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Sažetak

Metodom molekularne dinamike analizirana je mikroskopska struktura tekuće mješavina etanola i vode 
pri sobnim uvjetima, u cijelom rasponu koncentracija. Definirana su tri strukturna režima miješanja od 
kojih   svaki   predstavlja   različitu   realizaciju  koja   ima   svojstvo  mikroheterogenosti,   odnosno   lokalnog 
nemiješanja komponenti. Pri malim koncentracijama etanola zbog hidrofobnog efekta vode distribucija 
hidrofobnih dijelova molekula etanola nije  homogena kao u čistom etanolu.  Dodavanjem etanola,  na 
otprilike 0.15 molarnog udjela, etanol i voda počinju graditi bi­kontinuiranu isprepletenu mrežu u cijelom 
sustavu. Drugi prijelaz je definiran na otprilike 0.65 molarnog udjela etanola gdje voda više ne može 
formirati kontinuiranu strukturu mreže vodikovih veza preko cijelog sustava. U prvom redu ovi režimi su 
potvrđeni   analizom  radijalne  distribucijske   funkcije   koja   se  odnosi   na  klastere,   što  predstavlja   novi 
pristup  u   analizi   strukture  molekularnih  otopina.  Osim   toga  provedena   je   detaljna   analiza   različitih 
modela   za   etanol   i   testirana   je   njihova   sposobnost   reproduciranja   promjene   strukture   s   promjenom 
molarnog udjela komponenti. Testirani su modeli parametrizirani na termodinamičkim svojstvima čistih 
tekućina i jedan model parametriziran na aktivitetu otopljene tvari u vodenoj otopini.
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Sažetak 150

Appendix A Radial distribution functions 152

Appendix B Cluster radial distribution functions 157

3



List of Tables

1 Number of molecules for each mole fraction . . . . . . . . . . . 31
2 Force field parameters for five used ethanol models . . . . . . 35
2 Force field parameters for five used ethanol models . . . . . . 36
3 Force field parameters for SPC/E water model . . . . . . . . . 37
4 Force field parameters for TIP4P water model . . . . . . . . . 38
5 Results from the compatibility testing of the DL POLY 2 and

Classic ver. Energies are expressed in kJ, and volumes in Å3. . 40
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1 Introduction

1.1 Aims of this research

The problem dealt with in this work is in the core of the behaviour of the

many bio-systems on molecular level. It is the problem of the behaviour of

the water solutions of amphiphilic molecules, where ethanol molecules are

taken as one of the smallest and the least complex amphiphilic molecules.

Only recently it has been understood that these kinds of binary mixtures,

when mixing two hydrogen bonded liquids such as water and ethanol, posses

microheterogeneous structure [16], and very big contribution to this under-

standing came from the previous work on microheterogeneous liquid binary

mixtures of the group candidate is working with [17], [18]. A multidisciplinary

approach is important when working on this kind of problems, as physical

chemistry measurements are essential to be compared with the physic’s

calculations and simulation results. This type of problems also has significant

informatics and mathematical principles part. The aim of this research is to

examine the crossover behaviour of the ethanol water mixture that seems

to be in between that of the simple mixtures of disordered liquids and more

complex amphiphilic systems that form micelles. This crossover behaviour

is not yet fully understood. By comparing previously known experimental

data - excess enthalpy, heat capacity, compressibility and azeotropy, to our

measurement of the speed of sound, and Molecular Dynamics simulation

results on thermodynamical properties and, more important structural

properties, it appears that non-monotonic changes of macroscopic properties

with mole fraction change, take place in this liquid mixture. It appears that

there are two microscopic heterogeneous structure changes, first at χ1 ≈ 0.15

mole fraction of ethanol, and the other at χ2 ≈ 0.65 mole fraction of ethanol.

This is in accordance with the idea of three different mixing schemes in

aqueous alcohols, presented in 1996 by Tanaka et al. [19]. First change is

the change of the rigidification of the water hydrogen bonded network and

clustering of the ethanol molecules. Below χ1 ethanol molecules are shielding

their hydrophobic sites together, in small clusters. The increased amount of
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this small ethanol clusters within water network is rigidify it, in a way that

it becomes less compressible. Hydrogen bonded water network is flexible,

but when small clusters of ethanol are distributed within this network, these

areas with ethanol inside lose their compressibility, so this areas occupied

with ethanol molecules diminish the overall water network’s compressibility.

When mole fraction of ethanol reaches approximately χ1 value, the structural

change occurs that overturns this effect of rigidifying of the water network;

hydrophobic ethanol parts are not shielded as effectively as before and ethanol

and water start to form bi-continuous microsegregated phase. The second

change approximately at χ2 corresponds to the change in the water network,

it starts to break into smaller fragments. This change is less marked in the

various thermodynamical properties, but it is still obvious, especially from

the MD data.

Molecular Dynamics simulations stand together with the experimental

techniques in investigations of the molecular as well as more complex biological

systems. With an increase of the computer processing power, larger space

and time scales become accessible, and it is a shift in the direction of getting

more realistic simulation data. However, the foundation of the simulations

are force field models, so it is necessary to critically address their reliability

under different conditions and transferability to mixed systems.

Generally, classical force fields are effective two body potentials, comprising

the Lennard-Jones (LJ) potential for the van der Waals interaction and the

electrostatic interaction of partial charges that models hydrogen bonding.

Also in a standard procedure, potential models for mixtures are built from

the pure system force fields where cross interactions are calculated in a

standard way: LJ part using geometrical or arithmetical rules (so called

Lorentz-Berthelot rules, LB rules); and Coulombic part by superposition.

However, the transferability of the pure system models to a mixed system is

not granted. As recent results from simulations of aqueous organic compounds

mixtures (aside from ethanol-water simulations) show, some excess quantities

as excess enthalpy, and dynamic properties as diffusion coefficient, which are

the most sensitive to mixing properties, are difficult to reproduce correctly.

In this curse, it is reasonable to ask if models parametrized on pure liquids
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are expected to be successful enough in reproducing excess quantities of the

mixture. The other aim of this work is to test different force fields in order

to give an answer if all these models are reliable enough in the reproduction

of the microscopic structure and its change with mole fraction of aqueous

ethanol mixture.1

1.2 Previous investigations

1.2.1 Alcohols

Alcohol is a chemical compound with a hydroxyl group(-OH) bound to the

saturated carbon atom (-C). Simple acyclic, monohydric (having one -OH

group) alcohols have the general formula: CnH2n+1OH . The first few acyclic

monohydric alcohols are listed here:

Chemical Formula IUPAC Name

CH3OH Methanol

C2H5OH Ethanol

C3H7OH Isopropyl alcohol

C4H9OH Butyl alcohol (Butanol)

C5H11OH Pentanol

Illustration 1: General model of alcohol molecule

Alcohols are amphiphilic molecules. On one side they have polar hydroxyl

group, and on the other a hydrophobic tail. The length of this tail determines

the degree of the alcohol’s solubility in water. Only the first few alcohols are

miscible with water (up to butanol). The rest of them have a hydrophobic

1All results concerning testing of different ethanol model are from article in
preparation[20]
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tail too big to allow total miscibility with water, even though the hydroxyl

part of the molecule is polar and tends to form H-bonds with water molecules.

1.2.2 Ethanol, general facts

Illustration 2: Model of ethanol molecule

Ethanol is a clear, colourless liquid in the temperature range from 159

K (-114 C) to 351 K (78 C) at atmospheric pressure. Its molecular formula

is C2H5OH , empirical formula C2H6O and molecular weight 46.068 g/mol.

Ethanol is miscible with ether, acetone, benzene, acetic acid, many organic

solvents and water. It is a one H-bond donor and one H-bond acceptor.

Ethanol-water mixtures have less volume than the sum of their individual

volumes at the given mole fractions. The reaction of mixing ethanol and

water is exothermic. Mixtures of ethanol and water form an azeotrope

at about 89 mole fraction of ethanol at normal pressure and T = 351 K

temperature.

Ethanol and methanol are the only two linear alcohols that crystallize, bigger

alcohols form glasses. Solid ethanol is composed of linear hydrogen-bonded

chains of molecules, with molecules arranged in an alternating sequence. For

ethanol, only one crystalline phase is found at atmospheric pressure. The

pairs of molecules along the chain are linked together in trans and gauche

conformations, with the carboxyl group directed away from the centre of

each pair. These pairs alternate along the chain. On the contrary, the

high-pressure structure of ethanol crystal is represented by chains consisting

only of molecules in trans conformation and they are linked in each chain

so that their carboxyl groups are coplanar and aligned in the same direction
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Illustration 3: Structure of solid ethanol (Ball-and-stick model of part of the
crystal structure of ethanol at 87K (186C). X-ray crystallographic data from [14]

along the b axis of the cell [21]. In the vapour phase separate molecules are

of the average size 0.4 nm [22].

1.2.3 Models of liquid ethanol

For determining the structure of liquid ethanol (and many more molecular

systems) computer simulations present the opportunity to obtain detailed

insight into the structure and dynamics of the system in question. The key

issue for computer simulations is determination of the model for potential

functions that properly describe inter-atomic interactions (potentials) in the

modeled systems.

Various models of liquid ethanol based on Coulomb potential of point charges

and Lennard-Jones potential are present in the literature, rigid model that

neglects internal degrees of freedom in the molecule, and flexible models

that comprise the flexibility of dihedral angle, flexibility of angles between

H-O-CH2 and O-CH2-CH3 bonds in ethanol molecule, and some that take into

account the elongation of the bonds. There are models of the united-atoms

type, that reduce contribution of the group of atoms to one site, such as

CH2 and CH3, and others, all-atoms type, take into account every atom
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separately. polarizable models explicitly take into account the polarizability

of the molecules. Some of the models are parametrized by fitting the liquid-

vapour coexistence curve, and others by fitting to the experimental Kirkwood-

Buff integrals.

The geometry, bond lengths and angles, of the ethanol molecule was probed

through various experimental techniques; microwave spectroscopy [23],

neutron diffraction [24], [25], [26], x-ray diffraction [27], electron momentum

spectroscopy [28].

Here is a short overview of the most commonly used models for liquid ethanol,

in historical order as they appeared in the literature. Five of these models

are used in this work (details in section 2), and results obtained by some of

those not used here are discussed later in this work.

Based on the molecular geometry given in [23], Jorgensen developed rigid

united-atoms model for liquid ethanol [29]. One model commonly used

for liquid ethanol, OPLS, Optimized Intermolecular Potential Functions for

Liquid Simulations, developed by Jorgensen [30], has been derived by directly

fitting experimental thermodynamic and structural data of pure organic

liquids, liquid water, and aqueous solutions of organic molecules and ions

representative of peptide constituents. It was developed as an extension

on Jorgensen model for pure liquid hydrocarbons [31], which was done by

reparametrization of the TIPS (Transferable Intermolecular Potential

Functions) for water, alkanes, alcohols and ethers [32]. For liquid alcohols

TIPS and OPLS potentials have the same form, but differ slightly in the

value of their parameters. In his work Jorgensen [30] did the Monte Carlo

simulation of the thermodynamic and structural properties of liquid ethanol

at fixed atmospheric pressure ( p= 1 atm) and fixed temperature T=298

K in the isothermal-isobaric (NpT) ensemble. The system consisted of 128

molecules in the cubic cell. Jorgensen confirmed that ethanol molecule in a

liquid state has a trans conformer and two mirror image gauche conformers.

This result is in accordance with ab initio calculations. Hydrogen bonds were

confirmed to be nearly constant at 2.7−2.8Å. Computed heat of vaporization

of 9.99 kcal/mol was found to be in good agreement with experimental value

of 10.11 kcal/mol from [33]. The density of 0.748 g/cm3 was also found to be
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in good agreement with experimental data of 0.7851 g/cm3 from [33]. Heat

capacities and isothermal compressibility were also found to be in agreement

with the experimental data. The results on the location and area of the first

peak for the O-O radial distribution function were in excellent agreement

with the X-ray diffraction data [34, 35, 27].

All-atoms potential with the flexible dihedral angle was developed by Muller-

Plathe [36], aimed to be used with SPC water [37] for simulation of polymer

membranes.

In 1996 Jorgensen [38] developed all-atom type potential with stretching,

bending and internal rotation degrees of freedom. Cornell potential for

organic molecules [39] (AMBER) is based on the same approach as Jorgensen’s

all-atom OPLS, but they differ in values of parameters.

Chen, Jeffrey and Siepmann [40], a group working on the development of the

transferable potentials for phase equilibria force fields, proposed new TraPPE

and TraPPE-UA (united atoms) force fields for alcohols, because it was found

[41] that Jorgensen’s OPLS was not transferable to the longer alcohols and to

elevated temperatures. The authors claimed that TraPPE-UA force field had

satisfactory performance for the prediction of the thermophysical properties.

Structural analysis of the liquid alcohols showed that for all neat alcohols

(methanol, ethanol, propan-1-ol, propan-2-ol, butan-2-ol,

2-methylpropan-2-ol, pentan-1-ol, pentane-1,5-diol and octan-1-ol) on average

two hydrogen bonds are formed per hydroxyl group, regardless the difference

in the cluster size distributions.

In 2005 Serbanovic at al. [42] used the flexible OPLS-UA force field from

[43] in a Monte Carlo computer simulation that predicted vapour-liquid

equilibrium of few binary systems with propane + ethanol as one of them.

Flexible OPLS-UA force field differs from Jorgensen’s semi-flexible force field

in the added flexibility of the angle between bonds [44]. The model was found

to be in good agreement with the experimental data.

In the year 2005 Schnabel et al. [45] proposed rigid united-atom model

that uses three nuclei off-center LennardJones united atoms for the methyl,

methylene and hydroxyl group. Geometry was obtained by quantum chemistry

calculations and model was developed to predict Henry’s law constants for
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various solutes in ethanol as solvent. Model was parametrized to give accurate

density and vapour pressure of pure ethanol.

In the year 2012 Jiao [46] developed force field for liquid ethanol based

on Kirkwood-Buff (KB) theory of solutions, KBFF, because many existing

force fields perform poorly in their ability to reproduce the experimental KB

integrals of the alcohol-water solutions. This force field was developed to be

used with the Simple Point Charge/Extended (SPC/E) water model.

There are few polarizable models for ethanol: Gao [47] developed a polarizable

intermolecular potential by defining atomic dipoles, [48] included charge

carrying Drude particles in their molecular model and [49] used an extended

Hamiltonian approach to allow molecules to respond to the environment and

developed flexible polarizable model for ethanol. In this model intramolecular

potential varies with the field and atomic charges also fluctuate with the field.

At any instant of time each molecule in the bulk has its own set of charges

and intramolecular potentials. This model predicts longer chains of H-bonded

molecules, as H-atom in this model is allowed to adapt possition in response

to the field, and in that way optimize the H-bonded structures.

1.2.4 Simulations of pure ethanol

Here are presented two simulations of pure ethanol, to give an insight at

various properties that are attainable by Molecular Dynamics simulations.

Saitz, Padro and Guardia [50] carried out molecular dynamics simulation of

liquid ethanol at four thermodynamic states ranging from T=137 K to T=348

K. They used OPLS potentials, and reported thermodynamic, structural and

transport properties for liquid ethanol. Heat of vaporization was found to

be in overall agreement with the experimental data, only 1% higher than

the experimental value, and in good agreement with the data from other

simulations. They calculated the percentage of gauche conformers in liquid

at 298K to be 50% and concluded that more precise experimental data,

and more detailed simulation are needed to decide on precise molecular

conformation of liquid ethanol. Radial distribution functions (RDF) data
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that best describe the structure of liquids, was found to be in good agreement

with the earlier computer simulations. They confirmed that liquid becomes

more structured as the temperature decreases. The changes of temperature

do not affect the positions of the maxima and minima, but only their height

and depth. They compared the RDF data with the data for the liquid

methanol and proposed that these two liquids have the similar structure,

predominantly governed by chains of H-bonded molecules. At T=298K,

authors found that 80% of ethanol molecules have two H-bonds, 14% have

1 H-bond, 5% have 3 H-bonds and 1% are not H-bonded. Branching of

the H-bonded chains was reported to be nearly constant with the increase

in temperature,, and with decreasing temperature chains become longer.

Authors conclude that at room temperature there are very few hexamer

closed chains in the liquid ethanol, in the contrast with Sarkar and Joarder

[51] who suggested that closed hexamer chains are in majority at room

temperature. Self diffusion coefficients for the centre of mass were calculated

and they show a decrease with the temperature decrement, what they suggest

to be in good agreement with the formation of the longer H-bonded chains

at lower temperatures. Diffusion coefficients were reported to be in good

agreement with the data from NMR experiments, although somewhat higher.

Another comprehensive study on the structure, and also the clustering of neat

liquid ethanol is the one by Benmore and Loh [26], using neutron scattering in

pure ethanol at room conditions, and Molecular dynamics simulation. The

authors measured directly 10 structure factors, out of 21 possible partial

structure factors that exist for pure ethanol. The data have been used

to obtain the details of the conformation of the ethanol molecule in the

liquid state. The intermolecular structure was compared to the molecular

dynamic simulation done with four-site and nine-site Jorgensen potential

for liquid ethanol. The authors obtained six hydrogen-hydrogen partial

structure factors, and four composite structure factors. Molecular dynamic

simulations were done with 125 semi-flexible molecules in a cubic cell, in

the NVT ensemble. The Nose-Hoover thermostat was used to control the

temperature at 300K and density at 0.7873 g/cm3. Simulation runs were 100

ps long. These were still small systems and very short simulation runs. It was
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found that the position of the first peak of the radial distribution function

for O-O sites agrees better with the experimental data for the four-site

model, and the peak position of the H1-H1 sites has better agreement in

the nine-site model, but in general they were found to be in good agreement

with the experimental data concerning the positions of the first peaks in

radial distribution functions. On coordination numbers authors claimed that

hydroxyl hydrogen is surrounded by 2.0 ± 0.2 hydroxyl atoms at 3.0 Å, and

oxygen is surrounded by 0.95 ± 0.3 hydroxyl atoms at 2.1 Å and 2.0 ± 0.2

oxygen atoms at 3.0 Å. Authors concluded that experimental and simulation

data are inconsistent with the presence of the closed hexamer clusters, but

consistent with the existence of the H-bonded winding chains of molecules,

and that the U-shaped chain agreement is very good.

Ethanol is a H-bonding liquid and as such it is an associated liquid. It has

the structure of H-bonded clusters. Up to now there has been an ongoing

discussion about the exact form of clustering in neat ethanol. Different

cluster sizes were proposed and it is still not clear if these clusters are linear

or cyclic in nature [33, 35, 51]. In 1999 Ludwig, Weinhold and Farrar [52]

presented a quantum cluster equilibrium theory for liquid ethanol. The

authors claimed that at room temperature neat liquid ethanol consists of

approximately equal parts of monomer, cyclic tetramer, and cyclic pemntamer

clusters.

1.2.5 Simulations of ethanol-water systems

Data from simulations presented here, on enthalpy, excess enthalpy and

diffusion coefficients, will be later compared to the results from this work.

Wensink et al. [53] studied binary mixtures of alcohols (methanol, ethanol

and 1-propanol) with water in order to compute excess properties of mixing,

in particular the relation between mobility and viscosity. Most of the simulated

properties were found to be in good agreement with the experimental data.

Enthalpy of mixing and excess density were particularly well reproduced,

even though excess density is underestimated, and simultaneously excess
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enthalpy (enthalpy of mixing) is overestimated. The authors attributed this

to the fact that parameters in the force field may not be well suited to the

mixtures, even though they give excellent results for the neat compounds.

The authors proposed their work to serve as a benchmark for further

improvements on the models. Self diffusion coefficients were computed from

the mean square displacement using Einstein’s relation (details in subsection

3.7). Overestimated values were obtained for the diffusion coefficients, but

with correct trends. The maximum in the excess viscosities obtained from

this simulation was found to be shifted to the higher value of alcohol

concentration than in the experimental data and the excess viscosity was

found to be underestimated, whereas the pure components were reproduced

rather well. Authors adopted the view that the Stokes - Einstein’s relation,

that relates diffusion with viscosity holds at the molecular level, supported

by the [54, 55], so that allowed them to compute the effective hydrodynamic

radius of the particles in the mixture. Experimental radii have the minimum

at the low ethanol concentration, which is reproduced well by the simulation

(minimum at χ = 0.2 mass fraction, χ = 0.09 mole fraction ethanol) and

authors concluded that there is no evidence for the diffusion of the larger

entities, ’collective diffusion’ in any of the mixtures. At the end the authors

concluded that the OPLS model for water and short alcohols gives qualitatively

correct answers for properties like energy, density and viscosity, but that the

exact micro structure of this mixtures is still not fully understood.

One more extensive study on ethanol water mixtures was done by Noskov,

Lamoureux and Roux [48] focusing mainly on the number of hydrogen bonds

in the system, namely elucidation of the structure of the hydrophobic hydration

in ethanol water mixture. The second aim of the work was to develop a new

polarizable force field model for ethanol. The system under investigation

consisted of 250 molecules. Simulations were performed in the NpT ensemble,

at room temperature and pressure ( T = 300 K, p = 1 atm ). The calculated

enthalpy of vaporization for neat ethanol of 10.19 kJ/mol, is in good agreement

with the experimental data authors showed of 10.15 kJ/mol [56]. The authors

plotted the radial distribution function for Oethanol-Oethanol and

Oethanol-Hethanol sites compared with the radial distribution functions from the
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non-polarizable model [30] and found positions of the first peak to be in good

agreement with the both, [30] and the experimental data, although somewhat

shifted to the smaller radius than the non-polarizable model predicts. The

model was able to reproduce the positions of the minima in the self diffusion

coefficients for water at ethanol concentration 30% and for ethanol at ethanol

concentration of 20%. For pure liquid water, authors report an average

of 3.03 H-bonds per water molecule in the neat water system, with the

(dHO < 2.4Å)/150° geometric definition of the H-bond, and 1.65 H-bonds

per ethanol molecule in the neat ethanol system. From positive excesses

for the W/W and E/W numbers of H-bonds and the negative excesses for

the W/E and E/E numbers of H-bonds authors concluded that water is an

overall better solvent than ethanol: at any ethanol fraction, both water and

ethanol are preferably solvated by water. When solvated in neat ethanol, a

water molecule loses 14% of its H-bonds, while on the contrary, when ethanol

molecule is solvated in water, it gains more H-bonds, going from 1.65 to 2.23,

as the concentration of ethanol goes from 100% to 0%. The maximum water

H-bonding excess was found to be at 15% ethanol concentration. The authors

presented the analysis of the fraction of the water hydrogen bonded clusters,

ethanol hydrogen bonded clusters and all hydrogen bonded clusters with

the respect to the cluster size. They concluded that the ethanol component

does not percolate at any concentration, while they claimed that water

percolates for the concentrations of ethanol below 30%. As the indication of

the existence of the percolation the authors took the existence of the clusters

with the size close to the whole system size. The authors claimed that there

is an optimal number of water molecules to solvate each ethanol molecule

at 20% ethanol concentration. Finally, the net effect from the entire first

hydration shell is a reduction rather than an excess of water H-bonds, and

the dominant contribution arises from the structuring of water in the second

hydration shell of ethanol. The authors also claimed that the presence of

water clustering exists from zero to very high ethanol concentrations in this

mixture.

Zhang et al. [57] in 2006 provided the study of the self diffusion coefficients

and mutual diffusion coefficients over the whole range of the concentrations
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in ethanol - water mixture, done by molecular dynamics simulation. The

authors used the OPLS-AA (optimized potentials for liquid simulations -

all atoms) force field for ethanol and the SPC (simple point charge) for

water. The system consisted of 250 molecules in a cubic cell. Simulations

were performed in NVT ensemble at the temperature of T=298 K. The

equilibration lasted for 600 ps, and the run that was used to collect the

necessary statistics lasted for 100 ps. In a binary mixture there are two

kinds of diffusion coefficients; self diffusion coefficient and mutual diffusion

coefficient. Self diffusion coefficient is described with the velocity

autocorrelation function of the molecules of each species. The authors found

the minimum in the self diffusion coefficient of ethanol to be at the 30%

mole fraction of ethanol, and sharp decrease in the self diffusion coefficient of

water up to 30% mole fraction of ethanol. For bigger ethanol concentrations

the authors found self diffusion coefficient of water to remain constant. The

mutual diffusion coefficient describes the mobile ability of species A diffusing

into species B. It has a kinematic part and a thermodynamic part. Mutual

diffusion coefficients were found to be larger than zero due to non-ideality of

the ethanol-water mixture.

Zhang and Yang [58] reported another study on structure and diffusion

properties of ethanol water mixture at 298.15 K and atmospheric pressure

by molecular dynamic simulation. A simple ’rigid molecule’ model was

used for ethanol, and TIP4P for water. The total number of molecules

was 500, and the simulations were done in NVT and NpT ensembles. The

validity of the rigid model was verified by obtaining the correct enthalpy of

vaporization for neat water and neat ethanol, in good agreement with [53].

The absolute value of the excess of heat of mixing was underestimated at

low ethanol concentrations, and in good agreement with the experimental

data above χ = 0.90 mole fraction of ethanol. The authors presented

O-O and O-H radial distribution functions, and concluded that water-water

correlation is enhanced in the mixture compared to that in pure water,

while ethanol-ethanol H-bonding structure is gradually broken as the ethanol

concentration increases. The strong interaction between ethanol and water

molecules leads to the enhancement of the correlation as the ethanol mole
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fraction increases. Self diffusion coefficients were computed to be larger than

the experimental data, but this is usually the case with the self diffusion

coefficients from simulations. However, they were found to be lower than the

data from reference simulation [53]. The self diffusion coefficients calculated

from the velocity autocorrelation function were slightly better than those

computed from mean square displacement. The mutual diffusion coefficients

obtained from the MD simulation were in fair agreement with the experimental

data in the ethanol - water mixture.

1.2.6 Microheterogeneity

Microheterogeneity and the microheterogenous structure change along three

regimes with the mole fraction change is one of the key features of ethanol-water

mixture that is analyzed in this work. Neat ethanol and neat water are both

associated liquids, because they are both hydrogen bonding liquids, and each

of them has its own microstructure, which are not the same. Water has a

dense, flexible, 3-dimensional H-bonded network structure, unlike all other

liquids. When ice melts to water, it should be expected that the H-bonded

ice structure is destroyed while liquefying. That is not so. When melting,

the H-bonded network is not disrupted in most part, it just starts to have

fast librations of the individual constituent H2O molecules. Experimental

results show that the rotational angles of circa 35 degrees are attained in

approximately 700 ps time [59]. These hindered rotations (librations) induce

great distortions in the H-bonded network of liquid water and they are at

the origin of water’s fluidity and flexibility [60]. Even though, the structure

of this familiar and abundant liquid still poses an unanswered question [61].

Ethanol, on the other hand, has an yet unresolved clustered microstructure.

Microstructures of ethanol and water are different from the neat Lennard-Jones

liquids, that have dense packing of atoms with the coordination number

of 12, because H-bonds in associating liquids require a certain number of

neighbours in the vicinity of every molecule. Microstructure of these liquids

results from these two requirements, on one side the dense packing structure
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of liquids, and on the other constraints to the structure demanding from

the H-bonds. When these liquids are mixed, a microheterogeneous structure

emerges as a consequence of the competition between their microstructures,

because of the numerous possibilities of local order. Each liquid prefers its

own microstructure, so they locally separate. This micro-separation is called

microheterogeneity. An important point is that these liquids mix well, as if

micro-separation helps them to stay together2. Another important point is

that this is happening in thermodynamical equilibrium. Usually formation

of segregated domains is seen close to the phase transition point.

Three significant papers published in 2007 from A. Perera, F. Sokolic and L.

Zoranic [17], L. Zoranic, F. Sokolic and A. Perera [18] and [62] for the first

time introduced the clear terminology in the topics of associated liquids,

addressing the microheterogeneity of the neat alcohols (methanol and tert-

butanol) as the microstructure of neat liquids, while the segregation of the

small domains of the two components in their binary mixtures with water

was called microheterogeneity. In the [18] authors reported the feature of the

microstructure found in neat methanol at room temperature and pressure, by

the molecular dynamic simulation, to be in agreement with the experimental

findings, namely the prepeak in the structure factor, corresponding to the

distance of about 6 Å. This feature corresponds to the first time noticed bump

in the probability of H-bonded clusters of oxygen-oxygen sites at the cluster

size of 5, for neat methanol. Authors claimed that this indicates that about

five oxygen atoms cluster preferentially, through H-bonding mechanism, in

accord with the experimentally known fact that methanol molecules tend to

form chains with rich topology [63]. The non-H-bonding sites were reported

to have structure factor typical of an atomic liquid, and the H-bonding

sites to have a prepeak that corresponds to a 7.5 Å distance. In order to

confirm that this prepeak is entirely due to the local organization coming

from H-bonds, tert-butanol system simualtion was done, under the same

conditions, but without partial charges, and the prepeak has disappeared.

2On this point one clarification of the terminology is useful, as it is not consistent in the
literature. In this work microheterogeneity is the name reserved for the micro-separation
of the components in the mixture. Structure of the neat associated liquids will be referred
as micro-structure.
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Authors also showed that oxygen-oxygen cluster size probability function

has a pronounced peak at the cluster size around 4, while the probability

of finding monomers was smaller than that. The striking feature reported

in this work is that neat alcohols show structure strongly reminiscent of

that in microemulsion after the disorder to order phase transition, but in

the alcohols it is within the disordered phase. The viewpoint introduced in

this work is that associated liquids can be viewed dually as constituted of

molecules interacting through strong directional forces, and at the same time

as the mixture of the microclustered molecular domains.

1.2.7 Problems with excess enthalpy and diffusion coefficients

In two works 2011 Chitra and Smith [64], [65] performed molecular dynamic

simulations on 2,2,2-trifluoroethanol (TFE) - water mixture with a variety

of standard models for TFE. None of the tested models reproduced excess

enthalpy and diffusion coefficients of mixture with satisfactory accuracy.

They all give overestimated self-association of solute.

Molecular dynamic simulation of acetone-water mixture by Perera and Sokolic

in 2004 [66] for OPLS acetone model produced results for excess enthalpy

that were not in good agreement with experimental data, while Weerashinge

Smith (WS) acetone model [67] results were in much better agreement with

experimental data. However, WS model wasn’t successful in reproducing

internal energies with satisfactory agreement with experimental data, so it

seems that the choice of the model is always a trade-off, different models

reproduce better different properties of mixtures.

Lee and van der Vegt [68] in 2005 reported results for simulations of aqueous

tertiary butanol (TBA) solutions with model they developed by targeting

experimental Kirkwood-Buff integrals with reparametrization of distribution

and magnitude of partial atomic charges of GROMOS model, because results

they obtain with GROMOS [69] and OPLS [30] force fields didn’t yield

satisfactory results, again reporting big disagreements in excess enthalpies

of mixture.
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Excess enthalpy for aqueous methanol mixtures simulation, with ethanol

modeled by OPLS [30] force field were reported to be too high and not in

the best agreement with experimental data, 2006 by Gonzalez-Salgado and

Nezbeda [70] and 2010 by Perera et al. [71].

Kang and Smith [72] reported excess enthalpies for aqueous solution of N-

methylacetamide (NMA) modeled with CHARMM [73] force field to be in

disagreement with experimental data, while data obtained by their new

model parametrized on mixture’s Kirkwood-Buff integrals were in much better

agreement.

In 2009 Zoranic et al. [74] reported excess enthalpies for aqueous solutions

of three amides modeled by force filed from [75] and [76] that were too high

for all three amides.

In 2010 Dai et al. [77] reported molecular dynamic simulation data of various

binary mixtures of organic molecules. Simulations were done using OPLS

[38]force fields for organic molecules. The general conclusion was that excess

enthalpies for these mixtures and force fields are higher than experimental

values.

Few possible routes for the improvement of force fields for mixtures exist

in the literature. One are recently emerging new force fields, that include

explicit polarizability in the models. Also, the issues of the combination rules

are critically discussed [45], [70]. Yet another route is to propose models for

mixtures that are parametrized on the mixture properties, such as the solute

activity change with solute concentration. As discussed in [78], it is not

clear if models parametrized on data related to chemical potentials along the

temperature change are successful in reproducing Kirkwood-Buff integrals on

fixed temperature along the composition range. It is indeed true that such

model (TraPPE) has problems in reproducing it, as confirmed in this work.

In our recent publication, using standard models, highly overestimated

experimental excess enthalpies for ethanol-water mixture were obtained[6].
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1.2.8 Conclusion on previous investigations

As it can be seen, early work was concentrated at the finding of the proper

models for real systems, and later on the agreement of the various calculated

properties with the experimental data. Up to now much has been said on

the diffusion coefficients and local hydrogen bonding of this system. There

were some attempts on deciphering the structure of the mixture, but not a

single one to give the global view of the structural changes of this mixture

with the molar fraction change. All the studies were concentrated mainly

on giving the description of the local structure around H-bonding atoms,

and the behaviour and structure of this mixture is governed by an emergent

phenomenon - microheterogeneity. There is obviously a lot more to it that

can be found and explained.

There are lots of evidence in the literature, listed in the previous section,

that classical non-polarizable models for alcohols do not reproduce some of

the mixture’s properties, as excess enthalpy and diffusion coefficients.
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2 System and methods

2.1 System

2.1.1 System size

The system under investigation consisted of a fixed number of N=2048 of

particles. This number was found to be enough to get the density correlations

correct [18] - [74]. The exact number of molecules for each mole fraction is

listed in the Table 1

Table 1: Number of molecules for each mole fraction

Ethanol mole fraction Number of
Ethanol molecules

Number of
Water molecules

0.00 0 2048
0.05 102 1946
0.08 163 1885
0.10 204 1844
0.12 245 1803
0.15 307 1741
0.18 368 1680
0.20 409 1639
0.22 450 1598
0.25 512 1536
0.30 614 1434
0.40 819 1229
0.50 1024 1024
0.60 1228 820
0.70 1433 615
0.80 1638 410
0.90 1843 205
1.00 2048 0
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2.1.2 Ethanol models

Torsional motion about C-O bond puts ethanol molecule in two mirror imaged

gauche and one trans conformer. It can be clearly seen from the rotational

energy function in Figure 1 from [30]. Trans conformer has H-atom positioned

at 180°, ant two gauche conformers at 60° i -60°.
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Figure 1: Rotational energy as the function of dihedral angle for ethanol

Five force field potential models for ethanol were used, all five of non-

polarizable united-atom type, and all four consisting of Coulomb and Lennard-

Jones interaction. In all of these models ethanol has four sites: H, O,

CH2 and CH3, numbered 1,2,3 and 4, respectively. The first one is semi

flexible Optimized Potential for Liquid Simulations, OPLS, from [30]. It is

somewhere referenced as OPLS-UA (united atoms) to point out the fact that

some of the atoms are united in one site and then parameters are attributed to

the site as a whole interaction point. Second (it is called here: fully flexible

OPLS with bigger angle (b.a.)) and third (it is called here: fully flexible

OPLS with smaller angle (s.a.) models were fully flexible OPLS, from [43]

and [42]. These two models differ from the semi flexible model in a way that

while semi flexible model implements only the flexibility of the dihedral angle

inside the all four sites of the molecule, (Illustration 4), the fully flexible

model implements also the flexibility of two angles between neighbouring
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chemical bonds in the molecule, namely the angle between H-O and O-CH2,

and the angle between O-CH2 and CH2-CH3 chemical bonds, (Illustration 5).

The fourth model is Transferable Potential for Phase Equilibria United

Atoms, TraPPE-UA, from [40]. It is fully flexible, but differs in the values of

the parameters from the fully flexible OPLS-UA potential. The last model

is Kirkwood-Buff force filed, KBFF, from [46].

Illustration 4: Semi-flexible model of ethanol molecule

Illustration 5: Fully-flexible model of ethanol molecule

It is important to mention here that the parametrization of all included

models was performed on systems with the size which is smaller than the

system in this work.

The general form of the used force fields is as follows:

E(rN) = Ebonds + Eangles + Edihidral + Enonbonded (2.1)
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with:

Ebonds =
∑

bonds

Kr(r − r0)
2 (2.2)

Eangles =
∑

angles

kθ(θ − θ0)
2 (2.3)

Edihidral =
A1

2
(1 + cosφ) +

A2

2
(1 − cos2φ) +

A3

2
(1 + cos3φ) (2.4)

Enonbonded =
∑

i>j

qiqj

4πǫ0rij
+

∑

i>j

4ǫ0((
σ

rij
)12 − (

σ

rij
)6) (2.5)

Instead of elastic potential for the bonds, rigid bonds were used in all

models. Semi-flexible OPLS does not have Eangles, but uses six length constraints.

Interactions between non-bonded atoms are presented by pairwise additive

Coulomb and Lennard-Jones potential. van der Waals force is modeled by

Lennard-Jones potential. Cross-site parameters for Lennard-Jones potential

(Illustration 6) were calculated by the following Lorentz-Berthelot rules [79]:

σij =
σii + σjj

2
(2.6)

ǫij =
√

ǫiiǫjj (2.7)

Illustration 6: Shape of the Lennard-Jones potential

The list of used parameters for all four ethanol force fields is listed in

Table 2
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Table 2: Force field parameters for five used ethanol models

Semi

flexible

OPLS

Fully

flexible

OPLS b.a.

Fully

flexible

OPLS s.a.

TraPPE KBFF

Sites masses [g/mol] and charges [e]

H m 1 1 1 1 1

O m 16 16 16 16 16

CH2 m 14 14 14 14 14

CH3 m 15 15 15 15 15

H q 0.4350 0.4350 0.4350 0.4350 0.5200

O q -0.7000 -0.7000 -0.7000 -0.7000 -0.8200

CH2 q 0.2650 0.2650 0.2650 0.2650 0.3000

CH3 q 0.0000 0.0000 0.0000 0.0000 0.0000

Length constraints between sites [Å]

H-O 0.945 0.945 0.945 0.945 0.945

O-CH2 1.430 1.430 1.430 1.430 1.430

CH2-CH3 1.530 1.530 1.530 1.540 1.530

H-CH2 1.948

O-CH3 2.3954

Angles potential parameters [kJ/mol], [degrees]

H-O-CH2

kθ

460.00 460.00 460.00 450.00

O-CH2-CH3

kθ

420.00 420.00 420.00 520.00

H-O-CH2

θ0

108.50 108.50 108.50 108.50

O-CH2-CH3

θ0

109.47 108 109.47 109.50

Dihedrals potential parameters [kJ/mol]

A1 3.4900 3.4900 3.4900 3.4900 3.4900

A2 -0.4860 -0.4860 -0.4860 -0.4860 -0.4860
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Table 2: Force field parameters for five used ethanol models

Semi

flexible

OPLS

Fully

flexible

OPLS b.a.

Fully

flexible

OPLS s.a.

TraPPE KBFF

A3 3.1275 3.1275 3.1275 3.1275 3.1275

van der Waals potential parameters, ǫ [kJ/mol], σ [Å]

H ǫ 0.00000 0.00000 0.00000 0.00000 0.08800

O ǫ 0.71131 0.71131 0.71131 0.77325 0.65060

CH2 ǫ 0.49396 0.49396 0.49396 0.38247 0.41050

CH3 ǫ 0.86612 0.86612 0.86612 0.81482 0.86720

H σ 0.00000 0.00000 0.00000 0.00000 1.58000

O σ 3.07100 3.07100 3.07100 3.02000 3.19200

CH2 σ 3.90500 3.90500 3.90500 3.95000 4.07000

CH3 σ 3.77500 3.77500 3.77500 3.75000 3.74800

TraPPE model differs from OPLS in the way that it has slightly longer

bond length between CH2 and CH3 sites. The charge of the sites is the

same, while Lennard-Jones parameters are different; oxygen site is smaller

and has deeper ǫ than OPLS, allowing H-bonded sites to come closer, while

CH2 site is bigger with shallower potential well ( smaller ǫ). KBFF model

differs significantly from OPLSes and TraPPE in charges on sites and in

Lennard-Jones parameters.

2.1.3 Water models

B. Guillot [80] listed 46 distinct models for liquid water, each of them in

accordance with a subset of water properties, but none of them successful

in reproducing the complete set of thermodynamic, structural, anomalous

properties of water. A detailed review of water models is available in [15].

In this work Single Point Charge/Extended, SPC/E, model [81] was used.

It is a simple, three-site, effective rigid pair potential model, composed of
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Lennard-Jones and Coulombic terms [82], that does not use a lot of CPU

time and is reasonably good in reproducing structural properties, internal

energy, density and diffusivity of liquid water under ambient conditions [83].

Another model; Transferable Intermolecular potential with 4 Points, TIP4P,

from [84], was also used in few cases as a test of dependance of some results

on water model. The list of used parameters for SPC/E model is in Table 3

and for TIP4P in Table11. Illustration 7 illustrates water models. SPC/E is

’a’ type, while TIP4P is ’c’ type.

Table 3: Force field parameters for SPC/E water model

Ow Hw Hw
Mass [g/mol] 16 1 1
Charge [e] -0.8476 0.4238 0.4238
ǫ[kJ/mol] 0.65036 0.00000 0.00000
σ[Å] 3.16500 0 0

Length constraints between sites [Å]
Ow-Hw1 1
Ow-Hw2 1
Hw1-Hw2 1.633
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Table 4: Force field parameters for TIP4P water model

Ow Hw Hw Mw
Mass [g/mol] 16 1 1 0
Charge [e] 0.0000 0.5200 0.5200 -1.0400
ǫ[kJ/mol] 0.64870 0.00000 0.00000 0.00000
σ[Å] 3.15365 0.00000 0.00000 0.00000

Length constraints between sites [Å]
Ow-Hw1 0.9572
Ow-Hw2 0.9572
Ow-Mw 0.1500

Illustration 7: Different water models, SPC/E is ’a’ type [15]
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2.2 Methods

2.2.1 DL POLY 2 and DL POLY Classic 1.4 software

The method of investigation was Molecular Dynamics computer simulation.

The calculations were conducted on the Isabella cluster at SRCE, by DL

POLY 2.14 [85] and DL POLY Classic 1.4 [86], [87] packages. With the chosen

values of size parameters, the investigated system falls within permitted

limits of both packages. This was an opportunity to test both versions on the

same set of data, to ensure their compatibility, as in future research bigger

systems are going to be needed. The DL POLY 2 uses kbar as a pressure

unit, while DL POLY Classic uses katm as a pressure unit. Both packages

use Leapfrog Verlet as a default integration algorithm. Four different systems

were tested, test file number 10 from the DL POLY 2.14 package, Lennard-

Jonnes liquid, SPC/E water and OPLS Fully flexible s.a., third model from

this work. The difference in integration algorithm was tested on all four test

systems, and the difference in kbar vs katm was tested on ethanol system.

There was found to be no difference at all due to the integration algorithm

used, and only insignificant difference in the value of the pressure due to the

difference in the default pressure units. In the NpT ensemble, pressure is the

quantity that fluctuates the most. It was found that all four test systems

have slightly different calculated absolute values of energies and volumes from

different DL POLY versions. In the molar values, these differences will be

reasonably small to allow the conclusion that both versions are compatible.

However, it is not clear what is the root of noticed differences in the results.

The decrement in the speed of the calculations with the increase in the

number of computer cores was exponential, and the biggest gain was found

to be for the ethanol system, smaller for the water system and the smallest

for the Lennard-Jones liquid.
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Figure 2: Cpu time for 500 steps runs with the respect to the number of computer
cores

Test results are listed in Table 5.

In the case of ethanol it can be seen that the absolute value of the van der

Waals energy differs less between two different versions, 2 and Classic, than

between two builds of the same version of the application, 2.14 and 2.16.

The same applies for the total configurational energy. The corresponding

molar configurational energies are 36.9586 kJ/mol for DL POLY 2.14, 36.9214

kJ/mol for DL POLY 2.16 and 36.9648 kJ/mol for DL POLY Classic.

Table 5: Results from the compatibility testing of the DL POLY 2 and Classic

ver. Energies are expressed in kJ, and volumes in Å3.

1. TEST10 from DLPOLY2.14 package
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2. Lennard-Jones liquid; 500 steps; 4000 particles

3. SPC/E WATER; 500 steps; 2048 molecules

4. ETHANOL 500 steps; 500 steps; 2048 molecules

The difference between 2 and Classic versions is 0.005 kJ/mol, and it

is less than the difference in some of the reported experimental enthalpy of

vaporization values as from 42.30 kJ/mol in [33] to 42.47 kJ/mol in [56] of

0.17 kJ/mol.

OPLS fully flexible models were calculated on DL POLY 2.14 version and

OPLS semi flexible, TraPPE, and KBFF model on DL POLY Classic version

of the application.
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2.2.2 Molecular Dynamic simulation

The essence of Molecular Dynamic simulation is simply stated: it numerically

solves classical equations of motion for N-body system [88]. That was

accomplished for the first time by Adler and Wainwright in 1957 [89] -1959

[90] for the system of hard spheres. In that case, particles move at constant

velocity between perfectly elastic collisions, and it is possible to solve dynamic

problem without making any approximations, within the limits imposed by

machine accuracy [79]. Several years later Rahman for the first time solved

equations of motion for the Lennard-Jones system [91]. After that, computer

simulations developed rapidly. The first step in a computer simulation is

when a real system is reduced to a mathematical model, and then this model

is solved by the use of the computer. When using computer simulation,

one must be aware that usage of computer to compute the behaviour of

the many-body model does not absolutely guarantee that the computed

behaviour is representative of that model, and much less that the model

mimics reality. Result from a simulation is at the first place the test of the

underlying model, used in a computer simulation. Eventually, if a model

is a good one, simulation results can be compared with the experimental

data, and assist experimentalist in the interpretation of the new results.

Nevertheless, computer simulations are one of the most important tools in

the study of liquid systems [92]. It provides a direct route from microscopic

details of a system (masses of atoms, interactions between them, molecular

geometry) to macroscopic properties of experimental interest [79].

Molecular dynamics is a numerical realization of the system’s unfolding

trajectory in phase space. The unfolding is governed by the classical equations

of motion. For the equilibrium MD, the system is confined to the hypersurface

of constant Hamiltonian in phase space, and if the system is isolated, the

Hamiltonian is the total energy. Once the MD simulation has generated

a phase space trajectory, it serves as raw data for obtaining time averages

of the properties. This time averages distinguish MD from other form of

simulation, Monte Carlo, that computes ensemble averages, and from the

formal statistical mechanics. In order to provide reliable time averages, a
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MD simulation must generate trajectories in a way that the sampling of

the constant-Hamiltonian surface is apparently random. The phase space

trajectory in MD is deterministic, and not random, because successive points

are determined by solving classical equations of motion. The way to make

this deterministic trajectory apparently random is by the mean of molecular

interactions. After only a few interactions positions and velocities are essentially

unrelated to their earlier states: the correlation time is short, so consequently,

after a short time Maxwell distribution of velocities develop and the time

averages for properties can be computed.

2.2.3 Treatment of the boundary conditions

MD is typically applied to the systems consisting of a few thousands of

molecules. In order to mimic the real bulk liquid, periodic boundary conditions

are used, to overcome the surface effects that would be dominant in such

small systems. The cubic box is replicated all over the space to form an

infinite lattice. As a particle moves in the primary box, its images move

in the surrounding boxes in exactly the same way. If a particle leaves the

central box, one of its images will enter it from the opposite wall of the box.

A two-dimensional illustration of the periodic boundary conditions is shown

in the Illustration 8.

Illustration 8: 2D periodic boundary conditions
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2.2.4 Treatment of the long-range forces: Ewald summation

A long ranged force is often defined as one in which the spatial interaction

falls off no faster than r−d , where d is the dimensionality of the system. The

Coulomb interaction between charged sites falls inevitably in this category,

as it has dependence r−1. This force poses a serious problem to the simulator

[79], as it’s range if far greater than the half of the simulation cell, where

the other forces are truncated. This interaction was treated with Ewald sum

method [93]-[94] in OPLS models and with its improved variant, Smoothed

Particle Mesh Ewald (SPME) [95], in TraPPE model. In short, Ewald

sum procedure goes as follows: original charge distribution of point charges

described by delta functions is screened by superimposing an equal in magnitude

and opposite in charge Gaussian charge distribution over every point charge.

The form of the Gaussian distribution is:

ρG(~r) =
1

(2π)3/2σ3
e

−|~r|−2

2
σ−2

(2.8)

where σ is the standard deviation of the Gaussian distribution. Parameter

used in the DL POLY is α = 1/(
√

2σ). Limit of this distribution when σ → 0

is the delta function of a point charge. This extra distribution acts as an

ionic atmosphere, screening the interactions between neighbouring charges.

The screened interactions are now short ranged, and the total potential is

calculated by summing over all of the sites in the central cell and their images

in the real space. The potential field of Gaussian distribution can be obtained

by solving Poisson’s equation:

∇2φσ(~r) = −ρG(~r)

ǫ0
(2.9)

and the total Coulomb interaction energy is

UCoulomb =
1

2

N
∑

i=1

qiφ[i](~ri) (2.10)

where φ[i](~ri) is the potential field generated by all of the sites plus their

images, excluding site i.
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One more canceling Gaussian distribution is then added to cancel the first

one, exactly the same, but opposite in charge to the first. This canceling

distribution is summed up in the reciprocal space. The complete Ewald sum

requires an additional correction, known as the self energy correction, which

arises from a Gaussian that is acting on its own site, and that is constant.

Ewalds method, therefore, replaces a potentially infinite sum in real space by

two finite sums: one in real space and one in reciprocal space; and the self

energy correction. There is one more necessary correction for the molecular

systems, as the intramolecular Coulomb interactions must be excluded from

the sums. In a bit simplified form, total Coulomb interaction energy can be

written as [96]:

UCoulomb = Ushortr. + U longr. − Uself

=
1

4πǫ0

1

2

∑

~n

N
∑

i=1

N
∑

j(j 6=i)=1

q1qj

|~ri − ~rj + n~L|
erfc(

|~ri − ~rj + n~L|√
2σ

)

+
1

2V ǫ0

∑

~k 6=0

(e−σ2k2/2|S(~k)|2)

− 1

4πǫ0

1√
2πσ

N
∑

i=1

q2
i (2.11)

The summation for Ushortr is short ranged in real space, truncated by

the erfc function and the summation for U longr is short ranged in reciprocal

space, truncated by the exponential factor. In practice the convergence of

the Ewald sum is controlled by three variables: the real space cutoff rcut,

the convergence parameter α and the largest reciprocal space vector ~kmax

used in the reciprocal space sum. DL POLY option that ensures automatic

calculation of the and ~kmax parameters, with the precision set to 106. Smooth

particle mesh Ewald method’s main difference from the Ewald sum is in

its treatment of the reciprocal space terms. By means of an interpolation

procedure involving basis spline functions3, the sum in the reciprocal space

3Basis spline (B-spline) is a spline function that has minimal support with respect
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is represented on a three dimensional rectangular grid. In this form the Fast

Fourier Transform (FFT) may be used to perform the primary mathematical

operation, which is a 3D convolution. While computing Fourier’s transform

onf N points using standard way is an algorithm of order of N2 the FFT is

of the order of N(logN) [97].The efficiency of these algorithm greatly reduces

the time cost of the performing the reciprocal space sum.

2.2.5 MD algorithm

With all the potentials provided, the MD simulation application starts to

solve classical equation of motion F = ma, as F = −gradU , with the initial

conditions provided in the input configurational file. Basically, there are two

repetitive steps in MD calculation; first the calculation of total force on all of

the particles at given time t, and second the advancement of the coordinates

of all particles at time t + time step [98]. The Leapfrog Verlet integration

algorithm was used. As previously shown, Leapfrog and Velocity Verlet

produced exactly the the same results on DL POLY Clssic, as expected,

because MD should give equal results regardless of the way of obtaining

them.

In the Leapfrog algorithm, velocity is half-step ahead of positions and forces

(there the name came from). First velocity at half time step (t + ∆t) is

calculated:

~v(t +
1

2
∆t) = ~v(t − 1

2
∆t) + ~a(t)∆t (2.12)

to a given degree, smoothness, and domain partition. Spline is a sufficiently smooth
piecewise-polynomial function. In interpolating problems, spline interpolation is often
referred to as polinomial interpolation. A piecewise-defined function (also called a
piecewise function) is a function whose definition changes depending on the value of
the independent variable. A fundamental theorem states that every spline function of
a given degree, smoothness, and domain partition, can be uniquely represented as a
linear combination of B-splines of that same degree and smoothness, and over that same
partition.
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and then the position advances for the full time step:

~r(t + ∆t) = ~r(t) + ~v(t +
1

2
∆t)∆t (2.13)

During this step the current velocities are calculated, as they are needed so

that energy at time t can be calculated:

~v(t) =
1

2
(~v(t +

1

2
∆t) + ~v(t − 1

2
∆t)) (2.14)

Velocity Verlet algorithm goes as follows:

It stores values of position, velocity and acceleration at time t.

1. positions at (t + ∆t) are calculated.

~r(t + ∆t) = ~r(t) + ~v(t)∆t +
~a(t)

2
(∆t)2 (2.15)

2. velocities at (t + 1/2∆t) mid step are calculated

~v(t +
1

2
∆t) = ~v(t) +

~a(t)

2
(∆t) (2.16)

3. forces and accelerations at (t + ∆t) are computed

4. velocity move completed

~v(t + ∆t) = ~v(t +
1

2
∆t) +

1

2
~a(t + ∆t)∆t (2.17)

For the treatment of the bond length constraints SHAKE algorithm was used

with the leapfrog Verlet integration algorithm. SHAKE algorithm goes as

follows[99]:

1. For the treatment of the bond length constraints SHAKE algorithm was

used with the leapfrog Verlet integration algorithm. SHAKE algorithm

goes as follows[99]:atoms in the system are moved using the Leapfrog

Verlet algorithm, assuming an absence of rigid bonds (constraint forces).

(This is stage one of the SHAKE algorithm.)

2. The deviation in each bond length is used to calculate the corresponding
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constraint force that (retrospectively) corrects the bond length.

3. After the correction has been applied to all bonds, every bond length

is checked. If the largest deviation found exceeds the desired tolerance,

the correction calculation is repeated.

4. 1.Steps 2 and 3 are repeated until all bond lengths satisfy the convergence

criterion (this iteration constitutes stage 2 of the SHAKE algorithm).

2.2.6 Ensemble and settings of general MD parameters

All of the simulations were done in the NpT ensemble, as it corresponds to the

realistic experimental conditions of the liquid in an open tube at atmospheric

temperature and pressure. Brendsen thermostat and barostat were used to

fix the pressure at the atmospheric value of 1 atm, and the temperature at

T=300 K, with thermostat and barostat relaxation times of 0.1 ps and 0.5

ps respectively. The timestep for each evaluation of the equations of motion

was t=2 fs. The timestep must be chosen in a way for it to be smaller than

the timestep of the dynamics of the system. Librations of the water molecule

are at ps scale [59]. The stretching of the H-bond is on the picosecond scale

[20], too. It means that it was safe to use the 2 fs timestep for the simulation.

Data for the site-site correlation functions were gathered every 20 steps (40

fs). Short range interactions (van der Waals) cutoff was set to 15 Å. The

width of the border to be used in the Verlet neighbour list construction was

set to 15 Å for all the mole fractions. The Verlet neighbour list is updated

whenever two particles move more than half of the width of the border from

their previous positions at the last update of the Verlet list.

In all the fully flexible models valence angle potential, Eangle, was evaluated as

an angle restraint potential (it is denoted by: ’-hrm’ in DL POLY), in which

the angle subtended by a triplet of atoms, maintained around some preset

value θ0 , is handled as a special case of angle potentials. As a consequence

angle restraints may be applied only between atoms in the same molecule.

Unlike with application of pure angle potentials (denoted by: ’harm’ in DL

POLY), electrostatic and van der Waals interactions between the pair of
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atoms are still evaluated when distance restraints are applied [99].

2.2.7 Thermostat and barostat

In order to conserve the temperature and pressure at the atmospheric

conditions (300 K, 1 atm), Berendsen thermostat (weak-coupling method)

and barostat [100] were used. With the introduction of the heat bath and

thermostat, the system no longer samples the microcannonical ensemble

(NVE), as the microcannonical ensemble does not correspond to the conditions

under which experiments are taken out. Only the Nose-Hoover algorithm

(extended system method) [101] generates trajectories in the canonical (NVT)

ensemble, while the other thermostats will produce properties that typically

differ from canonical averages by the order of 1/N. In the Berendsen algorithm

the instantaneous temperature of the system is scaled at each step by scaling

the velocities of the particles in the system by χ(t) =
√

1 + ∆t
τβ

( T0

T (t)
− 1) as

the instantaneous temperature is T (t) = 2Ekin
KbNf

, where Nf is the number

of degrees of freedom in the system, Nf = 3N − Nconstraints − 3 [102].

This scaling is the last step in the Leapfrog algorithm, after the full step

velocities are obtained. It is done in a few iterations. τβ is used as an

empirical parameter to adjust the strength of the coupling. Its value should

be chosen in a appropriate range. Too large value (loose coupling) may

cause a systematic temperature drift. In the limit τβ → ∞, the Berendsen

thermostat is inactive leading to the MD equation of motion, which samples

a microcanonical ensemble. On the other hand, a too small value (tight

coupling) will cause unrealistically low temperature fluctuations. In the

lowest limit it will sample canonic (NVT) or Gibss (NpT) ensemble. All

the values in the middle does not sample any proper ensemble. In this work

value of 0.1 ps was chosen, as it is usually done in the MD simulations of

liquids.
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2.2.8 Runs lengths

Equilibration and production runs lengths, for each ethanol model used, are

listed in the Table 6

Table 6: Equilibration and production runs lengths for each ethanol model

Ethanol mole fraction Equilibration length [ps] Production length [ps]

1. Semi flexible OPLS

∀ mole fractions 6*1000 1000

2. Fully flexible OPLS (big angle)

0.05 6*128 128

0.08 6*128 128

0.10 6*128 128

0.12 6*128 128

0.15 6*128 128

0.18 7*128 128

0.20 7*128 128

0.30 6*128 128

0.40 6*128 128

0.50 4*128 128

0.60 6*128 128

0.70 5*128 128

0.80 5*128 128

0.90 4*128 128

1.00 5*128 400

3. Fully flexible OPLS (small angle)

∀ mole fractions 1000 1000

4. TraPPE

∀ mole fractions 1000 1000

5. KBFF

∀ mole fractions 1000 1000
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3 Results and discussion

3.1 Thermodynamical results

3.1.1 Test for equilibrium

Before reporting any of the results, the test was taken to check if the systems

really reached an equilibrium state before the production run was set on. To

confirm this, the configurational energies on Figure 3- 4 and the volumes on

Figure 5- 6 of the system were plotted against time, over the duration of the

production runs. It is obvious that the values of the configurational energies

and the volumes at all concentrations show no drift. This confirms that the

system has reached an equilibrium. The results for the TraPPE model are

shown, but the test was done for all the models, and it confirmed that all of

them reached equilibrium.
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Figure 3: Configurational energies during the production run for the
TraPPE-SPC/E system, in the range from 0.0 to 0.3 mole fractions of ethanol
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Figure 4: Configurational energies during the production run for the
TraPPE-SPC/E system, in the range from 0.4 to 1.0 mole fractions of ethanol

 60000

 70000

 80000

 90000

 100000

 0  500  1000

V
 [Å

3 ]

t [ps]

0.00
0.08
0.10
0.12
0.15
0.18
0.20
0.22
0.25
0.30

Figure 5: System volumes during the production run for the TraPPE-SPC/E
system, in the range from 0.0 to 0.3 mole fractions of ethanol
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Figure 6: System volumes during the production run for the TraPPE-SPC/E
system, in the range from 0.4 to 1.0 mole fractions of ethanol

3.1.2 Enthalpy of vaporization

Molar enthalpy of vaporization, ∆Hvap, is the heat of vaporization, the energy

required to transform one mole of the liquid to vapour phase at a given (often

atmospheric) pressure [98][30]. For the neat component, it tests the accuracy

of the used model, when compared with the experimental value.

∆Hvap = Hvapour − Hliquid (3.1)

∆Hvap = Uvapour + pVvapour − Uliquid − pVliquid (3.2)

With U =internal energy and pVvapour = RT >> pVliquid, for the ideal gas

limit.

∆Hvap = Uvapour + RT − Uliquid (3.3)

With U = Ukin + Upot, and Ukinvapour = Ukinliquid
at T = const.

∆Hvap = Upotvapour + RT − Upotliquid
(3.4)
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Potential energy has an intramolecular Eintra part coming from the torsion

and angle flexibility of the potential and intermolecular part Ei , (bonded

and nonbonded part), so:[50]

∆Hvap = Eintravapour − Eintraliquid
− Eiliquid

+ RT − (H0 − H) (3.5)

Where (H0−H) part comes from the difference of the enthalpy between real

and ideal gas, as the nonbonded part in vapour = 0 for ideal gas [30][50].

From [30] data for the pure ethanol it is justified to set Eintravapour−Eintraliquid
≈

0, as Jorgensen calculated Eintravapour = 2.077 kJ/mol and Eintraliquid
= 2.035

kJ/mol. RT = 2.494kJ/mol and (H0 − H) = 0.251kJ/mol was taken from

[30].

Experimental data and references for the enthalpy of vaporization for pure

ethanol are shown in Table 7

Table 7: Experimental enthalpy of vaporization for pure ethanol, in kJ/mol

Reference ∆Hvap

[56] 42.47 kJ/mol at T = 298K
[103] 42.3 kJ/mol at T = 298.15K
[33] 42.3 kJ/mol at T = 298.15K
[104] 42.297 kJ/mol at T = 300K
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Table 8: Molar enthalpy of vaporization for pure ethanol from other simulations,
in kJ/mol

Model reference system size duration ∆Hvap

Jorgensen’s semi
flexible OPLS at
298K

[30] 128
molecules

MC 2x106

steps
41.83

Jorgensen’s semi
flexible OPLS at
298K

[50] 125
molecules

MD 250 ps 42.80

TraPPE at 300K [40] 300
molecules

MC 50000
steps

43.3

Jorgensen’s semi
flexible OPLS at
298K

[53] 391
molecules

2.2 ns 41.43

fCINTRA
polarizable flexible
at 298K

[49] 200
molecules

MD 45.77

PIPF at 298K [47] 42.17
polarizable with
Durde particle at
300K

[48] 250
molecules

6 ns 42.63

polarizable OPLS
at 298K

[105] 216
molecules

MD 100 ps 40.70

Results for the enthalpy of vaporization for pure ethanol, for different

models from this work are given in the Table 9 :
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Table 9: Enthalpy of vaporization for pure ethanol from this work, in kJ/mol

Model −Ei ∆Hvap

Semi flexible OPLS 41.3 43.5 ± 0.1
Fully flexible OPLS b.a. 41.9 44.2 ± 0.1
Fully flexible OPLS s.a. 41.5 43.7 ± 0.1
TraPPE 41.1 43.3 ± 0.1
KBFF 47.5 49.8 ± 0.1

The standard deviation σ of 0.1 kJ/mol in Table 9 was calculated in

a way that RT and (H0 − H) were taken as constants, and the standard

deviation of enthalpy of vaporization was evaluated from:

σ =
√

(σconfig)2 + (σangle)2 + (σdihedral)2 (3.6)

It was assumed that Eintravapour−Eintraliquid
≈ 0, because this contribution

is the order of magnitude smaller than the standard deviation of 0.1 kJ/mol.

The TraPPE model gives exactly the same value as the reference [40], from

which the parameters for the model were taken, namely the Monte Carlo

simulations in the Gibbs (canonical, NVT) and grand-canonical (µV T )

ensembles. OPLS models slightly overestimate enthalpy of vaporization for

pure ethanol. On the other hand, the KBFF model largely overestimates it.

When looking at the data from Table 8 it is curious that simulations with

smaller systems and for shorter runs give better results and there are no

references in literature of systems this big, and runs this long.4

Experimental enthalpy of vaporization for water at 298 K is (43.99 ±
0.1) kJ/mol from [106]. Enthalpy of vaporization from the simulation was

calculated as [107]:

∆Hvap = −Eiliquid
+ RT + Q (3.7)

4to the knowledge of the author
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where Q = −0.23kJ/mol is the quantum correction for the vibrational energy

of the water molecule in vapour and liquid phase, and corrections due to

intermolecular interactions in the liquid [107]. Enthalpy of vaporization for

water from this work is in Table 10 and is in excellent agreement with the

experimental result5.

Table 10: Molar enthalpy of vaporization for pure water, in kJ/mol

Model Eiliquid
Eiliquid

+ 5kJ/mol ∆Hvap

SPC/E -46.6 -41.6 43.9 ± 0.1
TIP4P -41.68 43.95 ± 0.09

Value of approximately 5 kJ/mol is the correction for the self-polarization

energy in the liquid, that needed to be included when working with the

SPC/E model for water [81][80].

The TIP4P model [84] was also calculated, as a test.

Out of various simulated models of water, here are just a few results for the

enthalpy of vaporization of water (or internal energy): Van der Spoel [108]

reports Eiliquid
of -47.2 and -46.4 kJ/mol at 301 K, and Mark and Nilsson

[82] of-45.4 kJ/mol at 298 K. Kiss et al. report it of -41.5 kJ/mol, with the

correction for the self-polarization effects added. Glattli et al. [107] report

the enthalpy of vaporization of 43.6 kJ/mol at 301 K.

3.1.3 Density

The density of liquid ethanol under ambient conditions is 0.789 g/cm3 [1].

In this work, OPLS, TraPPE and KBFF models give density of ethanol of

0.8 ± 0.1g/cm3, and density of water of 1 ± 0.07g/cm3 from SPC/E model,

5Eiliquid
=-46.644±0.1 from DL POLY 2 package, and -46.649±0.1 from DL POLY 4

package, confirming that the difference in the packages is inconsequential.
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and 1 ± 0.06g/cm3 from TIP4P. Density over the whole composition range

is plotted on Figure 7.
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Figure 7: Densities from χ = 0 (left) to the χ = 1 mole fraction ethanol from
this work. Line for experimental data from [1].

This is in good agreement with experimental data, even though OPLS

models slightly overestimate the value for pure ethanol, and TraPEE model

slightly underestimates it. KBFF model has a rising trend of underestimating

densities for higher alcohol concentrations.

3.1.4 Excess volume

If two liquids would mix ideally, the volume of the mixture would be simply

the sum of volumes of its constituents. That is the case when mixing

Lennard-Jones atoms of the same size. Excess volume is the deviation from

this ideal mixing, defined as:

Vexcess = Vmixture − (χAVA + χBVB) (3.8)

58



where χA + χB = 1, and A and B are two different components in the

mixture. When mixing Lennard-Jones atoms of different size, excess volume

is negative, and bigger when difference in size of atoms is bigger, as shown

on Figure 8:

Figure 8: Excess volume for Lennard-Jones atoms, different lines for different
size proportions, from [2]

Excess volumes from this work is plotted in Figure 9, compared to the

experimental data. Experimental line on Figure 9 resembles the shape of the

excess volume of Lennard-Jones mixtures on Figure 8, with the minimum

shifting to the left from the χ = 0.50. Excess volume has good reproducibility

for all models. The best one, that follows the shape and size (even if it is

slightly too negative), is the KBFF model. Other models have smaller excess

value than the experimental data.
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3.1.5 Excess enthalpy

When mixing two liquids, excess enthalpy, or the heat of mixing, is defined

as the difference of the mixture’s real enthalpy and the expected enthalpy of

the ideal mixture. An ideal mixture has zero excess enthalpy, meaning that

the intake of energy when breaking bonds in the liquid upon mixing and the

release of energy when new bonds are formed are the same.

Eexcess = Eimixture
− (χAEiA + χWEiW ) (3.9)

On Figure 10 excess configurational energies are shown for binary mixtures

of Lennard-Jones liquids with atoms of different size. The bigger difference

in constituent’s size means bigger excess energy in these simple mixtures.

The shape of the excess energy is symmetric, it has a minimum at χ = 0.50

mole fraction.
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Figure 10: Excess of negative configurational energies for Lennard-Jones atoms,
different lines for different size proportions, from [2]

In the case of the ethanol-water solution, to our knowledge, excess enthalpy

simulation data were reported only five times, which is peculiar considering

the vast number of simulation studies. On Figure 11 we show experimental

values [1] and simulation data from: Muller-Plathe [36], 1996., with SPC

water [37], 2003. Wensink et al. [53] all-atoms OPLS and TIP4P water [84],

2005 Zhang and Yang [58] rigid ethanol and TIP4P; 2011. Guevara-Carrion

et al. [109] rigid united-atoms ethanol [45] with TIP4P/2005 [110] and

SPC/E [81], and data from this groups work [6] on flexible OPLS and SPC/E

water model.

The experimental curve for ethanol-water under ambient condition is

negative, which is an indication that mixing is energetically favorable, however,

it also has highly nontrivial mole fraction dependence. Minimum is shifted

to the mole fraction of χ = 0.15 that indicates the difference of this hydrogen

bonded mixture to the simple Lennard-Jones mixture, where minimum is at

the mole fraction of 0.50. Negative excess enthalpy can be partially attributed

to the size effects, but the shift of the minimum to smaller mole fractions

reveals the structural changes that take place in this system. This feature will

be commented more in section 3.8, where experimental data are discussed

more. The wide range of different behaviour of simulation data emphasizes
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the difficulty in reproducing the experimental results. Simulation data can

be evaluated if they can reproduce negative excess, or if they can follow

the overall trend (thought the shape of the curve or extremes and inflection

points). If the negative excess is not reproduced, but the overall trend is, it

can be argued that these models nevertheless capture, to some extent, mixing

behaviour of the real system. On the other hand, if the trend is missed, even

thought values are negative, that might be indication that fine restructuring

along the composition range is not reproduced.
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In Figure 12, excess enthalpies for all the listed models from this work are

shown, compared to the experimental data. Different ethanol models from

this work all give the same problem with the excess enthalpy: it is evidently

too high. KBFF model data are in much better agreement with experimental

line (it is negative), than OPLS and TraPPE models, but excess enthalpy is

still too high. It is not clear if the fact that KBFF model’s line is still too

high, is the consequence of the model, or of insufficient length of production

runs. In this work, production runs lasted only 2 ns, while in the reference

article for KBFF model simulation, [46], production runs were 30 ns long.

At first glance, data, apart from KBFF model, is far away from capturing

behavior of ethanol-water mixture. However, they follow a certain trend,

which is traceable to the one in the experimental curve. Namely, simulation

plots can be divided into three regions. The first one, up to 0.3− 0.4 alcohol

mole fraction, which includes a minimum and point of change of the sign;

central part; and then from the change of the slope around 0.5 − 0.6, the

third region. This division is similar to the one that can be used to discuss
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experimental curve. It is not an unique explanation, but we will use this

connection to explore the subject further. The remaining question is: Why

is the KBFF model able to reproduce excess enthalpies correctly, and other

models fail in it? And the second one is: Are models that missed negative

excess, suitable to represent real system properties?

Following the differences between partial charges, in Figure 13 we show

separately the excess of vdW and Coulomb energy. All models show

approximately symmetric shape of the curves. The central part of the

Coulombic excess inclines towards the positive values, showing that excess

results in a net repulsion. The vdW excess is similar for all models, it is

negative, showing that vdW interactions enhance mixing. TraPPE model has

the highest Coulombic and the lowest vdW, with the Coulombic maximum

shifted towards higher alcohol concentrations. This corresponds to the

maximum of excess enthalpy at χ = 0.60 mole fraction of ethanol for TraPPE

model.
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3.1.6 Comparison of SPC/E and TIP4P results

A study by van der Spoel et al. [108] confirmed that SPC/E water model

gives the best agreement with experimental results for bulk water, but suggests

that it is not so relevant in studies of solutes in water. Tieleman and

Berendsen [111] reported that the SPC/E has dubious results in studies of

solvated biological membranes. Neither SPC [37] nor SPC/E models preform

good with biological membranes, but they reported that the usage of SPC/E

leads to sharper interface and lower area per head group, all in disagreement

with experimental data. Kiss and Baranyai [83] in 2011 stated that the

many-body structure of real liquid water is more similar to models created

by TIP4P, than to models created by SPC/E or TIP3P. Along these lines, the

mixture of the TIP4P [84] water model and the semi flexible OPLS ethanol

model was used to simulate the mixture at three mole fractions of ethanol;

χ = 0.20, χ = 0.50, χ = 0.80, in order to investigate if the excess quantities

would be better reproduced with this water model.

The enthalpy of water for the TIP4P model was calculated to be at (43.95±
0.09)kJ/mol and that result is similar to (43.9 ± 0.1)kJ/mol obtained with

the SPC/E model. Results in Table 11 show that there is no significant

difference in excess enthalpy, or density, when compared with results for the

system with SPC/E water and the same ethanol model (semi flexible OPLS),

under exactly the same conditions.

Table 11: Excess enthalpy and density for mixture with different types of water
models

χ ethanol TIP4P ρ
[g/cm3]

SPC/E ρ
[g/cm3]

TIP4P ∆H
[kJ/mol]

SPC/E ∆H
[kJ/mol]

0.20 0.918 0.927 0.069 0.096
0.50 0.851 0.854 0.301 0.318
0.80 0.813 0.813 0.144 0.177
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3.2 Radial distribution functions

3.2.1 Theoretical introduction

The pair correlation function g(r) expressed explicitly as a function of the

distance r, in a homogenous, isotropic liquid, is often referred as radial

distribution function, RDF [112]. This function plays a central role in the

theory of liquids, because it may be obtained from the simulations or

experimentally from the x-ray and neutron diffraction experimental data,

and from solving Ornstein-Zernicke integral equation. It provides a direct

insight into the microstructure of the liquid on an average level, as in a liquid

there are no persistent structures as the crystal lattice, but instead there are

persistent structural correlations. Finally, many thermodynamical properties

can be expressed in terms of RDF, such as isothermal compressibility,

configurational part of the internal energy, structure factor [113][114]. In

an isotropic homogenous liquid RDF is defined as the ratio between the

pair density of the system and the homogenous one-body number density

ρ. A detailed derivation is provided in [112][113][114]. Here is shortened

derivation.

Functions of the fundamental importance in the theory of liquids are equilibrium

and time dependent distribution functions. For system of N particles and

volume V, state of the system at any moment is completely specified by N

position vectors ~rN = ~r1, ~r2.. ~rN and N momenta ~pN = ~p1, ~p2.. ~pN .

Values of these 6N variables define a point in 6N-dimensional phase space of

the system. Hamiltonian of the system is:

H(~rN , ~pN) = KN(~pN) + VN(~rN)

where KN(~pN) is sum of the kinetic energies of N particles, and VN(~rN) is

inter-particle potential energy.

The aim of equilibrium statistical mechanic is to calculate observable properties

of the system as an average over trajectories in real space (Boltzman), or

average over an ensemble of systems (Gibbs). In Gibbs formulation the

distribution of phase-space points is described by phase-space probability

density:

f [N ](~rN , ~pN , t)
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It is the probability that at time t system is in a microscopic state inside the

element of phase-space d~rNd~pN , so its integral over all phase-space is equal

to 1.

∫∫

∆Ω

f [N ](~rN , ~pN)d~rNd~pN = 1 (3.10)

Given a complete knowledge of phase-space probability density it would be

possible to calculate the average value of any function of ~r and ~p. Liouville’s

theorem:

df [N ]

dt
= 0 (3.11)

states that probability density does not change with time.

If we are interested in a subset of the system, say n particles of the whole

system of N particles, the redundant information can be eliminated by

integrating over the coordinates and momenta of the rest N-n particles. In

that way the reduced phase-space probability density, or reduced phase-space

distribution function is obtained:

f (n)(~rn, ~pn, t) =
N !

(N − n)!

∫∫

∆Ω

f [N ](~rN , ~pN)d~r(N−n)d~p(N−n) (3.12)

When reduced phase-space distribution function is integrated it gives the

probability of finding n particles in the element of the reduced phase-space

d~rnd~pn, irrespective of positions and momenta of the rest N-n particles of the

system.

With Hamiltonian of the system H = KN + VN , where KN is a sum of

independent terms, for a system of fixed N, V and T, reduced phase-space

equilibrium probability distribution function can be written as:

f
(n)
0 (~rn, ~pn, t) = ρ

(n)
N (~rn)f

(n)
M (~pn) (3.13)

where

f
(n)
M (~pn) =

1

(2πmkBT )
3n
2

e−β
Pn

i=1

|pi|
2

2m (3.14)
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is the product of n independent Maxwell distributions, and the equilibrium

n-particle density is:

ρ
(n)
N (~rn) =

N !

(N − n)!

1

ZN

∫

e−βVN d~r(N−n) (3.15)

where ZN is the configurational integral

ZN =

∫

V N

e−βVN d~rN (3.16)

The n-particle density yields the probability of finding n particles of the

system with coordinates in the volume element d~rn, irrespective of positions

of all the rest of N-n particles, and of all the momenta. Particle densities and

closely related equilibrium particle distribution functions, g
(n)
N (~rn), provide

a complete description of the structure of a fluid, while knowledge of the

low-order particle distribution functions, in particular of the pair density

ρ
(2)
N (~r1, ~r2), is often sufficient to calculate the equation of state and other

thermodynamic properties of the system.

n-particle distribution function g
(n)
N (~rn) is defined as:

g
(n)
N (~rn) =

ρ
(n)
N (~r1..~rn)

∏n
i=1 ρ

(1)
N (~ri)

(3.17)

For homogenous system particle distribution function measures the extent to

which the structure of a fluid deviates from the complete randomness.

ρng
(n)
N = ρ

(n)
N (~rn) (3.18)

g
(n)
N =

ρ
(n)
N (~rn)

ρn
(3.19)

In the homogenous, isotropic system pair distribution function g
(2)
N (~r1, ~r2) is

a function of a separation r12 = |~r1 − ~r2|, and is called radial distribution

function, RDF or g(r).

g
(2)
N =

ρ
(2)
N (~r1, ~r2)

ρ2
≡ g(r) ≡ RDF (3.20)
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Single-particle density of a uniform fluid is equal to the overall number

density, ρ.

Particle densities are expressible in form of delta functions, so distribution

function is

g(r) =
1

ρN
〈

N
∑

i

∑

j 6=i

δ(~r − ~rij)〉 (3.21)

with angle brackets meaning the ensemble average.

If ρ
(2)
N (~r, ~r1) and ρ

(2)
N (~r, ~r2) are independent, there is no correlation between

them and the RDF equals 1, which is exactly the case when r → ∞, where

this is understood as the r being large enough compared with the size of

the molecule, but still within the open system. At the small distances

around one molecule in the liquid, the positions of the other molecules

surrounding it are correlated to its position, and the RDF measures this

correlation. For the closed system the limit of the RDF, when r → ∞ is

not 1, but 1 − 1/N dependent [114], because in the system of N particles,

placing one of them at the fixed position changes the density from N/V to

(N − 1)/V . Simulation, even in case of the N-constant ensemble, represent

pseudo infinite system, where global density fluctuation are achieved with

appropriate counting formula and with the use of the periodic boundary

condition [88]. In NPT ensemble any chosen sub-volume can exchange particles

with the rest of the cell, and that implicates that the N-constant property is

lost. However, when the cutoff radius reaches the size close to the half of the

cell, the reservoir of the particles becomes smaller (in the case of the R equal

to half cell size, the reservoir consists only of particles in the cell angles).

Therefore, fluctuations of the particle number are not good anymore. This

affects the behavior of the RDFs tail in such a way that it does not reach

the limit of the open system, which is 1. The asymptotic form of RDF for a

finite-N system is usually described in terms of the 1/N correction.

In a closed ideal gas system, where the particles are not interacting, this

is exactly:
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lim
r→∞

g(r) = 1 − 1/N (3.22)

However, in a closed system of the interacting particles there is additional

contribution to the closure correlation, apart from the change in the density

because one particle that is fixed is missing. It is due to the change in the

density because the fixed particle interacts with its surroundings [112], the

result proven in a general way by Lebowitz and Percus [115], and first found

by Ornstein and Zernike [116].

lim
r→∞

gi,j(1, 2) = 1 − 1

N

∂ρi

∂βµj

(3.23)

Whether the system is affected with N-constant limit, or it has an issue with

the long-range fluctuations depends on the system size. The probability of

the fluctuation of the size L depends on the probability that we will find

particle outside the cutoff radius w = (V (sphere)/V (box)) ∗ Npaticle, and

for the small number of particles is negligible. Therefore, system with the

small number of particles is close to the closed system, and the correction of

the N-constant ensemble should be applied. Larger the system sizes and the

number of particles, RDFs tails will be less affected.

It was checked [117] for many systems that if the asymptote for the

ideal gas was taken, it was never a serious problem, except in a case when

Kirkwood-Buff integral was computed. An empirical way for correcting the

asymptote was explained in detail in [118]. It consists of shifting the incorrect

asymptote value aij to 1 with the help of a switch function Sij(r):

gcorrected
ij (r) = gij(r)[1 + (1 − a)Sij(r)] (3.24)

with

Sij(r) = 0.5(1 + tanh((r − Rij)/κij) (3.25)

where Rij = σai
+ σbj

and κij = 1Å. the same effect is achieved by simply

adding or subtracting a constant from radial distribution function from Rij

on.
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Corrected and uncorrected RDF for the O-Ow correlation at mole fraction

of 0.12 ethanol are shown on Figures 14 - 15. The size of the correction is

seen to be very small, a constant of only 0.0006 had to be subtracted from

the RDF data, to get the correct asymptote.
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Figure 14: Uncorrected tail of the O-Ow sites RDF for 0.12 mole fraction of
ethanol
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Figure 15: Corrected tail of the O-Ow sites RDF for 0.12 mole fraction of ethanol
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3.2.2 Pure systems RDF results

Before venturing into radial distribution functions analysis of the ethanol-water

system, it is instructive to show the plot of the radial distribution function

of the neat Lennard-Jones system, namely liquid argon, at Figure 16.
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Figure 16: Radial distribution function of liquid argon from [2], system size is
864 atoms, at T=100K

The typical long-range oscillatory pattern is the ’signature’ of dense

Lennard-Jones systems. The period of oscillations is approximately the

length of the atoms separation. The first maximum, is at the minimum of

the L-J potential function. Below this r, radial distribution function quickly

vanishes to zero, due to the strong repulsive forces that insures particles don’t

collapse one into another. Above first maximum, RDF develops oscillatory

behaviour that reflects the fact that in Lennard-Jones systems particles tend

to pack in concentric and nearly equidistant spheres around the central

spherical particle.

Figure 17 shows radial distribution function for argon-like system with atoms

of the same sizes, for different mole fractions. From this plot it is visible that
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change in mole fractions does not affect the height or the shape of RDF.
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Figure 17: Radial distribution function of liquid argon-like system for different
mole fractions from [2]

If RDF’s height rises with increased mole fraction it means that local

density rises faster than overall homogenous number density of the system.

When height of the RDF drops with increased mole fraction, it would mean

that increased density does not mean more neighbours, or increased local

density, because at the beginning there was already a ’saturation’ in local

density. And the trivial case is when increased global density of the system

increases local density in the same proportion, so RDF remains the same, as

on Figure 17.

At Figure 18 are given the radial distribution functions of ethanol sites

in pure ethanol, for the fully flexible OPLS model. CH2 and CH3 sites have

the behaviour that resembles the behaviour of the Lennard-Jones liquid; a

long-range oscillatory behaviour, with exponential decay of the amplitude of

oscillations. First peaks differ from liquid argon’s first peak because this sites
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are not single spherical atoms, but are incorporated into the whole ethanol

molecule, and so are influenced by the behaviour of the rest of the molecule.
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Figure 18: Radial distribution functions of ethanol sites in pure ethanol

Oxygen’s first peak is narrower and higher than CH2 and CH3 peaks,

suggesting stronger and more directed correlation. Broadness of the CH2

and CH3 sites suggests only optimal space packing of molecules, without any

specific bonding.

Radial distribution functions of water sites in neat water are on Figure 19-20.

Hydrogen bonding sites have the same pattern in both liquids; narrow and

high first peak that comes from the strong and directional hydrogen bond.
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Figure 19: Radial distribution functions of water sites in pure water
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Figure 20: Radial distribution functions of water sites in pure water, zoomed

On Figure 19 so called ’3ps’ - three peaks shape of water’s oxygen’s RDF,

reported in literature [61], is visible, that seems to disappear beyond 9Å.
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However, if we take a look at Figure 20, the oscillatory pattern is still visible

up to 15Å, but with much smaller amplitude. The difference in the decay

pattern of the hydrogen bonding sites and CH2 and CH3 sites is obvious, while

the last have exponential decay, the first have step decay, that is reflecting the

step from the firs peak of the Ow-Ow correlation to the second. Two peaks

of the same height for the correlation of Hw sites around Ow site come from

the hydrogens belonging to the same water molecule. First peak is at the

1.93Å, the length of the hydrogen bond between oxygen and hydrogen, and

the second peak is approximately 1.63Å away, the distance of two hydrogen

atoms in one water molecule for the SPC/E water model. The feature of

these two peaks of the same size is then repeated again, on a smaller scale.
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Figure 21: Radial distribution functions of oxygen sites in pure ethanol and pure
water

On Figure 21 are RDFs for oxygen sites in pure ethanol and pure water.

When compared to water, ethanol’s first peak starts to rise a bit earlier,

because of the slightly smaller Lennard-Jones σ radius of the oxygen site

in ethanol. First peaks are on the same distance for both liquids, while

second and third are shifted to bigger radii in ethanol, due to the fact that
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ethanol molecules are bigger, and as the radial distribution function is an

averaged description of the system, this shift is expected. The first peak

in ethanol is higher, even though in ethanol the number of first neighbours

for oxygen sites is smaller than in water (≈ 2 in ethanol, ≈ 4 in water)

because microscopic one particle density of the system, ρ, that comes into

denominator of the radial distribution function’s definition, is smaller for

ethanol, than for water. This should be viewed as the density in the whole

system of oxygen sites when they are part of the bigger molecule, to their

density when they are part of the smaller molecule.

3.2.3 RDF results for mixtures

Radial distributions functions of various sites in mixtures are going to be

examined in this section, to see if any proof for the proposed three structural

regimes of ethanol-water mixture can be found in their behaviour. Figures

here are from the full flexible OPLS model data, other model’s figures are

provided in the Appendix.

On Figure 22 - 23 are radial distribution functions of CH2 sites, at different

mole fractions of ethanol.
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Figure 22: First peak of radial distribution functions of CH2 sites, at different
ethanol mole fraction
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Figure 23: Second and third peak of radial distribution functions of CH2 sites,
at different ethanol mole fraction
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On Figure 22 is first peak of the radial distribution function. For 0.15

mole fraction of ethanol it has the highest value, except the one for the pure

ethanol. It is a fact in favour of the picture that ethanol-water system has

three regimes of mixing, and that important, and in many properties evident

structural changes occurs at approximately 0.15 and 0.65 mole fractions of

ethanol. On Figure 23 the same characteristic can bee seen for the second

peak of the RDF. While first peak is the highest for 0.15 mole fraction,

it is the lowest for 0.60 mole fraction of ethanol. The strongest correlation

between CH2 sites, that is approximately centre of mass for ethanol molecule,

at 0.15, suggests the biggest number of small ethanol clusters dispersed in

water network. From pure ethanol, correlation decreases with the decrement

of the ethanol mole fraction, until 0.40-0.60, then it rises until 0.15, and

then decreases again. This non-trivial behaviour is reflecting structural

changes in the mixture, and the fact that CH2 site is on one side pulled

by the oxygen sites that form H-bonds, and on the other side by CH3 sites

that are subjected to the effect of exclusion from the charged surroundings.

Going from pure ethanol to smaller ethanol concentrations, intensity of the

first peak goes down, as the ethanol is less abundant in the system, as

expected, approximately until the point where percolation of water network is

established. From that point, in the middle, bi-continuous phase, correlations

increase with the rarification of the ethanol molecules. This is suggesting

there is a microheterogenous structure of the system, where the properties of

the neat ethanol are lost. Below the point of 0.15 mole fraction of ethanol,

correlations drop down again, as further rarification of ethanol molecules

leads to the smaller number of ethanol clusters in the mixture. The similar

behaviour of the first peak’s maximum of CH2 sites is seen for TraPPE and

semi-flexible OPLS model in the Appendix, even though TraPPE model gives

the highest correlations for 0.18 mole fraction, and semi flexible OPLS has

the same height for 0.15 and 0.18 mole fractions of ethanol. KBFF model

marks the first change at 0.12-0.15 (plot in the Appendix), and second

change at 0.30, from where correlations rise up to the ones in the pure

ethanol. It is interesting to notice the difference between relative ratios of

high concentrations correlations (0.60-1.0) to low ones; there is much more
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evident difference between them in the KBFF model, high ones are much

higher than low ones. For OPLSes and TraPPE model they are all in the

same range.

The CH3 sites that feel no Coulomb interaction, but are subjected to

the effect of exclusion from the charged environment, have first peak of the

radial distribution function increasing from pure ethanol to the 0.15 mole

fraction of ethanol emphasizing the same structural change of merging of the

small ethanol domains into biggest micro-segregated domains at 0.15, as the

CH2 sites, Figure 24. When going from pure ethanol to 0.15 mole fraction of

ethanol, the first peak also has a very subtle shift to the left, to the shorter

distances, indicating the most dense packing of these sites at 0.15, in average.

Semi flexible OPLS model gives the highest first peak for CH3 correlations at

0.15 too, while TraPPE gives it for 0.18, and KBFF at 0.12, as can be seen in

the Appendix. Second peaks are also the highest for the 0.15 mole fraction

of ethanol, Figure 25. The CH3 sites have the smallest height of the first

peak for the pure ethanol, as a consequence of the hydrophobic effect, that

tends to keep CH3 sites together. The rarification of the sites decreases one

particle homogenous system density, that is in the denominator of the RDF

function, and two particle correlation stays approximately constant and this

results in the rising of the RDF’s peak height.
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Figure 24: First peak of radial distribution functions of CH3 sites, for different
ethanol mole fractions
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Figure 25: Second and third peak of radial distribution functions of CH3 sites,
for different ethanol mole fractions
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Radial distribution function of ethanol oxygen sites is shown on Figure 26,

and its first peak on inset. The height of the first peak decreases with

decreasing of the ethanol mole fraction, suggesting that oxygen from ethanol

preferentially bonds to water’s oxygen via H-bond, if possible, as the rarification

of O sites in the mixture decreases the height of the first peak. behaviour

of this site’s radial distribution function does not mark proposed structural

changes.
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Figure 26: Radial distribution functions of O sites, first peak on inset, for different
ethanol mole fractions

Water oxygen sites, Ow, increase radial distribution function’s first peak

as water’s molar fraction decreases from pure water, inset in Figure 27. This

suggests that there is an interaction that keeps sites of the same kind together.

Of course, it is the H-bond of water oxygen sites, meaning that when water

is rarifyed in the system, water oxygen sites stay bonded one to each other,

rather than form bonds with ethanol oxygen sites, and the majority of Ow

sites is always bonded via H bonds, no matter the mole fraction. Water

oxygen sites radial distribution function is on Figure 27, with the three peaks

shape visible for all the mole fractions.
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Figure 27: Radial distribution functions of Ow sites, first peak on inset, for
different ethanol mole fractions

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 3  4  5  6  7  8  9

O
w

 −
 O

w
 R

D
F

r [Å]

0.00
0.10
0.12
0.15
0.20
0.22
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Figure 28: Second and third peak of radial distribution functions of Ow sites,
for different ethanol mole fraction

On Figure 28 is one of the facts in favour of the here proposed behaviour

of the ethanol-water’s microstructure with composition, namely the shift in
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the second peak of Ow-Ow radial distribution function for the mole fractions

above 0.60. This shift at 0.60 corresponds to the proposed mole fraction

where water network is not percolated any more, and becomes thorn apart

in smaller fragments. This shift in the position of the second peak of water

oxygen sites is confirmed in simulations with all of the models in this work,

and it is the most pronounced for KBFF model, figures for the rest of the

models are in the Appendix.

One more fact that supports it is the behaviour of the correlation of the

CH3-Ow sites on Figure 29. The fact that CH3 sites come more in the

contact with water at mole fractions above 0.60 is seen as the increased second

peak in the CH3-Ow radial distribution function. The group of curves that

represent functions for the mole fractions above 0.60 have obvious difference

in behaviour at the second peak, and even at the third peak, from the rest

of the RDFs.
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Figure 29: Radial distribution functions for CH3-Ow sites, for different ethanol
mole fraction

It is interesting to look at the radial distribution function of CH3 sites
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around ethanol oxygen O, Figure 30. The central peak in the first peak has

minimum at 0.60 mole fraction, and maximum at 0.15, just the two mole

fractions where proposed structural change occurs. From 0.0 to 0.15 mole

fraction the height rises, as more ethanol is added, and it is the highest for

0.15, where ethanol’s hydrophobic sites distribution differs from the

randomness the most. Then addition of more ethanol induces the breaking of

the confinement of the hydrophobic sites in water network, and O-CH3 first

peak goes down, because ethanols had ’the most dense’ packing at 0.15. The

peak decreases until 0.60 - the same as CH3-CH3, but CH3-CH3 is decreasing

from 0.15 to 100, and O-CH3 from 0.15 to 0.60. After 0.60 mole fraction,

until 1.00 peak rises again, so now it behaves as ethanol oxygens at this mole

fractions, more and more of ethanol, and no specific force between O and

CH3 sites.
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Figure 30: Radial distribution functions for O-CH3 sites, for different ethanol
mole fraction

Summary of the behaviour of first peak heights is piloted in Figure 31.

CH2 and CH3 sites clearly indicate three regions along the mole fraction

change in this mixture. In the first region to the left in Figure 31 increase of
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the ethanol mole fraction increases local density of all ethanol sites more than

their global density. This is interpreted in a way that ethanol molecules are

clustered together in this region. In the middle region only ethanol oxygen

sites increase their local density more than global density, while there is

overturn in the behaviour of CH2 and CH3 sites, at the left border of this

region there is the highest ratio of their local to global density. Another

overturn happens again at the beginning of third, right region. In the right

region CH2 sites now follow the behaviour of oxygen ethanol sites, meaning

that adding more ethanol increases their local density more than their global

density, while CH3 sites correlations are still dropping, meaning they are

released from their imprisonment that water network forced on them in the

first mole fraction region.

Figure 31: Summary of the behaviour of RDF’s first peak heights along the mole
fraction range from pure water on the left
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3.2.4 Comparison of results for different ethanol models
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Figure 32: Radial distribution functions of O-O sites in pure ethanol, for various
ethanol models
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Figure 33: Radial distribution functions of CH2-CH2 sites in pure ethanol, for
various ethanol models

87



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  5  10  15  20

R
D

F

r [Å]

OPLS flex
OPLS semiflex

TraPPE
KBFF

Figure 34: Radial distribution functions of CH3-CH3 sites in pure ethanol, for
various ethanol models

Figure 32-34 present RDFs of various ethanol models for pure ethanol. Fully

flexible OPLS and semi flexible OPLS model give the same radial distribution

functions for all three sites. This is expected, as both models have the

same parameters. TraPPE model, having slightly different parameters, gives

slightly different radial distribution functions, but in general their features

do not differ much. The positions of minima and maxima are at the same

distances, and small differences can be seen only at the depth of minima

and the height of peaks. KBFF model has all hydrogen-bonded correlation

shifted outwards, mainly due to the non-zero Lennard -Jones parameter for

radius of the H-atom (see section 2.1). The O-O correlations are slightly

larger due to the stronger charges, which is then compassed by the smaller

CH3 correlations.

Differences in mixture’s RDFs for various ethanol models are plotted

on Figure 35. KBFF model shows noticeable difference with respect to

other models, and the main one is that it increases mixing, which is seen as

increasing of the cross-correlations. Nevertheless, all models follow general

trends of the concentration dependence, which can be summed up in three

points:

a) correlations for O-O alcohol sites increase with alcohol concentration, as
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adding more alcohol increases H-bonding between hydroxyl group;

b) water structure is more enhanced with alcohol mole fraction;

c) hydrophobic correlations slightly decrease with rarefying of the alcohol.
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(a) χ = 0.20 CH3-CH3
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(b) χ = 0.50 CH3-CH3
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(c) χ = 0.80 CH3-CH3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  5  10  15  20

R
D

F

r [Å]

OPLS flex
OPLS semiflex

TraPPE
KBFF

(d) χ = 0.20 O-O
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(e) χ = 0.50 O-O
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(f) χ = 0.80 O-O
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(g) χ = 0.20 CH3-Ow
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(h) χ = 0.50 CH3-Ow
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(i) χ = 0.80 CH3-Ow

Figure 35: Radial distribution functions for various concentrations, sites and
ethanol models
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3.2.5 Comparison of SPC/E and TIP4P results

As previously said, three mole fractions; χ = 0.20, χ = 0.50, χ = 0.80 were

simulated, to test if TIP4P model for water would yield better results of

excess enthalpy for the mixed system. Figure 36 presents Ow-Ow radial

distribution functions in pure water at ambient conditions for SPC/E and

TIP4P models compared with experimental x-ray results from [119] and

[120]. Ow-Hw and Hw-Hw are plotted on inset. Both models are in fairly

good agreement with the experimental data, as concluded in [120]. The plot

obtained here for Ow-Ow RDFs is exactly the same as in reference [120].
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Figure 36: Radial distribution functions in pure water, comparison of SPC/E
and TIP4P models for water

On Figure 37 are radial distribution functions for both models of water

with semi flexible OPLS model for ethanol at χ = 0.20 mole fraction of

ethanol. Obviously there are no significant differences in radial distribution

functions. SPC/E model gives slightly higher first peak in mixture, as well

as in pure water.

91



 0

 0.5

 1

 1.5

 2

 0  5  10  15  20

R
D

F

r [Å]

TIP4P O−O
SPC/E O−O

TIP4P CH2−CH2
SPC/E CH2−CH2
TIP4P CH3−CH3
SPC/E CH3−CH3

(a) Ethanol

 0

 1

 2

 3

 4

 5

 0  5  10  15  20

R
D

F

r [Å]

TIP4P Ow−Ow
SPC/E Ow−Ow

(b) Water

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20

R
D

F

r [Å]

TIP4P O−Ow
SPC/E O−Ow

TIP4P CH2−Ow
SPC/E CH2−Ow
TIP4P CH3−Ow
SPC/E CH3−Ow

(c) Ethanol-water

Figure 37: Radial distribution functions at χ = 0.20 mole fraction of ethanol,
with TIP4P and SPC/E water models
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3.3 Coordination number

Coordination number is the number of neighbouring sites in the first shell

around some central site. It is defined as:

CN = 4πρ
∑

r2g(r)∆r (3.26)

where summation goes from r = 0 to r = r1.minimum. ρ is number density

and g(r) is radial distribution function, RDF. Coordination numbers for

various sites from ethanol - water mixture for semi flexible OPLS, as well

as coordination numbers for the system of binary mixture of Lennard-Jones

atoms of the same size is shown on Figure 38
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Figure 38: Coordination numbers

Coordination number for ethanol oxygen around ethanol oxygen from

neutron diffraction study by Benmore and Loh [26] was determined to be

2.0±0.2 by 3Å distance. From MD study by Noskov, Lamoureux, Roux [48]

it was calculated to be 1.94.

In this work ethanol oxygen number was calculated to be 2, as seen on

Figure 38, what is in good agreement with the mentioned results. The change
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in ethanol oxygen coordination number is almost linear with the change of

mole fraction.

Coordination numbers of CH3-CH3
6 and CH2-CH2 sites sharply rise until

χ = 0.15 mole fraction of ethanol, where first proposed structural change in

this mixture takes place. This rise is very different from the monotonous rise

of the Lennard-Jones coordination number, even though in the pure ethanol

this numbers are very close to the value of 12.1 of the pure Lennard-Jones

liquid. Behaviour of CH2-CH2 and CH3-CH3 coordination numbers is evidence

for ethanol’s more pronounced shielding of the methyl groups at mole fractions

below χ = 0.15. Marked change at this mole fraction reveals the change in the

structure of the system at the level of the first neighbours distances. O-Ow7

coordination number is higher than O-O, reflecting the fact that ethanol

prefers to bond to water, than to ethanol, as expected, as a consequence of

the stronger charge at Ow site.

Water’s coordination number for SPC/E model was calculated by Wu,

Tepper, Voth [122] to be 4.34 and authors report experimental result of 4.26.

Bagchi 2012 [123] reports coordination number of water to be 5 at 300 K

for TIP5P model. In this work water oxygen - water oxygen coordination

number was calculated to be 4.3, that is in good agreement with the previous

simulation results.

6CH3-CH3 meaning: CH3 site around CH3 site coordination number
7O-Ow meaning ethanol oxygen around water oxygen. It is not to be confused with

Ow-O that would mean water oxygen around ethanol oxygen, and that is a different thing,
as can be seen from [121]
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3.3.1 Comparison of different ethanol models results

On Figures 39-40 are coordination numbers for different ethanol models.
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Figure 39: Ethanol-ethanol coordination number for different ethanol models
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Figure 40: Ethanol-water coordination numbers for different ethanol models

In the region around 60 % TraPPE model has largest CN for hydrophobic

sites. This corresponds to the shift of the maximum for TRAPPE excess

enthalpies (see Figure 12). On the low alcohol mole fraction up to approximately

40 % OPLS and TraPPE models have larger number of first neighbors for

hydrophobic sites then KBFF. Trying to interpret this in terms of Coulomb

contribution, segregation of hydrophobic sites leads to enhancement of the

repulsive part of the interaction, since it brings together positive charges from
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CH2 closer. Even thought the CH2 charges are small, comparing to other

partial charges, the nett effect of CH2-repulsion is traceable through positive

enhancement of the excess energies. This effect is obvious in the highest

TraPPE excess Coulomb energy (see Figure 13), especially at χ = 0.6, as

it can be interpreted as a consequence of the highest CH2-CH2 CN for this

model.

For the higher mole fractions models differ in the the hydrogen-bonded sites

behaviour. Excess Coulomb energy in this concentration region is positive

for all models, but the effect is much less for KBFF (see Figure 13). In this

region O-O and O-Ow CN are bigger for the KBFF models, showing that

these sites are also more bonded, resulting in the lower overall energy.

The most noticeable difference between the models is in the cross-correlations

between hydrophobic sites and water, where KBFFs coordination numbers

for CHn-Ow (n=2,3) cross-correlations for all concentrations are larger. The

cross-CN for O-Ow correlations differ mostly in the middle region where there

is approximately equal number of water and alcohol. In the bases of this are

the stronger charges on ethanol hydroxyl group in KBFF model, that are

more “eager“ to form bonds either with molecule of water or another molecule

of ethanol. Therefore the structure of the interface is more open, allowing

more contact, also between CHn and Ow sites. KBFF model therefore

acts against micro segregation, and favors more homogeneous structures.

However, this is a subtle difference, and it does not imply that there is no

micro segregation in mixtures modeled by KBFF model. Microsegregation

exists in all these systems, modeled by any of these models, and it is clearly

obvious from the shape of CH2-CH2 CN behaviour and its difference from

the Lennard-Jones CN.
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3.4 Kirkwood-Buff integrals

3.4.1 Theoretical introduction

Kirkwood-Buff theory was first published in 1951. [124], where Kirkwood and

Buff derived some new relationships between thermodynamic quantities and

radial distribution functions in two-component system in the open µ, V, T

ensemble. It is considered to be the most general and the most powerful

theory of solutions according to Ben-Naim [112]. It provides direct relationship

between thermodynamical quantities such as compressibility, partial molar

volumes and derivatives of chemical potential in terms of Kirkwood-Buff

integrals (KBI), that are the measure of concentration fluctuation in a system.

KBI gives measure of the tendency of a molecule j to concentrate around a

central molecule i [125]. KBI is defined as:

GijµV T
=

∫ ∞

0

4π[gij(r) − 1]r2dr (3.27)

where i and j are different species, and gij is the corresponding radial distribution

function. The main result of Kirkwood-Buff theory is the fact that from

integrals of the radial distribution function one may calculate thermodynamical

properties of the system. With the definition of two auxiliary quantities:

η = ρA + ρB + ρAρB(GAA + GBB − 2GAB) (3.28)

ξ = 1 + ρAGAA + ρBGBB + ρAρB(GAAGBB − G2
AB) (3.29)

with A and B being two species, and ρ number density, it is possible to

express thermodynamic quantities in terms of molecular quantities, KBI:

κT =
ξ

kTη
(3.30)

V A =
1 + ρB(GBB − GAB)

η
(3.31)

V B =
1 + ρA(GAA − GAB)

η
(3.32)
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µAA =
ρBkT

ρAV η
(3.33)

µBB =
ρAkT

ρBV η
(3.34)

µAB = µBA = −kT

V η
(3.35)

where κT is compressibility, V i partial molar volume of the species i, and

µij = (∂µi/∂Nj)Ni,p,T derivatives of the chemical potential. In 1978 Ben-Naim

[126] published the inversion of Kirkwood-Buff theory, so Gij were extracted

from measurable thermodynamic quantities (formal derivation can be found

in [112]):

GAB = kTκT − ρV AV B/D (3.36)

GAA = kTκT − 1

ρA

+
ρBV

2

Bρ

ρAD
(3.37)

GBB = kTκT − 1

ρB

+
ρAV

2

Aρ

ρBD
(3.38)

where ρ = ρA + ρB, and D = χA

kT
(∂µA

∂χA
)p,T is a term related to concentration

fluctuations [127].

3.4.2 Calculation and measurement of the KBI

KBI is strictly property of the µ, V, T ensemble, however it can be calculated

from the simulation data in NpT ensemble from running KBI (rKBI), under

a few approximations: that simulation data can represent an open system,

that KBI at infinity is equal to rKBI up to certain range R that is taken under

the assumption that beyond this radius the system has already reached the

homogeneity, so there are no long-range correlations in the system.

GijµV T
=

∫ ∞

0

4π[gij(r)− 1]r2dr ≈ GijNpT
=

∫ R

0

4π[gij(r)− 1]r2dr (3.39)

When calculating KBI from simulation in NpT ensemble, the correction to

the tail of the RDF must be applied, as explained when radial distribution
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function is discussed. However, sometimes even with this correction, it is

impossible to get RDF to oscillate around any horizontal asymptote. This

may be attributed to the small system size in simulations of microheterogenous

systems, where the integral must be obviously cut at some radius (as necessary

approximation in the NpT ensemble), so microheterogeneous structure may

not have enough space to develop fully. The problem with alcohol-water

systems is, as stated in introduction, that they are between micelle-forming

systems, that have more or less defined size of microsegregated domains,

and random systems. Systems of alcohols and water have microsegregated

domains, as it appears, of no specific shape, so it is very hard to determine

their size and consequently the correlation length. In order to properly

evaluate KBI cutoff radius must be larger than the correlation length in

the system. With ethanol-water type of microheterogenous system it is not

always easy to evaluate KBI from simulation data.

When evaluating KBI from simulations it is suggested in the literature [64]

that a cutoff distance (that is used as the integral’s upper limit) equal to

the range over which the intermolecular forces dominate the distribution

of the particles, is a good approximation. Experimental estimates suggest

that the radius at which one molecule influence another extends over several

molecular diameters, although this is somewhat dependent on the density

[128]. In [64] radius of 10 Å was taken. It is reasonably to take this cutoff

radius in a way that the rest of the volume is sufficiently big reservoir of

particles, to mimic infinitely big system. But this does not solve the problem

of possible appearance of big microsegregated domain in the system, so that

the correlation length becomes bigger than the chosen cutoff radius.

It should be also noted that there are some difficulties in obtaining accurate

KBI values from the available thermodynamic data [125]. Quantities used

for calculation of KBI are extremely sensitive to experimental precision and

the accuracy of the of fitting of vapour-liquid equilibrium or activity data. A

review of different values of KBI obtained by different authors on the same

systems is provided in [125]. Another method for obtaining KBI values is

from small-angle x-ray scattering, as Nishikawa and Ilijima did 1993. [129]

for ethanol water system, and neutron scattering experiments.
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3.4.3 KBI results

Kirkwood-Buff integrals for various models used in this work are shown on

Figure 41. Results are compared to the experimental data from thermodynamic

measurement [125] and from small-angle x-ray scattering [129]. First it

is obvious that experimental data are not in good agreement with each

other. GEE has very different behaviour in the region χ ≤ 0.2. Here

experimental data from [129] show steep rise, that is very different from

thermodynamic measurement. KBFF model is in good agreement with

[125], while OPLS and TraPPE models overestimate ethanol-ethanol KBI

in the region χ ≤ 0.2. This fact can be interpreted in a way that small

changes in ethanol model’s parameters, from KBFF to TraPPE, or OPLS,

have big effect on ethanol-ethanol KBI in the water rich region. It can be

understood in the light of the proposed structural regime of small ethanol

clusters in water network, as this structure is assumed to be highly frustrated,

and thus easily removed from balance if the parameters of the model are

guessed slightly wrong. At lower concentrations the difference GEE and

GEW indicates that ethanol has higher preference to bond to ethanol, than

to water8. From χ > 0.4 ethanol shows very slight preference to water. This

is understandable, as in the water rich region hydrophobic effect is stronger.

From χ > 0.4 on, all the models are in fairly good agreement with experimental

data for GEE. It can be concluded that OPLS and TraPPE models overestimate

concentration fluctuation for ethanol-ethanol, and underestimate concentration

fluctuation for ethanol-water, in the region χ ≤ 0.4, while KBFF model is in

much better agreement with experimental data.

Water-water concentration fluctuations are systematically overestimated in

region from χ ≥ 0.15 to χ ≤ 0.4 by OPLS and TraPPE models. The

conclusion can be drawn that OPLS and TraPPE models enhance

microsegregation at small mole fractions in this system. From the behaviour

of experimental and simulated difference between GWW and GEW it can be

concluded that water is preferentially solvated by water at all mole fractions

8If GEE is higher than GEW it means that ethanol is preferentially solvated by ethanol,
than water, and vice versa [112]
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in this system. In the proposed middle bi-continuous region water-water KBI

has maximum value.

In the ethanol rich region χ > 0.65 ethanol and water have slight preference

for water. The proposed structural change at this mole fraction occurs as the

result of the breaking up of the percolated water network, that has no big

effect on concentration fluctuations, and thus it is not expected to be noted

in the behaviour of the KBIs.

It is worthwhile to explain why KBI calculation using KBFF models gives

better results. The reason is that the force filed is parametrized to give

correct KBI. However, this is achieved by the reproducing more homogeneous

behaviour of RDFs tail, which is then translated in the correct behaviour of

rKBI, and calculation of KBI. This model promotes mixing, and therefore

it makes more homogeneous system, which is obvious from the fact that

constancy of tail is reached for the system size used in the simulation. Other

models, are more segregated, and therefore the stability of the RDF is affected,

which then shows up as larger KBI. This is not an indication that other

models are wrong, they just have stronger segregation, which affects fluctuation

and the RDF s tail. The main difference is not at the large alcohol concentrations,

as it would be expected, since models differ in ethanol force field, but at

small alcohol concentrations. An explanation can be given, considering

the differences between models: OPLS and TRAPPE have weaker charges,

and they are ’less competitive’ to join the hydrogen-bonded network, which

becomes even more evident when there is less of them. In the region of

small alcohol concentrations, many properties show extremes, which is an

indication that in this region the system is more frustrated, and therefore

more sensitive to the small changes.
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(a) GEE

(b) GEW

(c) GWW

Figure 41: Kirkwood-Buff integrals
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3.5 Cluster analysis

One way of accessing microscopical segregation in liquids is via clustering

analysis. Hill’s theory [130] provides the statistical mechanics formalism

to describe clustering in equilibrium classical system. Following the Hill’s

definition; two particles belong to a same cluster if they are connected through

a path of bonded pairs of particles. There are different definitions of a bonded

pair. Hill’s definition of a bonded pair states that two particles are bonded if

their relative kinetic energy is less than pair’s negative potential energy. The

Stillinger criterion which is a geometrical one, states that a pair is bonded

if two particles in a given configuration are separated by distance less than

some predefined distance d [131]. Vericat and Pugnaloni included dynamical

criterion in definitions of physical and chemical clusters [132]. In this work

Stillinger definition is used, as the prime goal is to elucidate static structural

properties. Imposed geometrical criterion does not take into account the

interaction between particles, the particles are considered bonded if their

relative distance is less than some predefined value. However, the distinction

will be noticed between bonded pairs of hydrophobic sites (site clusters) and

bonded pairs of H-bonding particles (interaction clusters).

Following the definition of Coniglio et al [133] the cluster pair correlation

function gγ(~r1, ~r2), cRDF, is the joint probability density of finding two

particles that belong to the same cluster of kind γ at positions ~r1 and ~r2

respectively (definition taken from [132]).

The probability p(n) of finding a cluster of size n is defined as:

p(n) =

∑

k s(k, n)
∑

n,k s(k, n)
(3.40)

where s(k, n) is the number of clusters of size n in the configuration k.

Average cluster size is defined as:

naverage = n
∑

n

p(n) (3.41)
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On Figure 429 it is visible that for cluster size from 4 to 10, the biggest

probability is for the χ = 0.18 mole fraction. It refines the picture of the

structural transformation at approximately this mole fraction, where there

is the largest number of small hydrophobic site clusters, and not ethanol

clusters.
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Figure 42: Cluster size probability function for CH3 sites clusters

9All Figures in this section are from [134]
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Figure 43: Cluster size probability function for CH2 sites clusters
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Figure 44: Cluster size probability function for O sites clusters

O clusters show preferential clustering at the size of approximately 5 for

pure ethanol, and that structuring is somewhat preserved at χ = 0.90 mole

fraction.
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Figure 45: Cluster size probability function for Ow sites clusters, small
concentrations
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Figure 46: Cluster size probability function for Ow sites clusters, higher
concentrations

The biggest and the average clusters are plotted on Figure 47. Average

cluster size is a statistical measure defined by the whole distribution, while
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the biggest cluster is one of the fluctuations of the cluster size. When the

system is close to the percolation of some specific sites, site’s clusters of

the size that spans the system appear. Therefore, the size of the biggest

cluster may be the sign of approaching the regime change. CH3 average

clusters show two regimes; one exponential up to χ = 0.30, and linear above.

Biggest CH3 cluster has linear behavior, steeper line up to χ = 0.40, and

closer to the line χ × 2048 above. CH2 biggest clusters behave almost

exactly as the CH3 average, exponential rise up to χ = 0.30, and linear

above. Average CH2 clusters have exponential rise up to χ = 0.60, and

linear above. The oxygen ethanol clusters stay small in size over the whole

mole fraction range. The exception is when approaching pure system, they

show an increase, the biggest, and the average as a consequence, meaning

that in the mixture there is negligible probability that ethanol O-sites would

form a percolated network, as ethanol tends to preserve it’s structure of the

pure liquid, clustering O sites in clusters of approximately 5. Water cluster

behaviour shows that water slightly changes its network’s connectivity at

χ = 0.30, but the most dramatic change occurs at χ = 0.60. Above χ = 0.60

percolation of the water network is evidently broken as there are only small

clusters present in the system. The change in the size of the average cluster

is very rapid, shown by the angle that line forms at this mole fraction.
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Figure 47: The biggest and average clusters

Cluster radial distribution functions are plotted on Figure 48 to 5110.

As the total number of sites in the system, N, is used as the normalization

factor, and if all of the N particles are not bonded in clusters, the cRDF

oscillates below the line y = 1. On plots some of the functions have a sharp

end of the first peak, which is a consequence of the used cutoff distance

for the cluster definition. Long range behaviour of the cRDFs has three

main types. First one is when the cRDF oscillates around a horizontal line,

meaning that almost all sites are clustered, and sites form a homogenous

distribution. Second behaviour is when the cRDF tail spans the half cell

size, but it has an exponential decay. This means that while large clusters

appear as a fluctuation, smaller clusters are predominant in the system. And

the last type of behaviour is when exponential decay of the tail leads to zero

before reaching the half cell radius, meaning that big, percolated clusters do

not appear at all in the system, not even as a fluctuation.

10These plots are for the flexible OPLS model for ethanol. Other models are plotted in
the Appendix, showing the same characteristics.
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Figure 48: Cluster radial distribution function for CH3 sites
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Figure 49: Cluster radial distribution function for CH2 sites

Hydrophobic sites for high alcohol concentrations show horizontal cRDF’s

tails, therefore the sites are homogeneously organized. This random organization

is lost for CH2 sites at χ = 0.60, and for CH3 at χ = 0.40 (or χ = 0.30,

depending on ethanol model). The cRDF for oxygen ethanol clusters show
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that O sites have tendency to form smaller clusters, and their cRDF’s tail

show second type of behaviour.
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Figure 50: Cluster radial distribution function for O sites

In the range below χ = 0.60 ethanol, water cRDFs are horizontal, meaning

that water is percolated, its network spanning the whole system. At χ = 0.60

mole fraction of ethanol the system approaches the structural change and

water cRDF tail has an exponential decay, as the big percolated clusters

become rarefied. Above χ = 0.60 water network is broken is smaller fragments,

and cRDF decays to zero before reaching the end of the simulation cell.
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Figure 51: Cluster radial distribution function for Ow sites

Summing up all the information from clusters it can be concluded that

the change at approximately χ = 0.15 mole fraction of ethanol is due to

the change of the hydrophobic sites organization, as they are the most

clustered at this concentration, and from this concentration on they manage

to achieve better degree of randomness. Second change is due to the water

reorganization, namely the breaking up of the percolated water network into

smaller domains. All of the tested models show the same behaviour, with

just small variations, so it can be concluded that described properties are

not model sensitive.
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3.6 Snapshots

Snapshot, the instantenous configuration of the system, (all of them in this

work are produced by VESTA 3 application [135]), is not statistically averaged

feature.. However, it is reasonable to assume that one state randomly chosen

will show any particular global structural organization that is seen in the

averaged properties of the system. On Figure 52 system at two mole fractions

is shown11:

11On all the Figures in this section plotted sites are 1/3 of their real size, for the reason
of visibility
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(a) χ = 0.10

(b) χ = 0.40

Figure 52: Snapshots of ethanol(red-black)-water(blue) for two different mole
fractions of ethanol
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(a) χ = 0.10

(b) χ = 0.40

Figure 53: Snapshots of ethanol molecules for two different mole fractions of
ethanol

In the Figure 52 (a) the small ethanol clusters are seen in the water, with
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some single ethanol molecules still present in the system, while in the region

of bi-continuous microheterogeneous mixture at Figure 52 (b) these clusters

are merged into bigger ethanol associations. On Figure 53 there are only

ethanol molecules at the same mole fractions, and small ethanol clusters and

single molecules are easily identified at 53 (a). In order to track down the

change in the water network at approximately χ = 0.65 mole fraction, it is

instructive to look at water molecules along the changing mole fraction on

Figure 54.
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(a) χ = 0.10 (b) χ = 0.20

(c) χ = 0.30 (d) χ = 0.40

(e) χ = 0.50 (f) χ = 0.60

(g) χ = 0.70 (h) χ = 0.80

(i) χ = 0.90

Figure 54: Snapshots of water molecules for nine different mole fractions of
ethanol
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At Figure 54 (a) water seems to fill the whole volume of the cell uniformly.

From Figure 54 (b) to Figure 54 (f) thinning of the water network is visible,

but the percolation seems to hold over all of this mole fraction range.

Microheterogeneous quality of the water network is clearly visible in this

mole fraction range. Microheterogeneous areas of water (or holes in water

network) do not have any kind of definable geometry, but regions with water

and regions without water seem to form shapeless pattern of interlaced areas.

This is the reason why it is not expected to observe a prepeak in the structure

factor, because there is no specific size that can be attributed to these

interlaced microsegregated domains. From Figure 54 (g) on, breaking of the

water network becomes visible, and especially fragments of two molecules

that correspond to the shift to the right of the Ow-Ow RDF second peak,

mentioned before.

When looking at ethanol oxygen sites and ethanol CH sites the mole fraction

of χ = 0.30 in comparison with the water oxygen sites at χ = 0.70, at

Figure 55, similarities between Ow and CH sites are more obvious, both

having bigger empty areas in their space distribution, while ethanol oxygens

microstructure can be thought of as microheterogeneity of a smaller scale,

having finer granularity than the other two sites structure.
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(a) CH

(b) O

(c) Ow

Figure 55: Snapshots of ethanol sites at χ = 0.30 and water oxygen site atχ =
0.70 mole fraction of ethanol 119



This is expected, as ethanol oxygens are distributed on the interface

toward water, while CH sites tend to be shielded further away from water.
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3.7 Diffusion

Self diffusion coefficients are dynamical properties of mixtures that describe

translational mobility of molecules in the mixture relative to the similar

molecules. Self diffusion coefficients can be calculated from molecular dynamics

simulation by using Green-Kubo relation (velocity autocorrelation function):

Di =
1

3

∫ ∞

0

〈vi(t0)vi(t0 + t)〉dt (3.42)

or Einstein relation (mean square displacement):

Di =
1

6
lim
t→∞

d

dt
〈[ri(t0) − ri(t0 + t)]2〉 (3.43)

[79], [136].

Self diffusion coefficients calculations for different models from the literature

show that this feature is not easily reproducible. Wensink et al [53] calculated

self diffusion coefficients for mixture of all-atoms OPLS and TIP4P models,

using Einstein relation. Noskov et al [48] reported self diffusion coefficients

for polarizable ethanol model. Self diffusion coefficients for the mixture of

OPLS-AA and SPC water were reported by Zhang et all [57], calculated by

Green-Kubo method, and Zhang and Yang [58] reported them calculated

from MD simulation of rigid ethanol model and TIP4P water by both,

Green.Kubo and Einstein relation. Guevara-Carrion et all [109] reported

selfdiffusion coefficients calculated by Green-Kubo relation. All of these

results for water are presented on Figure 56, together with experimental

results from [4] and for ethanol on Figure 57, together with experimental

results from [5]. All models except polarizable [48] and rigid [109] with

TIP4P/2005 water overestimate diffusion coefficients for both, water and

ethanol. Polarizable model underestimates it, while results for the rigid

model from [109] are in excellent agreement with experimental data for

ethanol, and slightly underestimated for water, but better than polarizable

model.
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Figure 56: Self diffusion coefficient for water, experimental data from [4].
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Figure 57: Self diffusion coefficient for ethanol, experimental data from [5].
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Figures 58-59 apresent results for different ethanol models. All the data

follow the experimental line, even though they are all slightly too high. The

best results are from KBFF model, as expected. This can be easily explained

with the fact that excess Coulomb energy is more positive for OPLS and

TraPPE models, meaning enhanced repulsive interaction, resulting in slightly

faster system, while KBFF model gives slightly slower system.
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Figure 58: Self diffusion coefficient for water.
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Figure 59: Self diffusion coefficient for ethanol.
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3.8 Additional experimental results

Experimental results of the behaviour of various properties in the aqueous

ethanol are known to undergo non-trivial changes with the change of the

ethanol-water concentration. In this work a few of them are highlighted:

speed of sound, excess enthalpy, heath capacity, compressibility and azeotropy.

All of the listed properties exhibit the behaviour that has similarities with

three regimes separated by two mole fraction (namely χ1 ≈ 0.15 and χ2 ≈
0.65 mole fraction of ethanol) where the transition from one regime to another

occurs in this mixture, that is proposed as the hypothesis of this work. It is

justified to ask if that changes can be tracked in the structural changes that

are rewived it the context of the acquired MD data.

3.8.1 Speed of sound

Recent highly accurate results from the measurement of ultrasound and

hypersound speed have been obtained from the group’s collaboration work 12

[6], [137]. Ultrasound is defined as a sound wave with frequency from 2 ∗ 104

to 109 Hz. Higher portion of the frequency spectrum, from 109 to 1013 Hz is

defined as hypersound.

On Figure 60 is the variation of ultrasonic sound speed in ethanol-water

mixture, at different mole fractions, and at different temperatures, from [6].

In the range from 0� to 70� sound speed in pure water and pure ethanol

exhibits very different behaviour. In the case of pure ethanol it is decreasing

linearly as the temperature increases. This is expected behaviour, as the

increased thermal disorder is expected to lower the speed at which the sound

propagates through the media. In water sound speed increases in a nonlinear

fashion at this temperature range. This fact is one of the many known

anomalies of liquid water [138], [139]. In this whole temperature range speed

of sound is greater in pure water than in pure ethanol. Both of these liquids

are hydrogen bonded, but they have different qualities of hydrogen-bonded

structures. Water kind of hydrogen-bonded association is more rigid and

12with Austrian group from University of Salzburg: A. Asenbaum, C. Pruner and E.
Wilhelm
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more uniform, so the sound propagates faster in water, than in ethanol.

Ethanol has hydrophobic part that prevents it from forming the same kind

of association as water.

Figure 60: Speed of ultrasonic sound in ethanol-water system, as function of
temperature and molar fraction, from [6]

When ethanol and water are mixed, the speed of sound goes through

a maximum, that manifests itself at the mole fraction of approximately

χ1 ≈ 0.15 ethanol, at ambient conditions, as seen in Figure 61. For higher

temperatures this maximum is slightly shifted to the smaller concentrations

of ethanol. In the first region below χ1 ≈ 0.15 addition of ethanol to water

is not pushing the sound speed down towards ethanol values, but on the

contrary, it enhances the water’s network structure in a way that sound

propagates even faster in this mixture than in pure water. This picture

implies that in this region ethanol is clustered in small domains incorporated

into flexible water network. In the middle region sound speed starts to drop
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down toward pure ethanol value, as ethanol domains begin to grow bigger

in the water network. After χ2 ≈ 0.65 water network is not percolated any

more and speed of sound starts to drop linearly.

Figure 61: Speed of ultrasonic sound under ambient conditions as function of
the ethanol mole fraction, from [6]

Another interesting feature of the sound speed in this mixture is dispersion

effect (Figure 62).
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Figure 62: Ultrasonic (triangles) and hypersonic (dots) sound speed, from [7]

Dispersion effect is the difference in ultrasound and hypersound speeds,

that can be seen in the region up to χ2 ≈ 0.65 [140]. The higher frequency

hypersound speed is higher than ultrasonic sound speed. It is interesting

to note that dispersion effect is the biggest around first proposed structural

change at χ1 ≈ 0.15, indicating that this effect is somehow related to it.

Dispersion effect vanishes above χ2 ≈ 0.65. To reconcile all of the data

from the experimental sound speed measurements, the increment of the

sound speed at small ethanol mole fractions, meaning the rigidifying of the

mixture, and the high frequency dispersion effect that suggests the presence

of inhomogeneities, it is reasonable to conclude that in the region from 0

to χ1 water network is rigidyfied by adding ethanol molecules, that cluster

themselves in small clusters. As more ethanol is added to the mixture, the

more of this clusters is formed, subtracting areas accessible to the water

network’s flexibility, as this regions occupied with ethanol molecules can’t be

more squeezed, thus acting as hard spots in the flexible water network.

When negative excess sound speed is compared to the previously discussed

excess enthalpy (see Section 3.1.5) at Figure 63 it can be seen that both

lines have minimum at approximately the same mole fraction of ethanol,

χ1 ≈ 0.15, and an inflection point at χ2 ≈ 0.65.
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Figure 63: Experimental excess enthalpy ftom [8] as green circles (in J/mol) and
negative excess sound speed from [6] as squares (blue for ultrasonic speed and red
for hypersonic speed (in m/sec))

3.8.2 Response functions

Isothermal compressibility, κT , is a measure of the relative change in volume

of a system due to the change in pressure, for an isothermal (dT=0) process.

Isentropic compressibility, κS measures the change in volume of a system

due to the change in pressure during a reversible adiabatic (dS=0) process.

Adiabatic process is a process in which a system does not exchange heat with

its surroundings.

κT = − 1

V
(
dV

dp
)T (3.44)

κS = − 1

V
(
dV

dp
)S (3.45)

Data from [9] on isothermal compressibility of the ethanol-water mixture at

25� shows the minimum in the compressibility at χ1 ≈ 0.15 (Figure 64) that

supports the previous conclusion, as the minimum in the excess compressibility

would confirm the forming of the highest number of incompressible regions in

the water network. Excess in isentropic compressibility from [10] (Figure 65)

129



also has a minimum at approximately the same mole fraction. At χ2 ≈ 0.65

isothermal compressibility has an inflection point, while excess isentropic

compressibility has a maximum that falls at the higher mole fraction.
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Figure 64: Isothermal compressibility of the ethanol-water mixture, from [9]
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Figure 65: Variation in excess isentropic compressibility with ethanol mole
fraction, from [10]

with V=volume, T=temperature, p=pressure and S=entropy of a system.

Constant pressure heat capacity is amount of heat that needs to be added to
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the system to increase the temperature for a given unit, at constant pressure.

Molar heat capacity is heat capacity per mole of substance.

Cp = (
dQ

dT
)p (3.46)

with Q=heat. Excess molar heat capacity (Figure 66) also marks both

proposed significant mole fractions, it has maximum at χ1 ≈ 0.15 and

inflexion point at χ2 ≈ 0.65.

Figure 66: Excess heat capacity. Line from [8], squares from [11] and dots from
[12]

3.8.3 Azeotropy

Mole fraction of ethanol in liquid aqueous ethanol vs. mole fraction of ethanol

in vapour phase is shown on Figure 67. The curve is called azeotropy curve,

while the point where it crosses x=y line is called azeotropy point. Azeotropy

line shows maximum at χ1 ≈ 0.15 and inflexion point at χ2 ≈ 0.65 mole

fraction of ethanol in liquid phase.
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Figure 67: Vapour - liquid equilibrium diagram for ethanol - water. Data from
[13]

Maximum in the mole fraction of ethanol molecules in the vapour phase

at χ1 points to the structural organization of the liquid phase in the way

that ethanol molecules are the easiest to evaporate from the liquid at this

mole fraction, supporting the picture of the highest number of small ethanol

clusters embedded into water network. After that point, bigger associations

of ethanol are starting to form, thus diminishing the ratio of the ethanol to

water molecules that are evaporating. Change in convexity at χ2 supports

the breaking up of the water network into smaller fragments, which are now

easier to evaporate water molecules at the higher rate.

3.8.4 Summary of additional experimental data

It is interesting that such different physical properties as sound speed, excess

compressibility, excess enthalpy, excess heat capacity (Figure 66) and azeotropy,

when plotted against mole fraction of ethanol in the ethanol - water liquid

mixture, all show non-trivial behaviour with two approximately the same

significant points. This implies that the same changes in micro-structure
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of the system are responsible for all of them. Proposed picture of three

structural regimes is in accordance with the observed data. However, all the

extrema in the data presented in this section do not fall exactly at the same

mole fractions. It is still justified to claim that the same structural change

that takes place along the change of the ethanol’s mole fraction is responsible

for all observed features, as this features are all different things, heat capacity

is enthalpic effect and speed of sound has more to do with the geometry of

the structure, so it is not expected for all of them to register the change in

the structure at the same, sharply defined point.
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4 Conclusion

The Ethanol-water mixture was discussed in this work by the means of

simulation and experimental data. Simulation data on static structural

properties was found to identify three structural regimes; first up to χ1 ≈ 0.15

mole fraction of ethanol, second between χ1 ≈ 0.15 and χ2 ≈ 0.65, and third

above χ2 ≈ 0.65. This was in agreement with two mole fractions in this

mixture where various experimental properties exhibit extrema or inflexion

points, namely: sound of speed, excess enthalpy, excess heath capacity,

compressibility and azeotropy curve. The aim of this work was to achieve the

understanding of the microscopic structure picture, and to connect it with

the changes observed in experimental properties. Behind this non-trivial

behaviour of experimental properties can be the recently introduced new

concept of microheterogeneity of aqueous mixtures. Microheterogeneity is

defined as the local imiscibility of species in a mixture, that appears

homogenous at macro scale. It is important to point out that microhetero-

geneity is the property of the system in equilibrium. Formation of domains is

common in system that is out of the equilibrium, for example when system

is close to phase separation. Microheterogeneity should be distinguished

from the concentration fluctuation, as concentration fluctuation is statistical

property that represents the fluctuation in number of particles of a given

species, when looked through a window at various realizations of the system.

It is the variation in number of particles of one species in a given ∆V in

various microstates of the system. KBI measures concentration fluctuation in

a system. Even the microscopically homogenous mixture posses concentration

fluctuation, because the system is not frozen, it goes through various

realizations in time. When a system has microsegregated domains, they will

also look like concentration fluctuation, but they will have a permanency to

them. In the micelle forming systems these domains look like large particles.

In the aqueous mixtures microsegregated domains are of not such a specific

shape. Even further, in this work it was shown how the microheterogenous

structure changes it’s form with the change of mole fractions of mixture’s

constituents.

134



First indications of the existence of microheterogeneity were the data on

experimental entropy that was too small, so this fact points out to the

existence of some order in the system. Only in 2002 Soper et al. [16]

published a paper about microheterogeneity in methanol-water mixture, so it

became ’official’. In that paper microheterogeneity was discussed via radial

distribution functions obtained from scattering experiments. Since then there

were lots papers dealing with microheterogeneity, for example Zoranic et al.

[62]

discussed microheterogeneity in aqueous amides, but it was never truly

separated from concentration fluctuations, as it is not clear how to extract

microheterogeneity from RDF. In microsegregated systems microheterogeneity

is the separation of species observed at snapshots, and concentration fluctuation

is variation in time of this microsegregated domains. So it is related to

variations in clusters, which are not well defined [113]. In this work the

tool for separating microheterogeneity from concentration fluctuations is

introduced for the first time. Namely it is pair connectedness function

(cRDF), that uses clusters, as they are the statical property of the structure,

to identify microsegregated domains. With its help it was concluded that

microheterogeneity is responsible for the existence of the three structural

regimes in this mixture, and for the first time here is given microscopic picture

that describes these three different microheterogenous structures.

Molecular dynamic simulation is one of the tools that allows accessing

microstructural properties of liquids. Though, it has some difficulties, one

being the size of the simulated systems. For systems of associated liquids, as

water and alcohol, it is not clear how big are the microsegregated domains

in the mixture, as they appear to be of no specific size and shape. For

instance; the prevalent picture of pure water is that of the flexible network

that spans the whole system. In this mixture up to χ = 0.65 mole fraction of

ethanol water seems to span the whole system with its percolated network,

so it is hard to speak of any specific size of its domains/clusters. As water

preferentially bonds to water, and ’tries’ to keep it’s H-bonded network

undisrupted, it can be identified as a ’driving force’ in aqueous alcohols

systems.
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Another difficulty is the time of the simulations, due to the unknown dynamic

of the microheterogeneity. The example is tail of the radial distribution

function that shows some changes even after 4 ns statistics, which is a

relatively long time for the MD simulation of 2048 molecules.

Yet the most important question is the choice of the force fields for the

simulation. Classical force fields parametrized on pure components, as OPLS

and TraPPE, seem to overestimate microsegregation in this system, even

though they give better pure component’s properties. The KBFF force field

parametrized on mixture’s Kirkwood-Buff integrals gives interface between

domains of apparently more realistic size. However, all the force fields gave

the similar structural and clustering properties. The differences can be seen

at coordination numbers, radial distribution functions, and the most obvious

at the value of Kirkwood-Buff integrals. The energetic contribution differs the

most in the excess Coulomb energy and consequently in the excess enthalpy

of the system. However all of the force fields in this work were able to track

restructuring of the mixture at approximately the same mole fractions that

are in line with the mole fractions where previously mentioned experimental

properties exhibit extrema or inflexion points.

The short description of three regimes structures is presented next, along

with the listed facts from simulation and experimental data that supports

the given picture.

In the first region, from pure water up to χ ≈ 0.15, water pushes away

CH3 sites, which is a known hydrophobic effect. This effect can be tracked

to the properties of the CH3 site-site clustering. Probability for the CH3

clusters of the sizes from 4 to 10 is rising up to χ ≈ 0.15 − 0.18, where it

is the highest, then it drops down. The CH3 average cluster sizes are very

small and their concentration dependance has non-linear shape. The cRDF’s

first peak for CH3 sites is the highest at χ = 0.15 indicating thy are the

most clustered at this mole fraction. Exponential decay to zero of CHn sites

cRDFs indicates that these sites are grouped in smaller clusters. The CH2

and CH3 coordination numbers exhibit a steep rise in this region, steeper than

for the Lennard-Jones liquid, reflecting the fact that hydrophobic sites are

distributed in an inhomogeneous way. First peak height of the correlations
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of the CH3-CH3 and CH2-CH2 sites also rises in this region. The behaviour

of the experimental data also marks the χ ≈ 0.15. Speed of sound rises

from the value of the pure water up to χ ≈ 0.15 mole fraction of ethanol.

Compressibility has a drop in this region. This drop occurs because system

is more rigid due to the fact that hydrophobic effect has pushed ethanol

molecules in small less compressible regions. Mole fraction of ethanol in the

vapour phase to mole fraction of ethanol in the liquid phase ratio also rises

up to a maximum value at χ ≈ 0.15 mole fraction of ethanol, indicating that

ethanol molecules are the easiest to evaporate. Minimum in excess enthalpy

and maximum in excess heat capacity both occur at this mole fraction,

resulting from the added effect of the negative vdW excess and the minimum

in the excess Coulomb energy. The minimum in the excess Coulomb energy

means that the opposite charges have the best positions relative to each

other: all water molecules forming percolated network, supported with the

maximum number of H-bonded ethanol oxygenes, with all CH2 sites away

from positive charges, and CH3 sites shielded from water. With the adding

of more ethanol entropy maximization tendency pulls hydrophobic parts of

ethanol molecule and overcomes energetic effects, resulting in formation of

the bi-continuous microsegregated ethanol-water phase in the middle region.

Middle region, from χ ≈ 0.15 to χ ≈ 0.65, is an intertwined ethanol water

phase. With the rise of the ethanol mole fraction, the first peaks of RDF

for hydrophobic sites go down, indicating their more homogenous placement

than in the first region. Water network is thinning, as it can be seen from

the size of the average water cluster. Up to χ = 0.60 big system-size clusters

appear as a fluctuation, the tail of the water’s cRDF has an exponential

decay, but it still spans the whole system size. The size of the biggest water

cluster has a large drop from χ = 0.50 to χ = 0.60 mole fraction of ethanol,

marking the second border between regimes. Speed of sound decreases in this

region as the water network becomes thinner, excess enthalpy goes to the less

negative values, as the positioning of the charged sites becomes disrupted by

the growing hydrophobic parts of the mixture. The ratio of mole fraction

of ethanol in the vapour phase to liquid phase becomes smaller, as the

thinning of the water network acts in favour of releasing more and more
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water molecules from liquid. At approximately χ1 ≈ 0.65 a border between

regions can be identified, that corresponds to the breaking of the connectivity

of the water network. Azeotropy curve has an inflection here that suggests

that there is a change in favour of easier release of water molecules from the

liquid. Excess enthalpy and heath capacity also both have inflection point

roughly around this mole fraction.

In the third region cRDFs for Ow sites have exponential decay and their tails

go to zero before reaching the end of the cell, indicating that connectivity

of the water’s network is broken. The same thing can be observed from the

biggest and average cluster sizes. So it is pictured as a region with smaller

fragments of thorn up water network immersed in ethanol, that is visually

confirmed with snapshots of the water. The same can be seen from the

average size of the Ow clusters. In the Ow-Ow radial distribution functions

there is another confirmation for the proposed picture. The positions of the

second peaks change with the concentration, reflecting the longer distance of

the second neighbour. In the previous regimes, due to the percolation of the

water, these peaks remain at the same position. In third region because of

the broken water’s network there are now patches of water domains so their

edges contribute to the shifting of the second peak.

As a final conclusion it can be said that here is presented a new picture

that identifies different types of microheterogeneity in aqueous ethanol system.

Concept of microheterogeneity is important for all aqueous solutions, and

consequently for bio-systems, too. Microheterogeneity, as being a local

property, does not have yet an adequate theoretical description, so here

introduced pair connectedness function that allows accessing it has an

important role. In the future work it is planned to use it at ionic liquids,

various aqueous alcohols, as tert-butanol, tro-component mixtures and so on.

About the question of ethanol models posed in this work it can be concluded

that all the models were able to identify trends in the behaviour along mole

fractions described here. Evolution of force fields towards ones sensitive to

the environment, such as polarizable force fields, may be the best choice to

overcome differences and problems presented in this work.
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Abstract

Ethanol-water liquid mixture was analyzed by the method of
Molecular Dynamics, over the whole composition range to elucidate its
micro structure. A recently introduced concept of microheterogeneity
was used to describe mixture’s behaviour. The microsegregation of
species, while on the macroscopic level the liquid appears homogenous,
noticed particularly in aqueous mixtures, is addressed as
microheterogeneity. It was discovered that there are at least three
structural regimes with respect to composition range in aqueous ethanol
at ambient conditions. Up to approximately 0.15 mole fraction of
ethanol, hydrophobic ethanol’s sites distribution declines from
homogenous. From 0.15 to approximately 0.65 mole fraction of ethanol,
ethanol and water form bi-continuous intertwined microheterogenous
mixture of segregated domains, and above 0.65 mole fraction of ethanol
water network loses its connectivity over the whole system. Broken
parts of the water’s network that do not span the whole system are
found in the mixture. To prove it the results from MD simulation are
listed: RDF, coordination numbers, analysis of clustering, Kirkwood-
Buff integrals, snapshots, and diffusion coefficients, all supporting the
given picture, as well as results from the sound speed measurement,
and previously known experimental data on excess enthalpy, isothermal
compressibility, azeotropy and heat capacity. Especially results from
the novel approach in cluster analysis, performed for the first time on
this kind of system, were important for supporting the picture of three
structural regimes. This is the first time that such detailed overall
picture of the microscopic level structure of this liquid mixture is given.
Besides, in-detail analysis of different ethanol models in their ability
to reproduce this structural change with mole fraction is presented;
OPLS and TraPPE models that are parametrized on pure substance
thermodynamical properties, as well as KBFF model parametrized on
the solute activity in the aqueous mixture. As some recent results from
simulations of aqueous organic compounds mixtures show, some excess
quantities as excess enthalpy, and dynamic properties as diffusion
coefficient, which are the most sensitive to mixing properties, are
difficult to reproduce correctly using force fields parametrized on pure
components. The OPLS, TraPPE and KBFF models were tested at
excess properties and diffusion coefficient, and KBFF model was found
to perform better in reproducing them. And more important, all three
models were found to reproduce properties that confirm the existence
of three structural regimes in the mixture.
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Sažetak

Metodom molekularne dinamike analizirana je tekuća mješavina
etanola i vode u cijelom rasponu koncentracija, da bi se bolje razumjela
njena mikrostruktura. Za opis ponašanja mješavine upotrijebljen je
novi koncept mikroheterogenosti. Mikroheterogenost je pojava
mikroseparacije komponenti u mješavini koja je na makroskopskom
nivou homogena. Ova pojava je posebno opažena u vodenim otopinama.
Pronadeno je da u tekućoj mješavini etanola i vode, na sobnim uvjetima,
postoje najmanje tri strukturna režima u odnosu na molarni udio
konstituenata. Prvi je do otprilike 0.15 molarnog udjela etanola, gdje
distribucija hidrofobnih site-ova ima otklon od homogene distribucije.
Od 0.14 do otprilike 0.65 molarnog udjela etanola, etanol i voda
formiraju bi-kontinuiranu isprepletenu mikroheterogenu mješavinu
mikrosepariranih domena. Iznad 0.65 molarnog udjela etanola mreža
molekula vode je pokidana i vǐse se ne proteše kontinuirano cijelim
sustavom. Kao osnova za danu sliku izloženi su rezultati simulacije
molekularne dinamike: RDF, koordinacijski broj, analiza klastera,
Kirkwood-Buff integrali, snapshot-ovi i difuzijski koeficijent. Osim
toga navedeni su i eksperimentalni rezultati mjerenja brzine zvuka
koji podržavaju ovu sliku, kao i neki otprije poznati rezultati za eksces
entalpije, kompresibilnost, azeotropiju i toplinski kapacitet. Posebno
su vrijedni rezultati analize klastera, zbog upotrebe nove metode,
prvi put primijenjene na ovoj vrsti sustava. Ovo je i prvi put da je
dana ovakva detaljna slika mikrostruktute tekuće mješavine etanola
i vode. Osim toga provedena je detaljna analiza razlic̆itih modela
za etanol i testirana je njihova sposobnost reproduciranja promjene
strukture s promjenom molarnog udjela komponenti. Testirani su
OPLS i TraPPE modeli parametrizirani na termodinamic̆kim svojstvi-
ma c̆istih tekućina i KBFF model parametriziran na aktivitetu otopljene
tvari u vodenoj otopini. Prema nekim rezultatima simulacija za vodene
otopine organskih molekula, publiciranim u posljednje vrijeme, modeli
parametrizirani na c̆istim tekućinama ne reproduciraju dobro osobine
mješavina koje su posebno osjetljive na interface miješanog sustava,
kao što su eksces entalpije i difuzijski koeficijent. U ovom radu pokazano
je da ih KBFF model bolje uspijeva reproducirati od ostala dva modela.
Sva tri modela bila su uspješna u reproduciranju tri strukturna režima
u promatranoj mješavini.
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A Radial distribution functions
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Figure 68: Radial distribution functions of CH2 sites, first peak, TraPPE model
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Figure 69: Radial distribution functions of CH2 sites, first peak, semi flexible
OPLS model
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Figure 70: Radial distribution functions of CH2 sites, first peak, KBFF model
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Figure 71: Radial distribution functions of CH3 sites, first peak, TraPPE model
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Figure 72: Radial distribution functions of CH3 sites, first peak, semi flexible
OPLS model
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Figure 73: Radial distribution functions of CH3 sites, first peak, KBFF model
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Figure 74: Radial distribution functions of Ow sites, shift of the second peak,
TraPPE model

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 3  4  5  6  7  8  9

 O
w

−
O

w
 R

D
F

r [Å]

0.00
0.08
0.10
0.12
0.15
0.18
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Figure 75: Radial distribution functions of Ow sites, shift of the second peak,
semi flexible OPLS model
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Figure 76: Radial distribution functions of Ow sites, shift of the second peak,
KBFF model
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B Cluster radial distribution functions

Figure 77: Cluster radial distribution functions, CH2, KBFF model

Figure 78: Cluster radial distribution functions, CH3, KBFF model
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Figure 79: Cluster radial distribution functions, O, KBFF model

Figure 80: Cluster radial distribution functions, Ow, KBFF model
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Figure 81: Cluster radial distribution functions, CH2, TraPPE model

Figure 82: Cluster radial distribution functions, CH3, TraPPE model
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Figure 83: Cluster radial distribution functions, O, TraPPE model

Figure 84: Cluster radial distribution functions, Ow, TraPPE model
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