger scaling model was provided
as well. This 1D liquid in disorder, con�ned to the center of the pore, was expected to
scale as a Luttinger liquid, as con�rmed by a previous study [3] for narrow nanopores
without disorder. This was not the case; all of the data we acquired �ts badly with
predictions of the theoretical model. LL parameters are lower in value than the uniform
calculations that match the theoretical predictions, and χ2 values are large, for every
used linear density of 4He. All of this indicates that the addition of disorder breaks the
LL scaling.
Unfortunately, computational limitations an a lack of alternative theoretical models

prevent us from making any sound conclusions for now. The study doesn't stop there,
though. Current results [14] are in submission and further calculations are in progress,
particularly with larger pore lengths L to reduce the �nite-size e�ects and enable a more
accurate description of physical regimes determined by the value of Luttinger parameter
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K. As a future prospect, possible expansion of this study could include a better classi�-
cation of disorder by introducing a measuring quantity, or a more thorough examinations
of duplicating the disorder and thus making it periodic in length. Averaging the results
over various models of disorder would provide a more conclusive and realistic picture
of the e�ects of disorder on low energy liquid systems in narrow nanopores. Alterna-
tively, a better theoretical model could be constructed, which was already initiated by
introduction of dynamical super�uid fraction.
All the results showcased by this study indicate that 1D systems in disorder are still

certainly a matter of discussion and require additional measurements, calculations and
derivations. With this outlook for future, we conclude the presented preliminary research
of low energy one-dimensional disordered helium.
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